
Functional Dependencies: Part 2

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Functional Dependencies: Part 2



In designing a database, for the purpose of minimizing redundancy, we
need to collect a set F of functional dependencies (FD) that reflect the
constraints of the underlying application.

Ideally, we do not want to miss any FD, i.e., we want to obtain an F that

is as large as possible. However, in practice, FD collection is a difficult

process. No one can guarantee always discovering all FDs.

Functional Dependencies: Part 2



In practice, it is often the case that some FDs are easier to see, while
others are more subtle and harder to observe. Some of those subtle FDs,
fortunately, can be derived from the easy ones. In other words, the
derivation permits us to “rescue” some FDs that have skipped our
attention.

How about the subtle FDs that cannot be derived from the easy ones?

There is nothing we can do about them, unfortunately, and will have to

continue the design without them. This is why even an experienced

database professional may not always be able to come up with a perfect

design!

Functional Dependencies: Part 2



Let us identify an important special type of FDs:

Definition

A functional dependency X → Y is regular if Y contains only a single
attribute.

For example, AB → C is regular, but AB → CD is not, where A,B,C ,

and D are attributes.

Functional Dependencies: Part 2



There is an equivalence that explains why we can capture all irregular
FDs by considering only regular ones:

An irregular FD X → A1A2...At (where X is an attribute set, and
each Ai (1 ≤ i ≤ t) is an attribute) is equivalent to:

X → A1

X → A2

...

X → At

Example: AB → CD if and only if AB → C and AB → D.

Functional Dependencies: Part 2



Again, let F be the set of FDs we have collected. Then:

Definition

The closure of F , denoted as F+, is the set of all regular FDs that can be
derived from F .

Do not confuse the closure of F with the closure of an attribute set.

Functional Dependencies: Part 2



Example. Assume that there are 4 attributes A,B,C ,D, and that
F = {A→ B,B → C}. Then, F+ includes all the following FDs:

A→ A, A→ B, A→ C , B → B, B → C , C → C , D → D, AB → A,

AB → B, AB → C , AC → A, AC → B, AC → C , AD → A, AD → B,

AD → C , AD → D, BC → B, BC → C , BD → B, BD → C , BD → D,

CD → C , CD → D, ABC → A, ABC → B, ABC → C , ABD → A,

ABD → B, ABD → C , ABD → D, BCD → B, BCD → C , BCD → D,

ABCD → A, ABCD → B, ABCD → C , ABCD → D.

Functional Dependencies: Part 2



Finding the Closure of a Set of FDs

algorithm (F )
/* F is a set of FDs */

1. F+ = ∅
2. for each possible attribute set X
3. compute the closure X+ of X on F
4. for each attribute A ∈ X+

5. add to F+ the FD: X → A
5. return F+

Functional Dependencies: Part 2



Example. Assume that there are 4 attributes A,B,C ,D, and that
F = {A→ B,B → C}. To compute F+, we first get:

A+ = AB+ = AC+ = ABC+ = {A,B,C}

B+ = BC+ = {B,C}

C+ = {C}

D+ = {D}

AD+ = {A,D}

BC+ = {B,C}

BD+ = BCD+ = {B,C ,D}

ABD+ = ABCD+ = {A,B,C ,D}

ACD+ = {A,C ,D}

It is easy to generate the FDs in F+ from the closures of the above

attribute sets.

Functional Dependencies: Part 2



Candidate Key Revisited

In creating a table, it may seem that so far we have been specifying

candidate keys based on our preferences. This illusion is created because

we did not understand FDs. In fact, candidate keys are not up to us at

all. Instead, they are uniquely determined by the set F of functional

dependencies from the underlying application. See the next slide.

Functional Dependencies: Part 2



Candidate Key Revisited

Let F be a set of FDs, and R a relation.

Definition

A candidate key is a set X of attributes in R such that

X+ includes all the attributes in R.

There is no proper subset Y of X such that Y+ includes all the
attributes in R.

Note: A proper subset Y is a subset of X such that Y 6= X (i.e., X has
at least one element not in Y ).

Functional Dependencies: Part 2



Example. Consider a table R(A,B,C ,D), and that
F = {A→ B,B → C}.

A is not a candidate key, because A+ = {A,B,C} which does not
include D.

ABD is not a candidate key even though ABD+ = {A,B,C ,D}.
This is because AD+ = {A,B,C ,D}, namely, there is a proper
subset AD of ABD such that AD+ includes all the attributes.

AD is a candidate key.

Functional Dependencies: Part 2


