
Lecture Notes of CSCI5610 Advanced Data Structures

Yufei Tao
Department of Computer Science and Engineering

Chinese University of Hong Kong

April 13, 2022

Contents

1 Course Overview and Computation Models 4

2 The Binary Search Tree and the 2-3 Tree 7
2.1 The binary search tree . 7
2.2 The 2-3 tree . 9
2.3 Remarks . 13

3 Structures for Intervals 15
3.1 The interval tree . 15
3.2 The segment tree . 16
3.3 Remarks . 17

4 Structures for Points 19
4.1 The kd-tree . 19
4.2 Bootstrapping . 21
4.3 The priority search tree . 23
4.4 The range tree . 26
4.5 Pointer-machine structures . 27
4.6 Remarks . 27

5 Global Rebuilding and Charging Arguments 30
5.1 Amortized cost . 30
5.2 Charging arguments . 31
5.3 Dynamic arrays . 31

6 The Logarithmic Method 34
6.1 Decomposable problems . 34
6.2 The logarithmic method . 34
6.3 Remarks . 37

7 Weight Balancing 39
7.1 BB[α]-trees . 39
7.2 Insertion . 40
7.3 Deletion . 40
7.4 Amortized analysis . 40
7.5 Dynamization with weight balancing . 41
7.6 Remarks . 42

1

CONTENTS 2

8 Partial Persistence 44
8.1 The potential method . 44
8.2 Partially persistent BST . 45
8.3 General pointer-machine structures . 49
8.4 Remarks . 49

9 Dynamic Perfect Hashing 51
9.1 Two random graph results . 51
9.2 Amortized expected update cost . 53
9.3 Cuckoo hashing . 53
9.4 Analysis . 55
9.5 Remarks . 56

10 Binomial and Fibonacci Heaps 58
10.1 The binomial heap . 58
10.2 The Fibonacci heap . 60
10.3 Remarks . 66

11 Union-Find Structures 68
11.1 Structure and algorithms . 68
11.2 Analysis 1 . 69
11.3 Analysis 2* . 72
11.4 Remarks . 75

12 Dynamic Connectivity on Trees 77
12.1 Euler tour . 77
12.2 The Euler-tour structure . 79
12.3 Dynamic connectivity . 81
12.4 Augmenting an ETS . 81
12.5 Remarks . 83

13 Dynamic Connectivity on a Graph 85
13.1 An edge leveling technique . 85
13.2 Dynamic connectivity . 88
13.3 Remarks . 93

14 Range Min Queries
(Lowest Common Ancestor) 95
14.1 How many different inputs really? . 95
14.2 Tabulation for short queries . 96
14.3 A structure of O(n log n) space . 97
14.4 Remarks . 98

15 The van Emde Boas Structure
(Y-Fast Trie) 100
15.1 A structure of O(n logU) space . 100
15.2 Improving the space to O(n) . 102
15.3 Remarks . 102

Lecture Notes of CSCI5610, CSE, CUHK

16 Leveraging the Word Length w = Ω(log n)
(2D Orthogonal Range Counting) 105
16.1 The first structure: O(n log n) space and O(log n) query time 105
16.2 Improving the space to O(n) . 107
16.3 Remarks . 109

17 Approximate Nearest Neighbor Search 1: Doubling Dimension 111
17.1 Doubling dimension . 112
17.2 Two properties in the metric space . 114
17.3 A 3-approximate nearest neighbor structure . 115
17.4 Remarks . 118

18 Approximate Nearest Neighbor Search 2: Locality Sensitive Hashing 121
18.1 (r, c)-near neighbor search . 122
18.2 Locality sensitive hashing . 122
18.3 A structure for (r, c)-NN search . 124
18.4 Remarks . 126

19 Pattern Matching on Strings 128
19.1 Prefix matching . 128
19.2 Tries . 129
19.3 Patricia Tries . 130
19.4 The suffix tree . 132
19.5 Remarks . 132

A Basic Mathematical Facts 134

3

Lecture 1: Course Overview and Computation Models

A data structure, in general, stores a set of elements and supports certain operations on those
elements. From your undergraduate courses, you should have learned two ways by which data
structures are useful:

• They alone can be employed directly for information retrieval (e.g., “find all the people whose
ages are equal to 25”, or “report the number of people aged between 20 and 40”).

• They serve as building bricks in implementing algorithms efficiently (e.g., Dijkstra’s algorithm
would be slow unless it uses an appropriate structure such as the priority queue).

This (graduate) course aims to deepen our knowledge of data structures. Specifically:

• We will study new data structures for solving important problems in computer science with
strong performance guarantees (heuristic solutions, which perform well only on some inputs,
will not be of interest in this course).

• We will discuss techniques for designing and analyzing data structures with non-trivial per-
formance guarantees. Those techniques are generic in the sense that they are useful in a great
variety of scenarios and may enable you to discover innovative structures of your own.

The word RAM model. Computer science is a subject under mathematics. Before analyzing
any algorithms, we need to first define a computation model properly.

Unless otherwise stated, we will be using the standard word RAM1 model. In this model, the
memory is an infinite sequence of cells, where each cell is a sequence of w bits for some integer w
and is indexed by an integer address. Each cell is also called a word; and accordingly, the parameter
w is often referred to as the word length. The CPU has a (constant) number of cells, each of which
is called a register. The CPU can perform only the following atomic operations:

• Set a register to some constant or to the content of another register.

• Compare two numbers in registers.

• Perform +,−, ∗, / on two numbers in registers.

• Shift the word in a register to the left (or right) by a certain number of bits.

• Perform the AND, OR, XOR on two registers.

• When an address x has been stored in a register, read the content of the memory cell at
address x into a register, or conversely, write the content of a register into that memory cell.

1Random access machine with word-level parallelism.

4

Lecture Notes of CSCI5610, CSE, CUHK

The time (or cost) of an algorithm is measured by the number of atomic operations performed.

The word length w needs to be long enough to encode all the memory addresses! For example,
if your algorithm uses n2 memory cells for some integer n, then the word length will need to have
at least 2 log2 n bits.

The real RAM model. In word RAM, (memory/register) cells can store only integers. Next, we
will slightly modify the model to deal with real values.

Simply “allowing” each cell to store a real value does not give us a satisfactory model. For
example, how many bits would you use for a real value? In fact, even if the number of bits were
infinite, still we would not be able to represent all the real values even in a short interval like [0, 1]
— the set of real values in that interval is uncountably infinite! If we cannot even specify the word
length for a “real-valued” cell, how to properly define the atomic operations for performing shifts,
AND, OR, and XOR?

We can alleviate the issue by introducing the concept of black box. We allow a (memory/register)
cell c to store a real value x, but in this case the algorithm is forbidden to look inside c, that is,
the algorithm has no control over the representation of x. In other words, c is now a black box,
holding the value x precisely (by magic).

A black box remains as a black box after computation. For example, suppose that two registers
both contain

√
2. We can multiply them, but the product 2 must be understood as a real value.

This is similar to the requirement in C++ that the product of two float numbers remains as a float
number.

Now we can formally extend the RAM model as follows:

• Each cell can store either an integer or a real value.

• For operations +,−, ∗, /, if any operand is a real value, the result is a real value.

• Shifting, AND, OR, and XOR cannot be performed on registers storing real values.

We will refer to the new model as the real RAM model.

Although the real RAM model is mathematically sound, no one has proven that it is polynomial-
time equivalent to Turing machines (it would be surprising if it was). We must be very careful not
to abuse the power of real value computation. For example, in real RAM, we can compute 2n in
O(log n) time: once 2i/2 is ready, 2i can be obtained in constant time. In Word RAM, 2n takes
n/w words to represent; hence, even writing out 2n in memory takes Ω(n/w) time. In this course,
we will exercise caution to make sure that every algorithm should run in exactly the same time
complexity no matter the input values are real or integer numbers.

Randomness. All the atomic operations are deterministic so far. In other words, our models so
far do not permit randomization which is sometimes important (e.g., hashing).

To fix the issue, we introduce one more atomic operation for both word- and real-RAM. This
operation, named RAND , takes two non-negative integer parameters x and y, and returns an integer
chosen uniformly at random from [x, y]. In other words, every integer in [x, y] can be returned with
probability 1/(y − x+ 1). The values of x, y should be in [0, 2w − 1] because they each need to be
encoded in a word.

5

Lecture Notes of CSCI5610, CSE, CUHK

Math conventions. R denotes the set of real values and N denotes the set of integers. For an
integer x ≥ 1, [x] denotes the set {1, 2, ..., x}; if x = 0, then [x] = ∅.

For a tree T , root(T) represents its root. For a node u in T , parent(u) denotes the parent of u
(if u = root(T), parent(u) = nil) and sub(u) denotes the subtree rooted at u.

You should be familiar with the notations of O(.),Ω(.), Θ(.), o(.), and ω(.). We also use
Õ(f(n1, n2, ..., nx)) to denote the class of functions that are O(f(n1, n2, ..., nx) · polylog(n1 + n2 +
...+ nx)), namely, Õ(.) hides a polylogarithmic factor.

6

Lecture 2: The Binary Search Tree and the 2-3 Tree

In this lecture, we will first review the binary search tree (BST) from your undergraduate knowledge
and then discuss the 2-3 tree, a replacement of the BST that admits simpler analysis in many
situations.

2.1 The binary search tree

2.1.1 The basics

Let S be a set of n real values. A BST on S is a binary tree T with the properties below.

• Every node u in T stores an element in S, called the key of u and denoted as key(u). Con-
versely, every element in S is the key of one node in T . This means T has n nodes.

• For every non-root node u, if u is the left (resp. right) child of p = parent(u), the keys in
sub(u) are smaller (resp. larger) than key(p).

T is balanced if its height is O(log n). Henceforth, all BSTs are balanced unless otherwise stated.

The BST supports many operations efficiently. The following are some examples at the under-
graduate level.

• Insertion/deletion. We can add/remove an element to/from S in O(log n) time.

• Predecessor/successor search. We can find the predecessor/successor of any q ∈ R using
O(log n) time. Recall that the predecessor (resp. successor) is the largest (resp. smallest)
element in S at most (resp. least) q.

• Range reporting. Given an interval I = [x, y] in R, we can report I ∩ S in O(log n + k)
time where k = |I ∩ S|.

• Find-min/max. We can return the smallest/largest element of S in O(log n) time.

The next two operations are beyond the undergraduate level.

• Split. Given an element x ∈ S, we can divide the BST of S into a BST on S ∩ (−∞, x) and
a BST on S ∩ [x,∞), all in O(log n) time.

• Join. Let S1 and S2 be sets of real values s.t. x < y for any x ∈ S1 and y ∈ S2. Assuming a
BST on S1 and a BST on S2, we can produce a BST on S1 ∪ S2 in O(log |S1 ∪ S2|) time.

We will not explain the details of splits and joins on the BST (they are a bit sophisticated) but
we will do so on the 2-3 tree in Section 2.2.

7

Lecture Notes of CSCI5610, CSE, CUHK

50

20

10 40

30

80

70 90

60

Figure 2.1: A BST (every square is a conceptual leaf)

2.1.2 Slabs

Next, we introduce the notion of slab which will appear very often in this course.

Let T be a BST on S. We will regard each empty child pointer in T as a conceptual leaf;
see Figure 2.1. You should not confuse this with a (regular) leaf node z of T (every z has two
conceptual leaves as its “children”). The number of conceptual leaf nodes is n+ 1. Henceforth, we
will use the term regular node to refer to a “real” node that is not a conceptual leaf.

For a regular/conceptual node u in T , its slab — denoted as slab(u) — is defined recursively as
follows:

• If u = root(T), slab(u) = (−∞,∞).

• Otherwise, let p = parent(u). If u is the left child of p, slab(u) = slab(p) ∩ (−∞, key(p));
otherwise, slab(u) = slab(p) ∩ [key(p),∞).

Example. Figure 2.1 shows a BST on S = {10, 20, ..., 90}. The slab of node 40 is [20, 50), while
that of its right conceptual leaf is [40, 50).

Proposition 2.1. For any regular/conceptual nodes u and v in T , we have:

• if u is an ancestor of v, then slab(v) is covered by slab(u);

• if u and v have no ancestor-descendant relationship, then slab(u) is disjoint with slab(v).

Proposition 2.2. The slabs of all the conceptual leaves partition R.

Lemma 2.3 (Canonical Partitioning Lemma). Given any interval q = [x, y) with x, y ∈ S ∪
{−∞,∞}, we can partition it into O(log n) disjoint slabs.

Proof. We will prove the lemma in the special case where q has the form [x,∞); the general case
is left to you as an exercise. Consider the algorithm below:

8

Lecture Notes of CSCI5610, CSE, CUHK

canonical-partition (q)
/* condition: q has the form [x,∞) */
1. Σ← ∅, u← root(T)
2. if key(u) = x then
3. add to Σ the slab of the right child of u and return Σ
4. elseif key(u) < x then
5. u← the right child of u and goto Line 2
6. else
7. add to Σ the slab of the right child of u
8. u← the left child of u and goto Line 2

Σ takes at most one slab from each level of T and hence has a size O(log n).

We will refer to the slabs promised by the above lemma as the canonical slabs of q.

Example. In Figure 2.1, the interval q = [30, 90) is partitioned by its canonical slabs [30, 40), [40, 50),
[50, 80), [80, 90).

2.1.3 Augmenting a BST

The BST’s power can be further enhanced by associating nodes with additional information. For
example, we can store at each node u of T a count that equals the number of keys in sub(u).
We will call the resulting structure the count BST. The count BST supports all the operations in
Section 2.1 with the same performance guarantees. In addition, it also supports:

• Range counting. Given an interval q = [x, y] with x, y ∈ R, we can report |q ∩ S| (note:
the output is a single integer) in O(log n) time.

2.2 The 2-3 tree

In a binary tree, every internal node has a fanout (i.e., number of child nodes) either 1 or 2. In this
section, we will see a variant of the BST where the fanout can be 2 or 3. This variant, called the
2-3 tree, retains all the BST’s performance guarantees. We will explain how to support the split
and join operations in Section 2.1.1 on the 2-3 tree.

2.2.1 Structure Description

A 2-3 tree on a set S of n real values is a tree T with the following properties.

• Every internal node has 2 or 3 child nodes. All the leaf nodes are at the same level1.

• Every element of S is stored in one leaf. Every leaf stores 2 or 3 elements of S unless n = 1,
in which case T has a single leaf containing the only element of S.

• If an internal node u has child nodes v1, ..., vf where f = 2 or 3, u stores a routing element ei
(i ∈ [f]) that is the smallest element stored in the leaf nodes of sub(vi). Furthermore, all the
elements stored in sub(vi) are less than ei+1, for each i ∈ [f − 1].

9

Lecture Notes of CSCI5610, CSE, CUHK

5 12 16 27 38 44 49 63 81 87 92 96

5 16 44 81 92

5 44

data element

z1 z2 z3 z4 z5

u2 u3

u1

routing element

Figure 2.2: A 2-3 tree example

e1 e2 e3 e4

u

e1 e2 e3 e4

u

e1

p

u′

e1

p
e3

Figure 2.3: Treating an overflow

The height of T is O(log n). Its space is O(n) because the number of nodes decreases by a factor
of 2 per level as we descend from the leaves.

Example. Figure 2.2 shows a 2-3 tree on S = {5, 12, 16, 27, 38, 44, 49, 63, 81, 87, 92, 96}.

2.2.2 Overflows and underflows

In in subsection assumes n ≥ 2. In a 2-3 tree, an internal or leaf node overflows if it contains 4
elements or underflows if it contains only 1 element.

Treating overflows. We consider the case where the overflowing node u is not root(T) (the
opposite case is left to you). Suppose that u contains elements e1, e2, ..., e4 in ascending order; let
p = parent(u). We create another node u′, move e3 and e4 from u to u′, and add a routing element
e3 to p for u′; see Figure 2.3. The steps so far take constant time. At this moment, p may be
overflowing, which is then treated in the same manner. Since the overflow may propagate to the
root, in the worst case we spend O(log n) time overall.

Treating underflows. Again, we consider the case where the underflowing u is not root(T)
(leaving the opposite to you). Suppose that the only element in u is e; let p = parent(u). As p has
at least two child nodes, u definitely has a sibling u′; due to symmetry, we will discuss only the
situation where u′ is the right sibling of u.

• If u′ has 2 elements, move all the elements of u into u′, delete u′ from the tree, and remove
the routing element in p for u′’ see Figure 2.4(a). If p underflows, we remedy it in the same
manner. Since the underflow may propagate to the root, in the worst case we spend O(log n)
time overall.

• If u′ has 3 elements e1, e2, e3, move e1 from u′ into u and modify the routing element in p for
u′; see Figure 2.4(b).

1Recall that a node’s level is the number of edges on its path to the root.

10

Lecture Notes of CSCI5610, CSE, CUHK

e e1 e2

u

e1e e2
u

e

p

u′

e

p
e1

(a)

e e1 e2

u

e1e e2
u

e

p

u′

e

p
e1

e3 e3

e2

u′

(b)

Figure 2.4: Treating an underflow

. . .

T2

u

Figure 2.5: Join

The underflow/overflow treating algorithms imply that an insertion or a deletion can be sup-
ported in O(log n) time.

2.2.3 Splits and joins

Recall that our main purpose for discussing the 2-3 tree is to seek a (relatively) easy way to support
the split and join operations, re-stated below:

• Split: Given a real value x ∈ S, we want to split S into S1 = (−∞, x) and S2 = S \ S1.
Assuming a 2-3 tree on S, we want to produce a 2-3 tree on S1 and a 2-3 tree on S2, all in
O(log n) time.

• Join: Let S1 and S2 be sets of real values s.t. x < y for any x ∈ S1, y ∈ S2. We want to
merge them into S = S1 ∪S2. Assuming a 2-3 tree on each of S1 and S2, we want to produce
a 2-3 tree on S in O(log |S|) time.

Join. Let us discuss joins first because the algorithm is needed in splits. Suppose that T1 and T2

are the 2-3 tree on S1 and S2, respectively. Let h1 and h2 be the heights of T1 and T2, respectively.
Assume, w.l.o.g., h1 ≥ h2. Set ∆ = h1 − h2

• If h1 = h2, create a root u which has T1 as the left subtree and T2 as the right subtree.

11

Lecture Notes of CSCI5610, CSE, CUHK

x

u1

u2

u3

. . .

a

b c

d

I

II III IV V

(a)

d

I

u3

b c

. . .

tree 2 the last treetree 1

II III

(b)

Figure 2.6: Split

• Otherwise, let u be the level-(∆−1) node on the rightmost path of T1. Add T2 as the rightmost
subtree of u. See Figure 2.5. This may leave u overflowing, which is then treated in the way
explained earlier.

Overall, a join can be performed in O(1 + ∆) time, which is O(log n).

Split. Due to symmetry, we will explain only how to produce the 2-3 tree of S1. Let T be the 2-3
tree on S. First, find the path Π in T from the root to the leaf containing the value x (used for
splitting). It suffices to focus on the part of T “on the left” of Π. We will partition this part into
a set Σ of t = O(log n) 2-3 trees.

Example. Consider Figure 2.6(a) where Π is indicated by the bold edges. We can ignore subtrees
labeled as IV and V because they are “on the right” of Π. Now, let us focus on the part on the
left. At the root u1 (level 0), Π descends from the 2nd routing element; the subtree labeled as I is
added to Σ. At the level-1 node u2, Π descends from the 1st routing element; no tree is added to
Σ. At the level-2 node u3, Π descends from the 3rd routing element; the 2-3 tree added to Σ has
u3 as the root, but only two subtrees labeled as II and III, respectively. The same idea applies to
every level. At the leaf level, what is added to Σ is a 2-3 tree with only one node. Note how all the
2-3 trees shown in Figure 2.6(b) together cover all the elements of S1.

Formally, we generate Σ by including at most one 2-3 tree at each level `. Let u be the level-`
node on Π. Let e1, ..., ef (f = 2 or 3) the elements in u sorted in ascending order.

• If Π descends from e1, add no tree to Σ.

• If Π descends from e2, we add the subtree referenced by e1 to Σ.

12

Lecture Notes of CSCI5610, CSE, CUHK

• If Π descends from e3, we add the subtree rooted at u to Σ, after removing e3 and its subtree.

Suppose that the procedure adds t trees. Refer to those trees as T ′1 , T ′2 , ..., T ′t . Denote by hi the
height of T ′i for each i ∈ [t]. Arrange the trees so that

h1 ≥ h2 ≥ ... ≥ ht.

We can now join all the trees together to obtain the 2-3 tree on S1. To achieve O(log n) time, we
do the joins in descending order of i:

1. for i = t to 2
2. T ′i−1 ← the join of T ′i−1 and T ′i

The final T ′1 is the 2-3 tree on S1. The cost of all the joins is:

t∑
i=1

O(1 + hi−1 − hi) = O(t+ h1) = O(log n).

2.3 Remarks

The BST and the 2-3 tree are covered in most textbooks on data structures, e.g., [14]. Their
inventors are controversial; see https://en.wikipedia.org/wiki/Segment_tree and https://

en.wikipedia.org/wiki/Binary_search_tree.

13

https://en.wikipedia.org/wiki/Segment_tree
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Binary_search_tree

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Complete the proof of Lemma 2.3.

Problem 2 (range max). Let S be a set n people. We know the age and salary of each person
in S. Design a data structure of O(n) space to answer the following query in O(log n) time: find
the maximum salary of all the people aged between x and y, where x, y ∈ R.

Problem 3. Let S is a set of n real values. Given a count BST on S, explain how to answer
following query in O(log n) time: given k ∈ [1, n], find the k-th largest element in S.

Problem 4. Let T be a 2-3 tree on a set S of n real values. Given any x ≤ y, describe an algorithm
to obtain in O(log n) time a 2-3 tree on the set S \ [x, y] (the set of elements in S outside [x, y]).

Problem 5* (meldable heap). Design a data structure of O(n) space to store a set S of n real
values to satisfy the following requirements:

• An element can be inserted to S in O(log n) time.

• The smallest element in S can be deleted in O(log n) time.

• Let S1 and S2 be disjoint sets of real values. Given a data structure (that you have designed)
on S1 and another on S2, you can obtain a data structure on S1 ∪ S2 in O(log(|S1| + |S2|))
time. Note that here we do not have the constraint that the values in S2 should be larger
than those in S1.

Problem 6. Modify the 2-3 tree into a count 2-3 tree that supports range counting in O(log n)
time. Also explain how to maintain the count 2-3 tree in O(log n) time under insertions, deletions,
(tree) splits, and joins.

14

Lecture 3: Structures for Intervals

In this lecture, we will discuss the interval tree and the segment tree, which are two different
approaches to manage a set S of intervals. The ideas behind both approaches are also useful in
designing structures on intervals, segments, rectangles, etc. (this will be clear later in the course).
Set n = |S|. The interval tree uses O(n) space, whereas the segment tree uses O(n log n) space. We
will discuss the stabbing query: given a search value q ∈ R, such a query returns all the intervals
σ ∈ S satisfying q ∈ σ. Both the interval tree and the segment tree answer a query in O(log n+ k)
time, where k is the number of intervals reported. Although the interval tree supersedes the segment
tree for stabbing queries, there are other types of queries where the segment tree is more useful (we
will see examples in the exercises).

3.1 The interval tree

In this section, we will consider that each interval in S has the form [x, y] where x and y are real
values.

3.1.1 Structure

Given an interval [x, y], we call x and y its left and right endpoints, respectively. Denote by P the
set of endpoints of the intervals in S. Create a BST T (Section 2.1) on P . For each node u in T ,
define:

stab(u) = {σ ∈ S | u is the highest node in T satisfying key(u) ∈ σ.}

We will refer to stab(u) as the stabbing set of u. Store the intervals of stab(u) in two lists: the
first (resp. second) is sorted by left (resp. right) endpoint. This completes the construction of the
interval tree.

Example. Let S = {[1, 2], [3, 7], [4, 12], [5, 9], [6, 11], [8, 15], [10, 14], [13, 16]}. Figure 3.1 shows a
BST on P = {1, 2, ..., 16}. The stabbing set of node 9 is {[6, 11], [4, 12], [5, 9], [8, 15]}. The stabbing
set of node 13, on the other hand, is {[10, 14], [13, 16]}.

Each interval of S belongs to the stabbing set of exactly one node. The space consumption is
therefore O(n).

3.1.2 Query

To answer a stabbing query with search value q, we start from the root u of T . Assume, w.l.o.g.
due to symmetry, q < key(u). We can ignore the intervals in the (stabbing sets of the nodes in the)
right subtree of u because all those intervals [x, y] must satisfy x ≥ key(u) > q and thus cannot

15

Lecture Notes of CSCI5610, CSE, CUHK

9

122 4 6 8 10 14 16

1

3 7 11 15

5 13

Figure 3.1: An interval tree

cover q. Searching the left subtree of u can be done by recursion because that subtree is an interval
tree itself. It remains to explain how to report the intervals in stab(u) that cover q. This can be
done in O(1 + ku) time if there are ku such intervals. Recall that all the intervals [x, y] ∈ stab(u)
must contain key(u). Therefore, [x, y] contains q if and only if x ≤ q. Thus, we scan the intervals of
stab(u) in ascending order of left endpoint and stop as soon as finding an interval [x, y] with x > q.

The discussion gives rise to the following algorithm. Descend a root-to-leaf path Π of T to
reach the conceptual leaf (Section 2.1.2) whose slab covers q. For each node u on Π, if q < key(u),
scan stab(u) in ascending order of left endpoint; otherwise, scan stab(u) in ascending order of right
endpoint. The query time is ∑

u∈Π

O(1 + ku) = O(log n+ k)

noticing that every interval is reported at exactly one node on Π.

3.2 The segment tree

In this section, we will consider that each interval in S has the form [x, y) (open on the right).

3.2.1 Structure

As before, create a BST T on P . Recall from Lemma 2.3 that every interval σ ∈ S can be divided
into O(log n) canonical intervals, each of which is the slab of a regular/conceptual node u in T . We
assign σ to every such u. Define Su as the set of intervals assigned to u; we store Su in a linked
list. This finishes the construction of the segment tree.

Example. Consider S = {[1, 2), [3, 7), [4, 12), [5, 9), [6, 11), [8, 15), [10, 14), [13, 16)}. Figure 3.2
shows a BST on P = {1, 2, ..., 16} with the conceptual leaves indicated. Interval [4, 12), for example,
is partitioned into canonical intervals [4, 5), [5, 9), [9, 11), [11, 12) and hence is assigned to 4 nodes:
the right conceptual leaf of node 4, node 7, node 10, and the left conceptual leaf of node 12. For u
= node 10, Su = {[4, 12), [6, 11)}.

Since every interval in S has O(log n) copies, the total space is O(n log n).

16

Lecture Notes of CSCI5610, CSE, CUHK

9

122 4 6 8 10 14 16

1

3 7 11 15

5 13

Figure 3.2: A segment tree (each box is a conceptual leaf)

3.2.2 Query

A stabbing query with search value q can be answered as follows:

1. Π = the set of regular/conceptual nodes whose slabs contain q
2. for each node u ∈ Π do
3. report Su

The proof of the next fact is left to you as an exercise:

Proposition 3.1. The algorithm reports every σ ∈ S covering q once and exactly once.

The query cost is clearly O(log n+ k).

3.3 Remarks

The interval tree was independently proposed by Edelsbrunner [17] and McCreight [31], while the
segment tree is due to Bentley [6].

17

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Describe how to construct an interval tree on n intervals in O(n log n) time.

Problem 2. Describe how to construct a segment tree on n intervals in O(n log n) time.

Problem 3. Prove Proposition 3.1.

Problem 4. In Section 3.2, we assumed that each interval in S has the form [x, y). Modify the
segment tree to achieve the same performance guarantees on intervals of the form [x, y].

Problem 5. Let S be a set of n intervals in R. Design a structure of O(n) space to answer the
following query efficiently: given an interval q = [x, y] in R, report all the intervals σ ∈ S such that
σ ∩ q 6= ∅. Your query time needs to be O(log n+ k), where k is the number of reported intervals.

Problem 6 (stabbing max). Let S be a set of n intervals, each associated with a real-valued
weight. Given a value q ∈ R, a stabbing max query returns the interval with the largest weight (you
can assume that all the weights are distinct). Design a structure of O(n) space to answer any such
query in O(log n) time.

(Hint: segment tree.)

Problem 7 (2D stabbing max). Let S be a set of n axis-parallel rectangles in R2 (i.e., each
rectangle in S has the form [x1, x2]× [y1, y2]). Each rectangle r ∈ S is associated with a real-valued
weight. Describe a structure of O(n log n) space that answers the following query in O(log2 n) time:
given a point q ∈ R2, report the maximum weight of the rectangles r ∈ S satisfying q ∈ r.

(Hint: build a segment tree on x-coordinates; for each node u, build another segment tree on
Su.)

Problem 8. Let S be a set of n horizontal segments of the form [x1, x2]×y in R2. Given a vertical
segment q = x × [y1, y2], a query reports all the segments σ ∈ S that intersect q. Design a data
structure to store S in O(n log n) space such that every query can be answered in O(log2 n + k)
time, where k is the number of segments reported.

18

Lecture 4: Structures for Points

This lecture will discuss several structures on points in Rd where the dimensionality d ≥ 2 is a
constant. Our discussion will focus on d = 2, while in the exercises you will be asked to obtain
structures of higher dimensionalities.

Central to our discussion is orthogonal range reporting. Let S be a set of points in Rd. Given
an axis-parallel rectangle q = [x1, y1]× [x2, y2]× ...× [xd, yd], an orthogonal range reporting query
returns q∩S. The structures in this lecture will provide different tradeoffs between space and query
time. For simplicity, we will assume that the points of S are in general position: no two points in S
have the same x- or y-coordinate. This assumption allows us to focus on the most important ideas,
and can be easily removed with standard tie breaking techniques (as we will see in an exercise).
For simplicity, we will refer to a query simply as a “range query”.

4.1 The kd-tree

This structure stores S in O(n) space and answers a 2D range query in O(
√
n+ k) time, where k

is the number of points in q ∩ S.

4.1.1 Structure

We describe the kd-tree in a recursive manner.

n = 1. If S has only a single point p, the kd-tree has only a single node storing p.

n ≥ 2. Let ` be a vertical line that divides P as evenly as possible, that is, there are at most dn/2e
points of P on each side of `. Create a node u which stores ` (i.e., the x-coordinate of `). Let P1

(resp., P2) be the set of points in P that are on the left (resp., right) of `.

Consider P1. If |P1| = 1, create a left child v1 of u storing the only point in P1. Next, we
assume |P1| ≥ 2. Let `1 be a horizontal line that divides P1 as evenly as possible. Create a left
child v1 of u storing `1. Let P11 (resp., P12) be the set of points in P1 that are below (resp., above)
of `1. Recursively, create a kd-tree T11 on P11 and a kd-tree T12 on P12. Make T11 and T12 the left
and right subtrees of v1, respectively.

The processing of P2 is similar. If |P2| = 1, create a right child v2 of u storing the only point
in P2. Otherwise, let `2 be a horizontal line that divides P2 as evenly as possible. Create a right
child v2 of u storing `2. Let P21 (resp., P22) be the set of points in P2 that are below (resp., above)
of `2. Recursively, create a kd-tree T21 on P21 and a kd-tree T22 on P22. Make T21 and T22 the left
and right subtrees of v2, respectively.

The kd-tree is a binary tree where every internal node has two children. The points of S are
stored at the leaves. The total number of nodes is O(n).

19

Lecture Notes of CSCI5610, CSE, CUHK

a
b

c

d
e

f
g

hi
j

k
l

`1

`2

`3

`4

`5

`6

`7

`8

`9

`10

`11

MBR of the node storing `3

`1

`3

`7`6`5

`2

`11h `10 e`9i `8 a

`4

jk cfgl bd

Figure 4.1: A kd-tree

For each node u in the tree, we store its minimum bounding rectangle (MBR) which is the
smallest axis-parallel rectangle covering all the points in sub(u). Note that the MBR of an internal
node u can be obtained from those of its children in O(1) time.

Example. Figure 4.1 shows a kd-tree on 12 points. The shaded rectangle illustrates the MBR of
the node storing `3.

4.1.2 Range reporting

Let T be a kd-tree on S. A range query is answered by visiting all the nodes in T whose MBRs
intersect with the search rectangle q. At a leaf, we report the point p stored there if p ∈ q. We will
prove that the query cost is O(

√
n+ k). For this purpose, we divide the nodes u accessed into two

categories:

• type 1: the MBR of u intersects with a boundary edge of q;

• type 2: the MBR of u is fully contained in q.

We will prove that there are O(
√
n) nodes of type 1. In an exercise, you will be asked to prove

that the number of type-2 nodes is bounded by O(k). It will then follow that the query cost is
O(
√
n+ k).

Lemma 4.1. Any vertical line ` can intersect with the MBRs of O(
√
n) nodes.

Proof. It suffices to prove the lemma for the case where n is a power of 2 (think: why?). Fix any
`. We say that a node is `-intersecting if its MBR intersects with `. Let f(n) be the maximum
number of `-intersecting nodes in any kd-tree storing n points.

Now consider the kd-tree T we constructed on S. Let û be the root of T ; recall that û stores a
vertical line `1. Due to symmetry, assume that ` is on the right of `1. Denote by u the right child
of û; note that the line `2 stored in u is horizontal. Let v1 and v2 be the left and right child nodes
of u, respectively. See Figure 4.2 for an illustration.

The `-intersecting nodes in T consists of û, u, and the `-intersecting nodes in sub(v1) and
sub(v2). Since each of sub(v1) and sub(v2) contains n/4 points, we have:

f(n) ≤ 2 + 2 · f(n/4).

Solving the recurrence gives f(n) = O(
√
n).

20

Lecture Notes of CSCI5610, CSE, CUHK

`1 `

`2

`1
û

u

v2v1

`2

Figure 4.2: Proof of Lemma 4.1

An analogous argument shows that any horizontal line can intersect with the MBR of O(
√
n)

nodes, too. The MBR of any type-1 node must intersect with at least one of the following 4 lines:
the two vertical lines passing the left and right edges of q, and the two horizontal lines passing the
lower and upper edges of q. It thus follows that there can be O(

√
n) type-1 nodes.

4.2 Bootstrapping

This section will present a technique to obtain a structure that uses O(n) space, and answers any
range query in O(nε + k) time, where ε > 0 can be any small constant (for the kd-tree, ε = 1/2).
There are several ways to achieve the purpose. We will discuss an approach that illustrates an
interesting bootstrapping phenomenon.

Lemma 4.2. Suppose that a structure Υ can store n points in R2 in at most F (n) space and
answer a range query in at most Q(n) + O(k) time. For any integer λ ∈ [2, n/2], there exists
a structure that uses at most λ · F (dn/λe) + O(n) space and answers a range query in at most
2 ·Q(dn/λe) + λ ·O(log(n/λ)) +O(k) time.

Proof. Let S be the set of n points. Find λ − 1 vertical lines `1, ..., `λ−1 to satisfy the following
requirements:

• No point of S falls on any line.

• Let x1, ..., xλ−1 be the x-coordinates of `1, ..., `λ−1, respectively. Define λ slabs as follows:

– Slab 1 includes all the points of R2 with x-coordinates less than x1;

– Slab i ∈ [2, λ− 1] includes all the points of R2 with x-coordinates in [xi−1, xi);

– Slab λ includes all the points of R2 with x-coordinates at least xλ−1.

We require that S should have at most dn/λe points in each slab.

For each i ∈ [1, λ], define Si to be the set of points in S covered by slab i. For each Si, create two
structures:

• The structure Υ (as stated in the lemma) on Si; represent the structure as Ti.

• A BST Bi on the y-coordinates of the points in Si.

21

Lecture Notes of CSCI5610, CSE, CUHK

slab 1 slab 2 slab 6

Figure 4.3: Proof of Lemma 4.2

The space consumption is λ · F (dn/λe) +O(n).

Let us now discuss how to answer a range query with search rectangle q. If q falls entirely in
some slab i ∈ [1, λ], we answer the query using Ti directly in Q(dn/λe) +O(k) time.

Consider now the case where q intersects at least two slabs. Denote by qi the intersection of q
with slab i, for each i ∈ [1, λ]. Each qi is one of the following types:

• type 1: empty, i.e., q is disjoint with slab i;

• type 2: the x-range of qi equals that of slab i (i.e., the x-range of q spans that of slab i);

• type 3: the x-range of qi is non-empty but is shorter than that of slab i.

Figure 4.3 shows an example where q is the shaded rectangle and λ = 6. Rectangles q1 and q6 are
of type 1, q3 and q4 are of type 2, while q2 and q5 are of type 3.

For type 1, we do nothing. For type 3, we deploy Ti to find qi ∩ Si in Q(dn/λe) + O(ki)
time, where ki = |qi ∩ Si|. There can be at most two rectangles of type 3; so we spend at most
2 ·Q(dn/λe) +O(k) time.

For each type-2 rectangle qi, we can ignore the x-dimension: a point p ∈ Si falls in qi if and
only if the y-coordinate of p is covered by the y-range of qi. We can therefore find all the points
of qi ∩ Si using Bi in O(log(n/λ) + ki) time. As there can be λ rectangles of Type 2, we end up
spending at most λ ·O(log(n/λ)) +O(k) time.

The above lemma is bootstrapping because once we have obtained a structure for range reporting,
it may allow us to improve ourselves “automatically”. For example, with the kd-tree, we have
already achieved F (n) = O(n) and Q(n) = O(

√
n). Thus, by Lemma 4.2, for any λ ∈ [2, n/2] we

immediately have a structure of λ · F (dn/λe) = O(n) space whose query time is

O(
√
n/λ) + λ ·O(log n)

plus the linear output time O(k). Setting λ to Θ(n1/3) makes the query time O(n1/3 log n + k);
note that this is a polynomial improvement over the kd-tree. But we can do even better! Now that
we have achieved F (n) = O(n) and Q(n) = O(n1/3 log n), for any λ ∈ [2, n/2] Lemma 4.2 yields
another structure of O(n) space with query time

Õ((n/λ)1/3) + λ ·O(log n)

22

Lecture Notes of CSCI5610, CSE, CUHK

4-sided 3-sided 2-sided

Figure 4.4: Different types of axis-parallel rectangles

plus the linear output time O(k). Setting λ to Θ(n1/4) makes the query time Õ(n1/4) +O(k), thus
achieving another polynomial improvement!

Repeating this roughly 1/ε times produces a structure of O(n/ε) = O(n) space and query time
O(nε + k), where ε can be any positive constant.

4.3 The priority search tree

A 2D range query is 4-sided because the query rectangle q is “bounded” on all sides. If we write
q = [x1, x2] × [y1, y2], all the values x1, x2, y1, and y2 are finite. Such queries are difficult: no
linear-size structures known today can guaranteed a query time of O(log n+ k).

If one of x1, x2, y1, and y2 is infinite (either −∞ or ∞), q is said to be 3-sided. More specially,
if (i) two of x1, x2, y1, and y2 are infinite and (ii) those two values are on different dimensions, q
is said to be 2-sided. See Figure 4.4 for an illustration.

We will introduce a structure called the priority search tree which uses linear space and answers
a 3-sided query in O(log n+ k) time, where k is the number of points reported.

4.3.1 Structure

Due to symmetry, we consider that q has the form [x1, x2] × [y,∞). Given a point p ∈ R2, we
denote by xp and yp its x- and y-coordinate, respectively.

To build a priority search tree on S, first create a BST T on the x-coordinates of the points
in S. Each regular/conceptual node u in T stores a pilot point — denoted as pilot(u) — defined
recursively as follows:

• If u = root(T), pilot(u) is the highest point in S.

• Otherwise, pilot(u) is the highest one among all the points p ∈ S satisfying

– xp ∈ slab(u),1, and

– p is not the pilot point of any proper ancestor of u.

If no such p exists, pilot(u) is empty.

This finishes the construction of the priority search tree. Every point in S is the pilot point of
exactly one node (which can be conceptual). The space is O(n).

1See Section 2.1.2 for the definition of slab.

23

Lecture Notes of CSCI5610, CSE, CUHK

a
b

c

d
e

fg
hi

j

k
l

y

xe

xk

xf

xj

xc

xl

xg

xb

xa

xdxi

a
pilot point

b

gd

i

c

e

xh

h

f

jl

k

Figure 4.5: A priority search tree

Example. Figure 4.5 shows a priority search tree on the point set {a, b, ..., l}.

Remark. Observe that the priority search tree is simultaneously a max heap on the y-coordinates
of the points in S. For this purpose, the structure is also known by the name treap.

4.3.2 Answering a 3-sided query

Let us first consider a (very) special query: the search rectangle q has the form (−∞,∞)× [y,∞) (a
“1-sided” rectangle). Equivalently, this is to ask how we can use the priority search tree to report
all the points in S whose y-coordinates are at least y.

Lemma 4.3. Given a search rectangle q = (−∞,∞) × [y,∞), we can find all the points in S ∩ q
in O(1 + k) time, where k = |S ∩ q|.

Proof. We answer the query using the following algorithm (setting u to the root of T initially):

report-subtree(u, y)
/* u is a regular/conceptual node in T */
1. if u has no pilot point or its pilot point p has y-coordinate < y then return
2. report p
3. if u is a conceptual leaf then return
4. report-subtree(v1, y) where v1 is the left child of u (v1 is possibly conceptual)
5. report-subtree(v2, y) where v2 is the right child of u (v2 is possibly conceptual)

The correctness follows from the fact that pilot(u) is the highest among all the pilot points
stored in sub(u). Next, we analyze the query cost. Each node u visited can be divided into two
types: (1) pilot(u) ∈ q and (2) pilot(u) /∈ q. There are exactly k type-1 nodes. As the parent of a
type-2 node must be of type 1, the number of type-2 nodes is at most 2k. The total cost is therefore
O(1 + k).

Example. If q is the shaded region in Figure 4.5, the query algorithm visits nodes xe, xl, xa, xi, xd, xg,
xk, xc, xh, and xf .

We are ready to explain how to answer a general 3-sided query with q = [x1, x2] × [y,∞).
W.l.o.g., we can assume that x1 and x2 are the x-coordinated of some points in S (think: why?).
Find

24

Lecture Notes of CSCI5610, CSE, CUHK

x1 x2

Figure 4.6: Search paths Π1 and Π2 and the portion in between

• the path Π1 in T from the root to the conceptual leaf whose slab covers x1;

• the path Π2 in T from the root to the conceptual leaf whose slab covers x2.

Figure 4.6 illustrates how Π1 and Π2 look like in general: they descend from the root and diverge
at some node. We are interested only in the nodes u that

• are in Π1 ∪Π2, or

• satisfy slab(u) ⊆ [x1, x2] (such are in the shaded portion in Figure 4.6).

For every other node v (violating both conditions above), slab(v) must be disjoint with [x1, x2];
and therefore, pilot(v) must be outside q. This motivates the following the query algorithm:

1. find Π1 and Π2

2. for every node u ∈ Π1 ∪Π2 do
3. report pilot(u) if pilot(u) ∈ q
4. find Σ = {node u | slab(u) is a canonical slab of [x1, x2]}
5. for every node u ∈ Σ do
6. report-subtree(u, y)

For every node u ∈ Σ, Line 5 reports all the qualifying pilot points in sub(u) because (i) sub(u)
is a max heap and (ii) we can ignore the x-range [x1, x2] of q in exploring sub(u). By Lemma 4.3,
the cost of report-subtree(u, y) is O(1 + ku) where ku is the number of points reported from
sub(u). The total query cost is therefore bounded by

O

(
|Π1|+ |Π2|+

∑
u∈Σ

(1 + ku)

)
= O(log n+ k).

The filtering technique. Given a query time complexity such as O(log n + k), we would often
interpret the O(log n) term as the “search time” and the O(k) term as the “report time”. By
rewriting O(log n+ k) as O(log n+ k+ k), we can allow ourselves a higher search time of O(log n+
k)! Indeed, this is the case with the priority search tree: notice that the algorithm may access
O(log n+k) nodes without reporting anything. The idea of charging the search time on the output
is generally known as filtering.

25

Lecture Notes of CSCI5610, CSE, CUHK

a
b

c

d
e

fg
hi

j

k
l

xe

xk

xf

xj

xc

xl

xg

xb

xa

xdxi xh

a BST on {i, a, d, l, g, b}

Figure 4.7: A range tree (the shaded triangle illustrates the secondary BST of node xl)

4.4 The range tree

Returning to 4-sided queries, we will introduce the range tree which consumes O(n log n) space and
answers a query in O(log2 n+ k) time.

4.4.1 Structure

Build a BST T on the x-coordinates of the points in S. For each regular/conceptual node u in T ,
denote by Su the set of points p ∈ S with xp ∈ slab(u) (recall that xp is the x-coordinate of p).
Associate u with a secondary BST Tu on the y-coordinates of the points in Su. Every p ∈ Su is
stored at the node in Tu whose key equals yp.

Example. Figure 4.7 shows the BST T for the point set {a, b, ..., l}. If u is the node xl, Su =
{i, a, d, l, g, b}. The secondary BST of u is created on those points’ y-coordinates. Point b is stored
in the secondary BSTs of the right conceptual child of node xb, node xb itself, node xg, node xl,
and node xe.

Proposition 4.4. For each p ∈ S, xp appears in the slabs of O(log n) nodes.

Proof. By Proposition 2.1, if the slabs of two nodes u and v in T intersect, one of u and v must be
an ancestor of the other. Thus, all the nodes whose slabs contain xp must be on a single root-to-leaf
path in T . The proposition follows from the fact that the height of T is O(log n).

The space consumption is therefore O(n log n).

4.4.2 Range reporting

We answer a range query q = [x1, x2]× [y1, y2] as follows (assuming w.l.o.g. that x1 and x2 are the
x-coordinates of some points in S):

1. find the set Σ of nodes in T whose slabs are the canonical slabs of [x1, x2]
2. for each node u ∈ Σ do
3. use Tu to report {p ∈ Su | yp ∈ [y1, y2]}

Proposition 4.5. Every point p in q ∩ S is reported exactly once.

26

Lecture Notes of CSCI5610, CSE, CUHK

Proof. Clearly, xp ∈ [x1, x2]. Therefore, xp appears in exactly one canonical slab of [x1, x2] (by
Lemma 2.3, the canonical slabs form a partition of [x1, x2]). Let u be the node whose slab(u) is
that canonical slab. Thus, p ∈ Su and will be reported only there.

The proof of the next proposition is left to you as an exercise:

Proposition 4.6. The query time is O(log2 n+ k).

4.5 Pointer-machine structures

A pointer machine structure is a directed graph G satisfying the following conditions:

• There is a special node r in G called the root.

• Every node in G stores a constant number of words.

• Every node in G has a constant number of outgoing edges (but may have an arbitrary number
of incoming edges).

• Any algorithm that accesses G must follow the rules below:

– The first node visited must be r.

– The algorithm is permitted to access a non-root node u in G only if it has already
accessed an in-neighbor of u. This implies that the algorithm must have found a path
from r to u in G.

All the structures discussed so far are pointer-machine structures. A simple example of a non-
pointer-machine structure is the array. Given an array A of size n, we can access directly A[i] for
any i ∈ [1, n] in constant time, without following any “path”.

Pointer-machine structures bear unique importance in computer science because they are ap-
plicable in scenarios where it is not possible to perform any meaningful calculation on addresses.
One such scenario arises from distributed computing where each “node” is a machine (e.g., your
cell phone). A pointer to a node u is the IP address of machine u. No “arrays” can be implemented
in such a scenario because, to enable constant time access to A[i], you need to calculate the address
of A[i] by adding i to the starting address of A — something not possible in distributed computing
(adding i to an IP address tells you essentially nothing).

4.6 Remarks

The kd-tree was first described by Bentley [5]. The priority search was invented by McCreight [32].
The range tree was independently developed by several works that appeared almost the same time,
e.g., [7, 28,29,42].

Range reporting on pointer machines has been well understood. In 2D space, any pointer-
machine structures achieving O(polylog n+k) query time — let alone O(log n+k) — must consume
Ω(n logn

log logn) space [13]. A structure matching this lower bound and attaining O(log n + k) query
time has been found [11]. Similar results also hold for higher dimensionalities, where the space and
query complexities increase by O(polylog n) factors; see [1, 13].

27

Lecture Notes of CSCI5610, CSE, CUHK

By leveraging the power of the RAM model (address calculation and manipulating bits within
a word), it is possible to design structures with better complexities outside the pointer-machine
class. For example, in 2D space, it is possible to achieve O(log n+ k) time using O(n logε n) space,
where ε > 0 can be any small constant [2, 12]. See also [10] for results of higher dimensionalities.

28

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove that there can be O(k) nodes of Type 2 (as defined in Section 4.1.2).

Problem 2. Describe an algorithm to build the kd-tree on n points in O(n log n) time.

Problem 3. Explain how to remove the general position assumption for the kd-tree. That is, you
still need to retain the same space and query complexities even if the assumption does not hold.

Problem 4. Let S be a set of points in Rd where d ≥ 2 is a constant. Extend the kd-tree to obtain
a structure of O(n) space that answers any d-dimensional range reporting query in O(n1−1/d + k)
time, where k is the number of points reported.

Problem 5. What is the counterpart of Lemma 4.2 in 3D space?

Problem 6*. Improve the query time in Lemma 4.2 to 2 ·Q(dn/λe) +O(log n+ λ+ k).

(Hint: one way to do so is to use the interval tree and stabbing queries.)

Problem 7. Consider the stabbing query discussed in Lecture 3 on a set S of n intervals in R.
Show that you can store S in a priority search tree such that any stabbing query can be answered
in O(log n+ k) time, where k is the number of intervals reported.

(Hint: turn the query into a 2-sided range reporting query on a set of n points converted from
S.)

Problem 8. Prove Proposition 4.6.

Problem 9. Let S be a set of points in Rd where d is a constant. Design a data structure that stores
S in O(n logd−1 n) space, and answers any orthogonal range reporting query on S in O(logd n+ k)
time, where k is the number of reported points.

Problem 10 (range counting). Let S be a set of n points in R2. Given an axis-parallel rectangle
q, a range count query reports |q ∩S|, i.e., the number of points in S that are covered by q. Design
a structure that stores S in O(n log n) space, and answers a range count query in O(log2 n) time.

Problem 11*. Let S be a set of n horizontal segments of the form [x1, x2] × y in R2. Given a
vertical segment q = x × [y1, y2], a query reports all the segments σ ∈ S that intersect q. Design
a data structure to store S in O(n) space such that every query can be answered in O(log2 n+ k)
time, where k is the number of segments reported. (This improves an exercise in Lecture 3.)

(Hint: use the interval tree as the base tree, and the priority search tree as secondary structures.)

Problem 12. Prove: on a pointer-machine structure G with n nodes, the longest path from the
root to a node in G has length Ω(log n). (This implies that O(log n + k) is the best query bound
one can hope for range reporting using pointer-machine structures.)

(Hint: suppose that each node has an outdegree of 2. Starting from the root, how many nodes
can you reach within x hops?)

29

Lecture 5: Global Rebuilding and Charging Arguments

All the structures we have seen — except the BST and 2-3 trees — so far are static, namely, they
do not support insertions and deletions on the underlying set of elements. In general, a structure
is semi-dynamic if it allows insertions but not deletions, or fully dynamic if it allows both. We
will devote several lectures to generic techniques that can be used to turn a static structure into a
semi/fully-dynamic one. Today, we will learn global rebuilding, which is a simple idea at the core
of many other dynamization techniques (e.g., the ones in the next two lectures). We will also learn
about charging arguments, a powerful method to analyze amortized cost.

5.1 Amortized cost

Recall that the BST supports every update on a set S of values in O(log n) time where n is the size
of S at the moment the update is performed. Next, we will introduce a weaker type of guarantees
known as amortized bounds.

Given a function U : N → N, we say that a semi-dynamic structure has amortized insertion
cost U(n) if it can process any sequence of m insertions in

∑m
i=1 U(|Si|) time, where Si the set

of elements before the i-th insertion. We can also extend the above notions to a fully dynamic
structure. Let U1 and U2 be functions from N to N. We say that the structure has amortized
insertion cost U1 and amortized deletion cost U2 if it can process any mixed sequence of m updates
(each can independently be an insertion or deletion) in

m∑
i=1

Uopi(|Si|)

where Si the set of elements before the i-th update and opi = 1 if the i-th update is insertion, or
2, otherwise.

More generally, consider a structure that supports ` ≥ 1 operations, labeled as 1, 2, ..., `, re-
spectively. Let Ui (i ∈ [`]) be a function N to N. We say that the structure has amortized cost
Ui on operation i for each i ∈ [`] if it can process a sequence of m arbitrarily mixed operations in∑m

j=1 Uopj (|Sj |) time, where Sj the set of elements before the j-th operation, and opj = i if the
j-th operation has label i.

A per-update bound implies an amortized bound but not the vice versa. For example, since the
BST supports every update in O(log n) time, it also guarantees an O(log n) amortized update time.
On the other hand, even if a structure can ensure O(log n) amortized time, it does not necessarily
handle every update in O(log n) time. Indeed, an amortized bound of O(log n) implies a bound
only on the total time of any m operations, rather than a bound on every operation.

30

Lecture Notes of CSCI5610, CSE, CUHK

5.2 Charging arguments

Suppose that a structure needs to support m operations op1, op2, ..., opm. Let Ci be the cost of opi
for i ∈ [m]. To argue for a small amortized bound, we need to prove that

∑m
i=1Ci is small. The

rationale behind a charging argument is to assign a “fake cost” C̄i to each opi, which will serve as
the operation’s amortized cost. The assignment must guarantee:

m∑
i=1

Ci ≤
m∑
i=1

C̄i. (5.1)

If we can prove every C̄i is small, then we obtain an amortized bound on the whole operation
sequence. For example, if C̄i = O(log |Si|) where Si the set of elements before the i-th operation,
then (5.1) yields an O(log n) amortized bound.

A charging argument works by setting all C̄1, ..., C̄m to 0 in the beginning and then increasing
them gradually as we process the sequence. At each operation i ∈ [m], we will break the cost Ci
into small portions and charge each portion on an appropriate j ≤ i (namely, adding the portion
to C̄j). The charging must be done judiciously to make sure all C̄1, ..., C̄m remain small in the end.

5.3 Dynamic arrays

An array A of size s is a sequence of s consecutive memory cells. In an operating system, accesses
to A are limited to the cells allocated (e.g., reading A[s+1] will incur a “segmentation fault” under
Linux). For this reason, the array size is often considered fixed.

Next, we will partially remedy this drawback. We want to design a dynamic array that stores a
set S of n elements under insertions. The new structure should satisfy the following requirements:

• The elements in S must be stored in n consecutive cells. Furthermore, the i-th cell stores the
i-th inserted element, for each i ∈ [n].

• The structure uses O(n) space.

• The structure supports insertions in O(1) amortized time.

Initially, n = 0 and A is empty. We perform each insertion as follows:

insert (e)
1. n← n+ 1
2. if n is a power of 2 then
3. create a new array A′ of length 2n
4. copy all the elements of A into A′

5. destroy A and A← A′

6. A[n] = e

It is obvious that A fulfills our first two requirements (A has size at most 2n at all times). Next,
we will analyze the insertion cost. If n is not a power of 2, an insertion finishes in constant time;
otherwise, an insertion takes O(n) time. Thus, the total cost of n insertions is O(

∑n
i=1 1) +O(21 +

22 + ...+ 2blog2 nc) = O(n). Therefore, the structure guarantees O(1) amortized insertion cost.

Next, we will see how to use the charging argument to arrive at the same conclusion. At
receiving the i-th insertion i ∈ [n], we initialize its amortized cost C̄i to be 0. If i is not a power

31

Lecture Notes of CSCI5610, CSE, CUHK

of 2, we charge constant time to C̄i — which now becomes O(1) — to account for the insertion’s
cost. Now consider i to be a power of 2. The insertion needs to perform “global rebuilding” (Lines
3-6) which requires O(i) cost. We charge the cost on i/2 insertions: insertion j for j ∈ [i/2 + 1, i].
This way, each insertion j is amortized a cost of O(i

i/2) = O(1) and hence C̄j increases by O(1).

With the above charging strategy, we have accounted for the cost of all the insertions. As each
insertion i ∈ [n] is charged for only one global rebuilding (think: why?), the final C̄i = O(1). We
thus conclude that our structure ensures O(1) amortized insertion time.

32

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1 (stacks with dynamic arrays). Implement a stack with the following requirements:

• At any moment, store the stack in an array A where A[i] is the i-th least recently inserted
among all the elements remaining in the stack.

• The space is O(n) where n is the current stack size.

• Each stack operation (i.e., push and pop) is performed in O(1) amortized time.

Problem 2 (Exercise 17.3-7 of [14]). Suppose that we want to implement the following two
operations on a set S of integers (S is empty at the beginning):

• Insert(e): Add a new integer e into S (you are assured that e is not already in S).

• Delete-Half: Delete the d|S|/2e smallest elements from S.

Describe a data structure that consumes O(|S|) space, and supports each operation in O(log |S|)
time amortized.

Problem 3* (Priority Queue with Attrition). Let S be a dynamic set of integers. At the
beginning S is empty. We want to support the following operations:

• Insert-with-Attrition(e): First removes all integers in S that are greater than e, and then
adds e to S.

• Delete-Min: Removes and returns the smallest integer of S.

For example, suppose we perform the following sequence of operations:

1. Insert-with-Attrition(83)
2. Insert-with-Attrition(5)
3. Insert-with-Attrition(10)
4. Insert-with-Attrition(15)
5. Insert-with-Attrition(12)

6. Delete-Min
7. Delete-Min

After Operation 3, S = {5, 10} (note that 83 has been deleted by Operation 2). After Operation
5, S = {5, 10, 12}. After Operation 6, S = {10, 12}.

Describe a data structure with the following guarantees:

• At all times, the space consumption is O(|S|).

• Any sequence of n operations (each being an insert-with-attrition or delete-min) is
processed with O(n) time, i.e., O(1) amortized time per operation.

33

Lecture 6: The Logarithmic Method

Today, we will learn a technique called the logarithmic method for turning a static structure semi-
dynamic. We will use the kd-tree (Section 4.1) to illustrate the technique. Indeed, the kd-tree
serves as an excellent example because it may seem exceedingly difficult to modify the structure
for updates. For example, the first cut in a kd-tree — let us recall — ought to be a vertical line
that divides the point set as evenly as possible. Unfortunately, even a single point insertion would
throw off the balance and thus destroy the whole tree. It may be surprising to you that later we
will make the kd-tree semi-dynamic without changing the structure at all.

6.1 Decomposable problems

A query is decomposable if the following holds for any disjoint sets S1 and S2: given the query
answers on S1 and S2, respectively, the answer on S1 ∪ S2 can be obtained in constant time.

Consider, for example, orthogonal range reporting on 2D points. Given an axis-parallel rectangle
q, the query answer on S1 (or S2) is the set Σ1 (or Σ2) of points therein covered by q. Clearly,
Σ1 ∪Σ2 is the answer of the same query on S1 ∪ S2. In other words, once Σ1 and Σ2 are available,
we have already obtained the answer on S1 ∪ S2 (nothing needs to be done). Hence, the query is
decomposable.

As another example, consider range counting on a set of real values. Given an interval q ⊆ R,
the query answer on S1 (or S2) is the number c1 (or c2) of values therein covered by q. Clearly,
c1 + c2 is the answer of the same query on S1 ∪ S2. In other words, once c1 and c2 are available,
we can obtain the answer on S1 ∪ S2 in constant time. Hence, the query is decomposable.

You can verify that all the queries we have seen so far are decomposable: predecessor/successor,
find-min/max, range reporting, range counting/max, stabbing, etc.

6.2 The logarithmic method

This section serves as a proof of the following theorem:

Theorem 6.1. Suppose that there is a static structure Υ that

• stores n elements in F (n) space;

• can be constructed in n · U(n) time;

• answers a decomposable query in Q(n) time (plus, if necessary, a cost linear to the number
of reported elements).

Set h = dlog2 ne. There is a semi-dynamic structure Υ′ that

34

Lecture Notes of CSCI5610, CSE, CUHK

• stores n elements in
∑h

i=0 F (2i) space;

• supports an insertion in O
(∑h

i=0 U(2i)
)

amortized time;

• answers a decomposable query in O(log n) +
∑h

i=0Q(2i) time (plus, if necessary, a cost linear
to the number of reported elements)

Before delving into the proof, let us first see its application on the kd-tree. We know that the
kd-tree consumes O(n) space, can be constructed in O(n log n) time (see an exercise of Lecture 4),
and answers a range reporting query in O(

√
n+k) time, where k is the number of reported elements.

Therefore:

F (n) = O(n)

U(n) = O(log n)

Q(n) = O(
√
n).

Theorem 6.1 immediately gives a semi-dynamic structure that uses

dlog2 ne∑
i=0

O(2i) = O(n)

space, supports an insertion in

dlog2 ne∑
i=0

O
(
log 2i

)
= O(log2 n)

amortized time, and answers a query in

dlog2 ne∑
i=0

O
(√

2i
)

= O(
√
n)

plus O(k) time.

6.2.1 Structure

Let S be the input set of elements; let n = |S| and h = dlog2 ne. At all times, we divide S into
disjoint subsets S0, S1, ..., Sh (some of which may be empty) satisfying:

|Si| ≤ 2i. (6.1)

Create a structure of Υ on each subset; denote by Υi the structure on Si. Then, Υ1,Υ2, ...,Υh

together constitute our semi-dynamic structure. The space usage is bounded by
∑h

i=0 F (2i).

Before receiving any updates, S0 = S1 = ... = Sh−1 = ∅ and Sh = S. Accordingly, Υ0, ...,Υh−1

are empty and Υh stores the entire S.

6.2.2 Query

To answer a query q, we simply search all of Υ1, ...,Υh. Since the query is decomposable, we can
obtain the answer on S from the answers on S1, ..., Sh in O(h) time. The overall query time is

O(h) +
h∑
i=0

Q(2i) = O(log n) +
h∑
i=0

Q(2i).

35

Lecture Notes of CSCI5610, CSE, CUHK

6.2.3 Insertion

To insert an element enew , we first identify the smallest i ∈ [0, h] satisfying:

1 +
i∑

j=0

|Sj | ≤ 2i. (6.2)

We now proceed as follows:

• If i exists, we destroy Υ0,Υ1, ...,Υi and move all the elements in S0, S1, ..., Si−1, together
with enew , into Si. After this, S0, S1, ..., Si−1 are empty and Si contains all their elements,
the elements that were already in Si before, and enew . Rebuild Υi on the Si from scratch.

• If i does not exist, we destroy Υ0,Υ1, ...,Υh, and move all the elements in S0, S1, ..., Sh,
together with enew , into Sh+1. Build Υh+1 on Sh+1 from scratch. The value of h then
increases by 1.

Let us now analyze the amortized insertion cost with a charging argument. Each time Υi (i ≥ 0)
is rebuilt, we spend

O(|Si|) · U(|Si|) = O(2i) · U(2i) (6.3)

cost (recall that, as stated in Theorem 6.1, a structure on n elements can be built in n ·U(n) time).
The lemma below gives a crucial observation:

Lemma 6.2. Every time when Υi is rebuilt, at least 1 + 2i−1 elements are added to Si (i.e., every
such element was in some Sj with j < i).

Proof. Set λ = i. By our choice of i, the inequality (6.2) does not hold for i = λ− 1. This means:

1 +

λ−1∑
j=0

|Sj | ≥ 1 + 2λ−1.

This proves the claim because all the elements in S1, ..., Sλ−1, as well as enew , are added to Sλ.

We can therefore charge the cost of rebuilding Υi — namely the cost in (6.3) — on the at least
2i−1 elements added to Si, such that each of those elements bears only

O(2i)

2i−1
· U(2i) = O(U(2i))

cost.

In other words, every time an element e moves to new Si, it bears a cost of O(U(2i)). Note that
an element never moves from Si to an Sj with j < i. Therefore, e can be charged at most h + 1
times with a total cost of

O

(
h∑
i=0

U(2i).

)
We have proved that any sequence of m insertions can be processed in

O

(
m ·

h∑
i=0

U(2i)

)
time.

36

Lecture Notes of CSCI5610, CSE, CUHK

6.3 Remarks

The logarithmic method was developed by Bentley and Saxe [8]. There are standard de-amortization
techniques (see [34]) that convert a structure with small amortized update time into a structure
achieving a small time bound on every update. By applying those techniques, we can turn our
modified kd-tree into a structure that ensures O(log2 n) time on every insertion.

37

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1*. In Section 6.2, we applied Theorem 6.1 to argue that the kd-tree can support an
insertion inO(log2 n) amortized time. Strictly speaking, Theorem 6.1 only tells us that any sequence
of n insertions can be processed in O(n log2 n) time. In order to claim anO(log2 n) amortized bound,
we must show that any sequence of n insertions can be processed in O(

∑n
i=1 log2 i time (because

there are only i− 1 elements before insertion i). Explain how the issue can be fixed.

(Hint: There are many approaches; here we outline an easy one (which is not the fastest for
practical implementation). Recall that the set S at the beginning of the logarithmic method need
not be empty. Apply the logarithmic method until the size of S doubles. Reset with global
rebuilding.)

Problem 2. Design a semi-dynamic data structure that stores a set of n intervals in O(n) space,
answers a stabbing query in O(log2 n+ k) time (where k is the number of intervals reported), and
supports an insertion in O(log2 n) amortized time.

Problem 3**. Let S be a set of n points in R2 that have been sorted by x-coordinate. Design an
algorithm to build the priority search tree on S in O(n) time.

(Hint: how to construct a max heap on n real values in O(n) time?)

Problem 4. Design a semi-dynamic data structure that stores a set of n 2D points in O(n) space,
answers a 3-sided range reporting query in O(log2 n + k) time (where k is the number of points
reported), and supports an insertion in O(log n) amortized time.

(Hint: Problem 3.)

38

Lecture 7: Weight Balancing

In this lecture, we will discuss a technique called weight balancing that allows us to (fully) dynamize
sophisticated structures such as the interval tree, the priority search tree, the range tree, and so on.
These structures are “multi-layered” because they associate each node of a BST with a secondary
structure. To dynamize such structures, we need a more powerful version of the BST where nodes
seldom become imbalanced during updates.

7.1 BB[α]-trees

Let T be a BST on a set S of n real values. Given a BST T , we denote by |T | the number of nodes
in T . Given a node u in T , we define its weight w(u) as the number of nodes in sub(u) and its
balance factor as:

ρ(u) =
min{|T1|, |T2|}

w(u)

where T1 (or T2, resp.) is the left (or right, resp.) subtree of u.

Let α be a real-valued constant satisfying 0 < α ≤ 1/5. A node u in T is said to be α-balanced
in either situation below: |w(u)| ≤ 4 or ρ(u) ≥ α. In other words, for an α-balanced u, either
sub(u) has very few nodes, or each subtree of u has roughly the same size (up to a constant factor).
When neither condition holds, we say that u is α-imbalanced.

T is a BB[α]-tree if every node is α-balanced (where BB stands for bounded balanced). We
associate each node u with its weight w(u). This allows us to compute its balance factor from its
weight and those of its child nodes. The space consumption of T remains O(n).

Lemma 7.1. The height of a BB[α]-tree T is O(log n), where the big-O hides a constant factor
dependent on α.

Proof. Let T1 and T2 be the left and right subtree of root(T), respectively. By definition of BB[α],
we know |T1| ≤ (1−α)|T | and |T2| ≤ (1−α)|T |, namely, the subtree size drops by a constant factor
every time we descend a level. Hence, we can descend only O(log n) times.

Lemma 7.2. If S has been sorted, a BB[α]-tree T can be constructed in O(n) time.

Proof. Take the median element e ∈ S (i.e., the dn/2e-smallest in S). Create a node u with
key(u) = e and make u the root of T . Each subtree of u has at least n/2 − 1 nodes. If n ≥ 4,

the balance factor ρ(u) ≥ n/2−1
n = 1/2 − 1/n ≥ 1/4 > α. Hence, u is α-balanced. Construct

the left subtree of u recursively on {e′ < e | e′ ∈ S} and the right subtree of u recursively on
{e′ > e | e′ ∈ S}. The construction time is left to you as an exercise.

39

Lecture Notes of CSCI5610, CSE, CUHK

Corollary 7.3. After the construction of T in Lemma 7.2, every node has a balance factor at least
1/4 as long as its weight is at least 4 .

Proof. Follows immediately from the proof of Lemma 7.2.

7.2 Insertion

To insert a value enew in S, descend T to the conceptual leaf z whose slab (Section 2.1.2) covers
enew . Replace z with a regular leaf with key enew . The insertion, however, may cause some nodes
to be α-imbalanced. Such nodes can appear only on the path Π from the root to z (think: why?).
Let u be the highest α-imbalanced node. The cost so far is O(log n) by Lemma 7.1.

If u does not exist, the insertion finishes. Otherwise, use Lemma 7.2 to rebuild the entire sub(u).
The keys in sub(u) can be collected from sub(u) in sorted order using O(w(u)) time (depth first
traversal). The construction of sub(u) takes O(w(u)) time. The insertion cost is O(log n + w(u)),
which can be terribly large. However, as shown later, subtree rebuilding occurs infrequently such
that each update is amortized only O(log n) time.

7.3 Deletion

To delete a value eold from S, first find the node v with key(v) = eold . We will discuss only the
case where v is a leaf (the opposite case is left as an exercise). Delete v from T . The cost so far is
O(log n).

The deletion may cause some nodes to become α-imbalanced. These nodes can appear only
on the root-to-v path Π. Let u be the highest α-imbalanced node. If u exists, rebuild sub(u) in
the same way as in insertion. The deletion cost is O(log n+ w(u)). Again, we will show that each
update is amortized only O(log n) time.

7.4 Amortized analysis

The lemma below explains a key property of weight balancing:

Lemma 7.4. Suppose that sub(u) has just been reconstructed. Let w∗ = w(u) at this moment.
Then, the next reconstruction of sub(u) can happen only after w∗/24 elements have been inserted
or deleted in sub(u).

Proof. If w∗ ≤ 24, the lemma holds because trivially at least 1 ≥ w∗/24 = Ω(w∗) update is needed.
Focus now on w∗ ≥ 24. By Corollary 7.3, ρ(u) ≥ 1/4.

We argue that at least w∗/24 updates must occur in sub(u) before ρ(u) drops below α ≤ 1/5.
Let n1 be the number of nodes in the left subtree T1 of u at the moment; n1 ≥ w∗/4 (Corollary 7.3).
Suppose that after x updates in sub(u), |T1|/w(u) ≤ 1/5. We will prove that x ≥ w∗/24.

After x updates, we must have w(u) ≤ w∗+ x and |T1| ≥ n1− x. Therefore, |T1|/w(u) ≥ n1−x
w∗+x .

For the ratio to be at most 1/5, we need:

n1 − x
w∗ + x

≤ 1/5 ⇒

6x ≥ 5n1 − w∗ ≥ w∗/4 ⇒
x ≥ w∗/24.

40

Lecture Notes of CSCI5610, CSE, CUHK

A symmetric argument shows that at least w∗/24 updates are needed to make |T2|/w(u) ≤ 1/5
to happen, where |T2| is the right subtree of u. This completes the proof.

The constant 24 in the lemma can be made much smaller with a more sophisticated analysis.
In this course, we aim at presenting the core ideas with arguments that are as simple as possible.

Theorem 7.5. The BB[α]-tree supports any sequence of n updates (mixture of insertions and
deletions) in O(n log n) time, namely, O(log n) amortized time per update.

Proof. It suffices to concentrate on the cost of subtree reconstruction. By Lemma 7.4, whenever
a subtree sub(u) is rebuilt, we can charge the O(w(u)) rebuilding cost on the Ω(w(u)) inser-
tions/deletions that have taken place in sub(u) since the last reconstruction of sub(u). Each of
those updates bears only O(1) cost. How many times can we charge an update this way? The
answer is O(log n) because each insertion or deletion can affect only the (subtrees of the) O(log n)
nodes on the update path.

7.5 Dynamization with weight balancing

The weight balancing technique can dynamize nearly all the structures in Lecture 3 and 4. Those
structures are “two-layered” meaning that:

• they use a BST T as the primary structure, and

• every node in T is associated with a secondary structure.

Let us first understand why updates are costly if we implement T as an “undergraduate” BST such
as the AVL-tree. Recall that the AVL-tree performs rotations to keep the tree balanced. When
a node u is involved in a rotation, sub(u) changes, thus forcing us to reconstruct the secondary
structure of u. Such a reconstruction can be very expensive because the secondary structure can
be very large. The “graduate-level” BST — the BB[α]-tree — remedies the issue by ensuring that
subtree reconstructions occur only occasionally (Lemma 7.4).

Next, we will explain how to deploy weight balancing to dynamize a two-layered structure.

Structure. Let T be a BB[α]-tree on a set S of n real values. For each node u in T , denote by Su
the set of keys in sub(u). Associate u with a secondary structure Tu created on Su. We do not care
about what Tu is but we assume it supports an insertion and a deletion in O(log |S(u)|) = O(log n)
time (this implies that the structure can be built in O(|Su| log |Su|) = O(w(u) log n) time). We will
show how to support an update in O(log3 n) amortized time.

Insertion. To insert a value enew , we first create a new leaf z in T with key(z) = enew in O(log n)
time by following a root-to-z path Π. For every node u on Π, add enew to Tu in O(log n) time. The
cost so far is O(log2 n).

The insertion finishes if no subtree reconstruction occurs in T . Now, consider that we need to
reconstruct the subtree of a node u on Π. For this purpose, reconstruct the secondary structures
of all the nodes in sub(u), which takes O(|Su| log2 |Su|) = O(w(u) log2 n) time (think: why?). By
Lemma 7.4, Ω(w(u)) updates must have taken place in sub(u) since the last reconstruction of
sub(u). We charge the construction cost over those updates, each of which is bears an additional
cost of O(log2 n).

41

Lecture Notes of CSCI5610, CSE, CUHK

Deletion. To delete a value eold , first find the node u in T with key(u) = eold . We will discuss
only the case where u is a leaf (the opposite case is left to you). Let Π be the root-to-u path. Delete
eold from T and from Tu for every node u on Π in O(log n) time. The cost so far is O(log2 n).

The deletion finishes if no subtree reconstruction occurs. Suppose that we need to reconstruct
the subtree of some node on Π. The reconstruction algorithm and its analysis are exactly the same
as in the insertion case.

Overall. Each update can be charged only O(log n) times for subtree reconstructions and thus has
amortized cost O(log3 n).

7.6 Remarks

Our definition is one of the many ways to describe the BB[α] tree. See [33] for the original proposi-
tion. The BB[α]-tree can actually be updated in O(log n) on every insertion/deletion. Whenever a
node u becomes α-imbalanced, we can fix it in constant time by performing a rotation (in a manner
similar to the AVL-tree). Even better, after the fix, u can become α-imbalanced only after Ω(w(u))
updates have taken place in sub(u). The details can also be found in [9].

42

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove the construction time in Lemma 7.2.

Problem 2. Complete the deletion algorithm in Section 7.3 and 7.5 for the case where eold is the
key of an internal node.

(Hint: Convert it to deleting a leaf, as in the AVL-tree.)

Problem 3. Explain how to support an insertion and a deletion on the interval tree (Section 3.1)
in O(log2 n) amortized time, where n is the number of intervals. Your structure must still be able
to answer a stabbing query in O(log n+ k) time, where k is the number of intervals reported.

Problem 4. Explain how to support an insertion and a deletion on the priority search tree
(Section 4.3) in O(log2 n) amortized time, where n is the number of points. Your structure must
still be able to answer a 3-sided range query in O(log n+ k) time, where k is the number of points
reported.

Problem 5**. Improve the update time in the previous problem to O(log n).

Problem 6. Explain how to support an insertion and a deletion on the range tree (Section 4.4)
in O(log3 n) amortized time, where n is the number of points. Your structure must still be able to
answer a 4-sided range query in O(log2 n+ k) time, where k is the number of points reported.

43

Lecture 8: Partial Persistence

A dynamic data structure is ephemeral because, once updated, its previous version is lost. Consider,
for example, n insertions into an initially empty BST. In the end, we have a BST with n nodes
(the final version). In history, n− 1 other versions have ever been created and lost.

Wouldn’t it be nice to retain all the versions so that we can “travel back in time” and search an
arbitrary past version? One naive way to do so is to store a separate copy of each historical version,
which requires O(n2) space. We will learn a powerful technique called partial persistence that allows
us to achieve the purpose in just O(n) space (clearly optimal). The technique is applicable to any
pointer-machine structure (Section 4.5) where each node has a constant in-degree (for the BST, the
in-degree is 1). This includes most of the structures you already know: the linked list, the priority
queue, all the structures in Lectures 3 and 4, and so on (but not dynamic arrays).

The technique has implications beyond history preservation. It allows us to solve difficult
problems using surprisingly primitive structures. One example is the 3-sided range query that we
tackled with the priority search tree (PST) in Section 4.3: as you will see in an exercise, we can
achieve the space and query complexities of the PST by simply making the BST partially persistent.

8.1 The potential method

Let us first introduce a new method for amortized analysis called the potential method. Consider M
operations on a data structure, the i-th (i ∈ [M]) of which has cost Ci. As discussed in Section 5.2,
we can assign a non-negative integer C̄i to operation i as its amortized cost as long as

M∑
i=1

Ci ≤
M∑
i=1

C̄i.

Define Φ — called the potential function — as a function that maps the current structure to
a real value. Let T0 be the initial structure before all operations and Ti be the structure after
operation i.

Lemma 8.1. If Φ(TM) ≥ Φ(T0), the amortized cost of operation i is at most Ci+ Φ(Ti)−Φ(Ti−1).

Proof. It suffices to prove
∑M

i=1Ci ≤
∑n

i=1(Ci + Φ(Ti)− Φ(Ti−1)). This is obvious because

M∑
i=1

Φ(Ti)− Φ(Ti−1) = Φ(TM)− Φ(T0) ≥ 0.

44

Lecture Notes of CSCI5610, CSE, CUHK

[1] 8 [1] 8⇒

[2] 4

[2] 8 ⇒ [1] 8

[2] 4

[2] 8

[3] 12

[3] 8 ⇒ [1] 8

[2] 4

[2] 8

[3] 12

[3] 8

[4] 14

[4] 12

[4] 8

(a) (b) (c) (d)

Figure 8.1: Illustration of naive copying on the insertion sequence of 8, 4, 12, 14.

To get familiar with the method, we will apply it to obtain yet another analysis of the dynamic
array’s amortized insertion cost. As discussed in Section 5.3, we double the array size whenever n
reaches a power of 2. Define the potential function Φ as:

Φ = c · the number of insertions after the previous doubling

for some constant c chosen later. Consider insertion i ∈ [M]. If the insertion triggers no doubling,
Ci = O(1), Φ increases by c, and thus Ci+Φ(Ti)−Φ(Ti−1) = Ci+c = O(1). Otherwise, Ci = O(n),
Φ drops by c(n2 − 1) (think: why), and thus Ci + Φ(Ti)−Φ(Ti−1) = O(n)− cn/2, which is negative
if we choose c sufficiently large. Thus, we always have Ci + Φ(Ti) − Φ(Ti−1) = O(1), yielding the
conclusion that each insertion has constant amortized cost.

8.2 Partially persistent BST

Starting with an empty BST T0, we will process a sequence of n updates (mixture of insertions and
deletions). The i-th (1 ≤ i ≤ n) update is said to happen at time i. Denote by Ti the BST after
the update, which is said to be of version i. Our goal is to retain the BSTs of all versions. We will
call the BST of the latest version the live BST and denote it as T (i.e., T = Ti after i updates).
Denote by A the update algorithm of the BST, which can be any implementation of the BST, e.g.,
the AVL-tree, the red-black tree, the BB[α]-tree, etc.

8.2.1 The first attempt

Our first idea is to enforce the following principle: whenever A needs to change a node u, make a
copy of u and apply the changes only on the new copy.

Example. Consider the update sequence that inserts 8, 4, 12, and 14. As shown in Figure 8.1(a),
T1 contains a single node, whose label “[i] k” indicates that it is created at time i with key k.

The second insertion creates node “[2] 4” as the left child of “[1] 8” in the live BST. By the
aforementioned principle, we do not alter “[1] 8”, but copy it to node “[2] 8” and make “[2] 4” the
left child of “[2] 8”. As can be seen in Figure 8.1(b), both BSTs T1 and T2 are explicitly stored.

To insert 12, we create “[3] 12”, copy “[2] 8” to “[3] 8”, and make “[3] 12” the right child of
“[3] 8”. The structure at this moment is in Figure 8.1(c). Note that the left child of “[3] 8” is still
“[2] 4” (which was not affected by the current update). Observe how Figure 8.1(c) stores 3 BSTs
T1, T2, and T3.

Figure 8.1(d) presents the final structure after inserting 14, which encodes BSTs T1, ..., T4.

45

Lecture Notes of CSCI5610, CSE, CUHK

We will refer to the above method naive copying. As each update on the live BST accesses
O(log n) nodes, naive copying can create O(log n) nodes per update in the persistent structure.
The overall space consumption is therefore O(n log n). Any BST in the past can be found and
searched efficiently: for any i ∈ [1, n], first find the root of Ti can be identified in O(log n) time1,
after which the search can then be performed within Ti as if the other versions did not exist.

Naive copying sometimes duplicates a node that is not modified by an update. In Figure 8.1(d),
for example, although the only node modified by the update is “[3] 12”, the method duplicates all
its ancestors. We will remedy the drawback with a new approach in the next subsection.

8.2.2 An improved method

Our new idea is to introduce a modification field in each node u. When A needs to change a pointer
of u, we record the change in the field and perform node copying only when the field is full. It
turns out that a constant-size field suffices to reduce the space to O(n).

Each node now takes the form {([i] k, ptr1, ptr2),mod} where

• ([i] k, ptr1, ptr2) indicates that the node is created at version i with key k and pointers ptr1

and ptr2 (which may be NULL);

• mod is the modification field, which is empty when the node is created and can record one
pointer change.

Example. We will first insert 8, 4, 12, 14, 2, and then delete 2, 14. Figure 8.2(a) shows the
structure after the first insertion. Here, the ptr1 and ptr2 of node I are both NULL. The empty
space on the right of the vertical bar indicates an empty mod .

To insert 4, we create node II and make it the left child of node I. This means redirecting the
left pointer of node I to node II at time 2. This pointer change is described in the mod of node I;
see Figure 8.2(b). Observe how the current structure encodes both T1 and T2.

The insertion 12 creates node III, which should be the right child of node I. As the mod of
node I is already full, we cannot write the pointer change inside node I and thus need to do node
copying. As shown in Figure 8.2(c), this spawns node IV, which stores “[3] 8” and has ptr1 and
ptr2 referencing nodes II and III, respectively. The current structures encodes T1, T2, and T3.
Figures 8.2(d) and (e) illustrate the insertion of 14 and 2, respectively.

The next operation deletes 2. Accordingly, we should set the pointer of node II to NULL. Since
node II’s mod is full, we copy it to node VII. This, in turn, requires changing the left pointer of
node IV; the change is recorded in its mod . The current structure in Figure 8.2(f) encodes T1, ..., T6.

Finally, the deletion of 14 requires nullifying the right pointer of node III. As Node III’s mod is
full, we copy it to node VIII, which further triggers node IV to be copied to node IX. Figure 8.2(g)
gives the final structure which encodes T1, ..., T7.

In general, A can change the live BST with two operations:

• C-operation: creating a new node, which happens only in an insertion for storing the key
inserted;

1By creating a separate BST on the root versions.

46

Lecture Notes of CSCI5610, CSE, CUHK

(a) (b) (c) (d)

⇒[1] 8

[2] 4

[2] L[1] 8 ⇒

[2] 4

[2] L[1] 8 [3] 8

[3] 12

⇒

[2] 4

[2] L[1] 8 [3] 8

[4] 14

[3] 12 [4] R

(e)

⇒

[2] 4

[2] L[1] 8 [3] 8

[4] 14

[3] 12 [4] R

[5] 2

[5] L

⇒

[2] 4

[2] L[1] 8 [3] 8

[4] 14

[3] 12 [4] R

[5] 2

[5] L [6] 4

[6] L

(f)

[2] 4

[2] L[1] 8 [3] 8

[4] 14

[4] R

[5] 2

[5] L [6] 4

[6] L

(g)

⇒
[3] 12 [7] 12

[7] 8

I I

II

I

II III

IV I

II III

IV

V

I

II III

IV

VVI

I

II III

IV

VVI
VII

I

II III

IV

VVI
VII VIII

IX

Figure 8.2: Illustration of the improved method on the update sequence of inserting 8, 4, 12, 14, 2
followed by deleting 2 and 14.

• P-operation: modifying a pointer in some node u.

We modify each operation for the persistent structure as follows:

• C-operation: create a new node {([i] k,NULL,NULL), ∅} by filling in i and k appropriately;

• P-operation: to modify a pointer in a node u, we invoke:

ptr-update(u)
1. if the mod of u is empty then
2. record the pointer modification in mod
3. return
4. else /* mod full */
5. copy u to node v and modifies the pointer in v
6. if u has a parent û in the live BST
7. call ptr-update(û) to add a pointer from û to v

Note that Line 7 recursively invokes ptr-update and can induce multiple node copies.

47

Lecture Notes of CSCI5610, CSE, CUHK

The time to build a persistent BST is clearly O(n log n) (the proof is left to you). As in
Section 8.2.1, we can identify the root of any Ti (1 ≤ i ≤ n) in O(log n) time, after which Ti can
then be search as a normal BST. We will analyze the space consumption in the next subsection.

8.2.3 Space

Denote by mi (1 ≤ i ≤ n) the number of C/P-operations that A performs on the live tree in
processing the i-th update. We will prove:

Lemma 8.2. The algorithm in Section 8.2.2 creates O(
∑n

i=1mi) nodes in the persistent tree.

The lemma immediately implies:

Theorem 8.3. Given a sequence of n updates on an initially empty BST, we can build a persistent
BST of O(n) space in O(n log n) time.

Proof. The red-black tree performs at most one C-operation and O(1) P-operations in each inser-
tion/deletion.

Proof of Lemma 8.2. Set

M =
n∑
i=1

mi

namely, M is the total number of C/P-operations performed by A. These operations happen in
succession, and hence, can be listed as operation 1, 2, ..., M , respectively. Let Cj (1 ≤ j ≤M) be

the number of nodes created by the j-th operation in the persistent tree. We will prove
∑M

j=1Cj =
O(M), or equivalently, each operation creates O(1) nodes amortized.

Denote by Sj (1 ≤ j ≤ M) the set of nodes in the live tree after operation j. Define specially
S0 as the empty set. Introduce a potential function Φ that maps Sj to a real value as follows:

Φ(Sj) = the number of nodes in Sj whose mod fields are non-empty. (8.1)

Clearly, Φ(SM) ≥ Φ(S0) = 0. By Lemma 8.1, operation j creates at most

Cj + Φ(Sj)− Φ(Sj−1) (8.2)

nodes after amortization. Next, we will show that the above is at most 1 for every j, which will
complete the proof of Lemma 8.2.

If operation j is a C-operation, it creates a node with empty mod and finishes. Hence, Cj = 1,
Sj = Sj−1, and hence (8.2) equals 1.

Now, consider operation j as a P-operation. Every new node is created by copying (Line 5
of ptr-update). Each time this happens, we lose a node with non-empty mod (i.e., node u in
ptr-update), create a node with empty mod (i.e., v in the pseudocode), and possibly fill in the
mod of one node (i.e., û, if it exists). Therefore, Φ(Sj) − Φ(Sj−1) is at most −Cj + 1 such that
(8.2) can never exceed 1.

48

Lecture Notes of CSCI5610, CSE, CUHK

8.3 General pointer-machine structures

The following result generalizes Theorem 8.3:

Theorem 8.4 ([16]). Consider any pointer-machine structure defined in Section 4.5 where every
node has a constant in-degree. Suppose that A is an algorithm used to process a sequence of n
updates (mixture of insertions and deletions) with amortized update cost U(n). Let mi be the
number of nodes created/modified by A in processing the i-th update (1 ≤ i ≤ n). Then, we can
create a persistent structure that records all the historical versions in O(n·U(n)) time. The structure
consumes O(

∑n
i=1mi) space. The root of every version can be identified in O(log n) time.

For example, if the structure is the linked list, then U(n) = O(1) and mi = O(1). Therefore,
we can construct a persistent linked list of O(n) space in O(n) time. The head node of the linked
list of every past version can be identified in O(log n) time.

The theorem can be established using the modification-logging approach in Section 8.2.2, except
that the modification field should be made sufficiently large (but still have a constant size). We
omit the details which can be found in [16].

8.4 Remarks

The methods in this lectures were developed by Driscoll, Sarnak, Dominic, and Tarjan in [16].

49

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove the construction time in Theorem 8.3.

Problem 2. Let S be a set of n horizontal rays in R2, each having the form [x,∞)×y. Explain how
to store S in a persistent BST of O(n) space such that, given any vertical segment q = x× [y1, y2],
we can report all the rays in S intersecting q using O(log n + k) time, where k is the number of
rays reported.

Problem 3. Let P be a set of n points in R2. Explain how to store P in a persistent BST of
O(n) space such that any 3-sided range query of the form (−∞, x] × [y1, y2] can be answered in
O(log n+ k) time, where k is the number of points reported.

(Hint: Problem 2.)

Problem 4. Let P be a set of n points in R2. Given an axis-parallel rectangle q, a range count
query reports the number of points in P that are covered by q. Design a structure that stores P in
O(n log n) space that can answer a range count query in O(log n) time.

Remark: this improves an exercise in Lecture 4.
(Hint: persistent count BST.)

Problem 5. Prove Theorem 8.4 for the linked list.

Remark: the persistent linked list is a way to store all the past versions of a document that has
undergone a sequence of edits (regard a document as a sequence of characters).

Problem 6* (point location). A polygonal subdivision of R2 is a set of interior-disjoint convex
polygons whose union is R2. The following shows an example (for clarity, the boundary of R2 is
represented as a rectangle).

Given a point q in R2, a point location query reports the polygon that contains q (if q falls on the
boundary of more than one polygon, any such polygon can be reported). Let n be the number of
segments in the subdivision. Design a structure of O(n) space that can answer any point location
query in O(log n) time.

(Hint: persistent BST.)

50

Lecture 9: Dynamic Perfect Hashing

In dictionary search, we want to store a set S of n integers in a data structure to answer the
following queries: given an integer q, report whether q ∈ S (the output is boolean: yes or no). At
the undergraduate level, we have learned that the problem can be tackled with hashing. Specifically,
we can store S in a hash table of O(n) space which answers a query in O(1) expected time. In
practice, we may not be satisfied with O(1) expected query cost because it implies that the actual
search time can be large occasionally. Ideally, we would like to build a perfect hash table that
guarantees O(1) query cost in the worst case.

This lecture will introduce a technique called cuckoo hashing which can maintain a perfect
hash table of O(n) size with O(1) amortized expected time per update (what this means will be
defined formally later in Section 9.2). We will, however, establish only a weaker bound of O(log n)
amortized expected; as a benefit in return, this illustrates nicely how data structures can arise from
graph theory.

9.1 Two random graph results

Let U and V each be a set of c · n ≥ 2 vertices, for some integers c > 0, n > 0. We generate a
random bipartite graph G by repeating the gen-edge operation n times:

gen-edge
1. pick a vertex u ∈ U uniformly at random
2. pick a vertex v ∈ V uniformly at random
3. connect u, v with an edge (there can be multiple edges between two vertices)

We will label the n operations as 1, 2, ..., n, respectively. Given any I ⊆ [cn], we use OPI to denote
the set of operations with labels in I.

Let us define a cycle in G as a sequence of vertices w1, w2, ..., w`, w1 such that

• w1, w2, ..., w` are distinct;

• an edge exists between every two consecutive vertices in the sequence;

• all the ` edges are distinct (i.e., created by different gen-edge operations).

The vertex set W = {w1, w2, ..., w`} is said to induce the cycle.

Example. Consider U = {1, 2} and V = {a, b}. Suppose that we perform only one gen-edge
which gives edge {1, a}. The vertex sequence 1, a, 1 is not a cycle. Suppose that we perform another
gen-edge which again gives edge {1, a}. Now, the vertex sequence 1, a, 1 becomes a cycle. In other
words, {1, a} induces a cycle.

51

Lecture Notes of CSCI5610, CSE, CUHK

Lemma 9.1. When c ≥ 8e2, it holds with probability at least 7/8 that G contains no cycles (here
e ≈ 2.718 represents the base of natural logarithm).

Proof. Fix an arbitrary integer ` ∈ [2, n]. We will prove an upper bound on the probability that G
has a cycle of length `. Clearly,

Pr[a cycle of length `] =
∑

W⊆U∪V :|W |=`

Pr[W induces a cycle in G]. (9.1)

Consider an arbitrary W = {u1, u2, ..., u`}. W inducing a cycle means that there exist ` distinct
edges each between two vertices in W . In other words, there is at least a subset I ⊆ [n] with size
|I| = ` such that, for each i ∈ I, the i-th gen-edge operation picks two vertices from W . We thus
have

Pr[W induces a cycle in G]

≤
∑

I⊆[n]:|I|=`

Pr[each operation in OPI picks two vertices in W]. (9.2)

Procedure gen-edge creates an edge on W with probability at most (`
cn)2 because both u and

v it chooses must fall in W . It follows that

Pr[each operation in OPI creates an edge on two vertices in W] ≤
(
`

cn

)2`

and hence by (9.2)

Pr[W induces a cycle in G] ≤
(
n

`

)
·
(
`

cn

)2`

with which (9.1) gives

Pr[a cycle of length `] ≤
(

2cn

`

)
·
(
n

`

)
·
(
`

cn

)2`

(by FactA.1) ≤
(
e · 2cn
`

)`
·
(e · n

`

)`
·
(
`

cn

)2`

=

(
2e2

c

)`
≤ (1/4)`.

We can now prove the lemma with

Pr[G has a cycle] ≤
n∑
`=2

Pr[a cycle of length `]

≤
n∑
`=2

(1/4)` < 1/8.

An almost identical argument establishes:

Lemma 9.2. When c ≥ 4e3, it holds with probability at least 1 − c
n2 that G has no simple path

longer than 4 log2 n edges (a path is simple if it passes no vertex twice).

The proof is left as an exercise.

52

Lecture Notes of CSCI5610, CSE, CUHK

9.2 Amortized expected update cost

Suppose that a structure processes m updates. As mentioned in Section 5.1, we can claim that the
i-th (i ∈ [m]) update has amortized cost C̄i if

m∑
i=1

Ci ≤
m∑
i=1

C̄i,

where Ci is the actual cost of the i-th update.

Now consider that structure is randomized such that each Ci is a random variable. In this case,
we say that the i-th (i ∈ [m]) update has amortized expected cost C̄i if E[

∑m
i=1Ci] ≤

∑m
i=1 C̄i,

which means

m∑
i=1

E[Ci] ≤
m∑
i=1

C̄i.

For example, if the structure has O(1) amortized expected update time, it processes any m updates
in O(m) expected total time.

9.3 Cuckoo hashing

9.3.1 Hash functions

Denote by D the domain from which the elements of S are drawn. A hash function h maps D to a
set of integers {1, 2, ..., N} for some N ≥ 1. The output h(e) is the hash value of e ∈ D. We will
assume uniform hashing, which means:

• for any element e ∈ D, Pr[h(e) = i] = 1/N for any i ∈ [1, N];

• the above holds regardless of the hash values of the other elements in D.

9.3.2 The hash table, query, and deletion

We maintain two arrays A,B each of size N = O(n) where the concrete value of N will be chosen
later. There are two hash functions g and h, both mapping D to {1, ..., N}. We enforce

Invariant: Each element e ∈ S is stored at either A[g(e)] or B[h(e)].

This makes queries and deletions very simple:

• Query: Given an element q, report yes if A[g(e)] or B[h(e)] = q; otherwise, report no.

• Deletion: To delete an element e ∈ S, erase A[g(e)] or B[h(e)] whichever equals e.

Clearly, both operations finish in O(1) worst-case time.

53

Lecture Notes of CSCI5610, CSE, CUHK

9.3.3 Insertion

Next, we explain how to insert an element enew . If A[g(enew)] is empty, we store enew at A[g(enew)]
and finish; otherwise, if B[h(enew)] is empty, we store enew at B[h(enew)] and finish.

If both A[g(enew)] and B[h(enew)] are occupied, we launch a bumping process which can be
intuitively understood as follows. Remember every element e ∈ S has two “nests”: A[g(e)] and
B[h(e)]. If e is evicted from one nest, we are obliged to store it in the other. With this mindset,
let us place enew at A[g(enew)] and evict the element e originally stored there. Thus, e must go
into its other nest in B, thereby evicting another element there. The process goes on until all the
elements have been placed properly. There is a chance that this may not be possible, in which case
we declare failure.

Formally, we perform the bumping process as follows:

bump(e)
1. turn = g; cnt = 0
2. while cnt ≤ 4 log2 n do
3. cnt++
4. if turn = g then
5. if A[g(e)] empty then
6. place e at A[g(e)]; return success

else
7. swap e and A[g(e)]; turn = h

else
/* turn = h */

8. if B[h(e)] empty then
9. place e at B[h(e)]; return success

else
10. swap e and B[h(e)]; turn = g
11.return failure

Note that functions g and h are used in a round-robin fashion.

Example. Set N = 4. The first insertion adds element e1 to S; suppose g(e1) = 2 and h(e1) = 3.
The insertion finishes by storing e1 in A[2].

The second insertion adds e2, for which we assume g(e2) = 2 and h(e2) = 4. As A[2] is occupied
but B[4] is empty, the algorithm stores e2 at B[4]. Now A = (−, e1,−,−) and B = (−,−,−, e2).

The next element inserted is e3; let g(e3) = 2 and h(e3) = 4. As A[2] and B[4] are both occupied,
a bumping process starts. The process places 35 at A[2] and evicts e1 which was originally stored
at A[2]. For element e1, we find B[h(e1)] = B[3] empty and thus puts e1 there. The insertion
finishes with A = (−, e3,−,−) and B = (−,−, e1, e2).

Consider one more insertion e4 with g(e4) = 2 and h(e4) = 4. As A[2] and B[4] are occupied,
the bumping process replaces e3 with e4 at A[2]. Currently, A = (−, e4,−,−). As h(e3) = 4,
the process replaces e2 with e4 at B[4], after which B = (−,−, e1, e3). The process then puts e2

at A[g(e2)] = A[2] and removes e4 originally there, after which A = (−, e2,−,−). The process
continues in this manner and eventually declares failure.

If the bumping process fails, we simply rebuild the whole structure:

54

Lecture Notes of CSCI5610, CSE, CUHK

rebuild
1. choose another two hash functions g and h
2. insert the elements of S one by one, and stop if failure declared (due to bumping)
3. if Line 2 fails then repeat from Line 1

9.3.4 Global Rebuilding

We ensure the following constraint on the array size N :

2e3 · n ≤ N ≤ 8e3 · n. (9.3)

This can be achieved with global rebuilding. Initially, for the first insertion in S, we store the only
element in an array of sizeN = 4e3; call this a checkpoint moment. In general, afterN/(8e3) updates
since the previous checkpoint, we reconstruct the structure by calling rebuild (Section 9.3.3) with
array size N = 4e3 · |S|; call this another checkpoint moment.

Lemma 9.3. Equation (9.3) holds at all times.

Proof. Let nold be the size of S at the previous checkpoint; thus, N = 4e3 · nold . There can be at
most nold + N/(8e3) = 1.5nold elements in S at any moment until the next checkpoint. Hence, it
holds at all times that 2e3 · |S| ≤ 2e3 · 1.5nold < N . On the other hand, there must be at least
nold −N/(8e3) = 0.5nold elements in S till the next check point. Hence, it holds at all times that
|S| ≥ 0.5nold = N/(8e3).

9.4 Analysis

This section will prove:

Theorem 9.4. Fix any sequence of n updates (mixture of insertions and deletions). The above
algorithm maintains a perfect hash table under the updates in O(n log n) total expected time.

The core of the proof is to establish:

Lemma 9.5. Consider any checkpoint. Let N be the array size set at the checkpoint. The total
cost of the following tasks is O(N logN) expected:

• rebuilding the structure at the checkpoint;

• performing the next N/(8e3) updates (i.e., until the next checkpoint).

The lemma implies Theorem 9.4. To see why, notice that there are Ω(N) updates between
the previous and the current checkpoint. Therefore, we can charge the O(N logN) cost on those
updates such that each is amortized O(logN) expected.

9.4.1 Proof of Lemma 9.5

We will prove only the first bullet because a similar argument applies to the second bullet (left as
an exercise).

We start by establishing a vital connection between cuckoo hashing and random graphs. Set
U = V = {1, 2, ..., N}. For each an element e ∈ S, create an edge between vertex g(e) ∈ U and
vertex h(e) ∈ V . Let G be the bipartie graph obtained. As g(e) (or h(e), resp.) chooses each vertex
in U (or V , resp.) with the same probability, G is a random graph obtained in Section 9.1.

55

Lecture Notes of CSCI5610, CSE, CUHK

Corollary 9.6. With probability at least 1/2, G has both the properties below:

• G has no cycles.

• G has no simple path of longer than 4 log2 n edges.

Proof. Consider first n = |S| ≤ 16. In this case, G obviously cannot have a simple path of length
4 log2 n = 16 because such a path needs 17 vertices. By Lemma 9.1, G has the first property with
probability at least 7/8.

Consider now n > 16. Lemma 9.1 shows that the first property can be violated with probability
at most 1/8. Since (9.3) always holds, Lemma 9.2 indicates that the second property can be violated
with probability at most c/n2 = (4e3)/n2 ≤ (4e3)/162 < 1/3 (at the check point we choose the
array size N = 4e3 · |S|; hence, the value c in Lemma 9.2 is 4e3). Hence, the probability for at least
one property to be violated is no more than 1/8 + 1/3 < 1/2 (union bound; see Lemma A.2).

Lemma 9.7. Line 2 of rebuild (Section 9.3.3) takes O(n log n) time.

Proof. Line 2 performs n insertions at Line 2. Each insertion takes O(1) time if no bumping process
is required. Otherwise, it takes O(log n) time before declaring success or failure.

Lemma 9.8. If G has both properties in Corollary 9.6, Line 2 of rebuild successfully builds the
entire structure.

Proof. We will prove that, with the two properties, the bumping process will never fail. This will
establish the lemma.

When the bumping process evicts an element e from one nest to the other — say from A[g(e)] to
B[h(e)] — we cross an edge in G from vertex g(e) ∈ U to h(e) ∈ V . Therefore, if the process fails,
we must have traveled on a path Π of more than 4 log2 n edges. As G has no cycles, Π cannot pass
two identical vertices. This means that Π must be a simple path, which yields a contradiction.

We can now put together Corollary 9.6, Lemmas 9.7 and 9.8 to prove that rebuild finishes in
O(n log n) expected time. Let X be the number of times that Line 2 is executed. By Corollary 9.6
and Lemma 9.8, every time Line 2 is executed, it fails with probability at most 1/2, which indicates
that Pr[X = t] ≤ (1/2)t−1. Lemma 9.7 implies that the total cost of rebuild is O(X · n log n).
Therefore, the expected cost is

∞∑
t=1

O(t · n log n) · Pr[X = t] =

∞∑
t=1

O(t · n log n) ·
(

1

2

)t−1

= O(n log n).

This completes the proof of the first bullet of Lemma 9.5.

9.5 Remarks

Our discussion of cuckoo hashing emphasized on its relationships to random graphs. As men-
tioned, cuckoo hashing actually achieves O(1) amortized expected time per update, about which
the interested student may refer to [35] for a proof.

Our assumption of uniform hashing can also be relaxed. As shown in [35], O(log n)-wise inde-
pendent hashing (i.e., intuitively this means that any O(log n) hash values are guaranteed to be
independent; our assumption is essentially n-wise independence) is good enough, but the analysis
would have to deviate significantly from the two lemmas in Section 9.1. It is worth noting that
there exist O(log n)-wise independent hash functions that can be evaluated in constant expected
time; see [38].

56

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove Lemma 9.2.

Problem 2. Prove the second bullet of Lemma 9.5 assuming all those N/(8e3) updates are
insertions.

(Hint: pretend all those insertions were given at the checkpoint and include them in the argu-
ment for proving the first bullet.)

Problem 3. Prove the second bullet of Lemma 9.5 in general (i.e., allowing deletions).

Problem 4 (a uniform hashing function requires lots of space to represent). Let D be
the set of integers from 1 to D where D ≥ 1 is an integer.

(a) How many different functions are there mapping D to {1, 2, ..., N} where N ≥ 1 is an integer?

(b) Prove: at least D log2N bits are required to represent all the above functions, regardless of
how the functions are encoding in binary form.

(c)* Prove: any uniform-hashing function from D to {1, 2, ..., N} requires D log2N bits to repre-
sent.

(Hint: such a hash function must be a random variable. What are the possible values of this
random variable?)

Remark: this means that uniform hashing may not be a fair assumption for practical applica-
tions.

The next two exercises would help you gain intuition as to why cuckoo hashing guarantees O(1)
expected amortized update time.

Problem 5. Consider a checkpoint rebuild where N = 4e3n and n = |S|. Recall that the rebuild
algorithm (Section 9.3.3) inserts the elements of S one by one. Let e ∈ S be the last element
inserted. Prove: when e is inserted, A[g(e)] is occupied with probability at most 1

4e3
.

(Hint: for any e′ 6= e, Pr[g(e) = g(e′)] = 1/N .)

Remark: this means the insertion of e requires no bumping process with probability at least
1− 1

4e3
> 98%.

Problem 6. Same settings as in Problem 5. Suppose that the insertion of e launches the bumping
process. Recall that the process evicts a sequences of elements; let the sequence be e1, e2, ..., e`.

(a) Prove: Pr[` > 1] ≤ 1
4e3

.

(b) Assume that e, e1, e2 are distinct. Prove: Pr[` > 2] ≤
(

1
4e3

)2
.

(c) Assume that e, e1, ..., et are distinct. Prove: Pr[` > t] ≤
(

1
4e3

)t
.

(Hint: if you can solve (a), you can solve the rest. For (a), think of something similar to Problem
5.)

57

Lecture 10: Binomial and Fibonacci Heaps

In your undergraduate study, you should have learned that a heap (a.k.a. a priority queue) supports
the following operations on a set S of n elements from an ordered domain.

• Insertion: add a new element in S;

• Delete-min: find and remove the smallest element in S.

It is easy to design a structure of O(n) space that supports both operations in O(log n) time (e.g.,
the BST).

This lecture will introduce two new heap implementations. The first one, called the binomial
heap, achieves O(1) amortized cost per insertion and O(log n) amortized cost per delete-min. Thus,
any mixture of n1 insertions and n2 delete-mins can be processed in O(n1 +n2 · log n1) time, which
is much better than the “undergraduate heap” if n1 � n2.

In the second part, we will modify the binomial heap to support an additional “decrease-key”
operation (to be defined in Section 10.2.5) in O(1) amortized time. The modification yields the Fi-
bonacci heap, which allows us to improve the running time of several fundamental graph algorithms
(e.g., Dijkstra’s and Prim’s), compared to their implementation using the “undergraduate heap”.

We need to clarify some jargon about trees. Usually, we do not assume any ordering on the
children of a node in a tree. However, such orderings are important to Binomial and Fibonacci
heaps. In every “tree” to appear in this lecture, the child nodes of a node u are always ordered. If
node v is the i-th (i ≥ 1) child of u, we say that v has child rank i. Accordingly, sub(v) (the subtree
rooted at v or simply the subtree of v) is said to be the i-th proper subtree of u. Every node has a
child rank, with the root being the only exception.

Furthermore, we will use the term “heap” in a broad sense. Let T be a tree where each node
u stores an integer key, denoted as key(u). We call T a heap if, for any node u in T , key(u) is the
smallest in sub(u).

10.1 The binomial heap

10.1.1 Binomial trees

We now introduce the binomial tree (which is to be distinguished from binomial heap).

Definition 10.1. A binomial tree of order 0 is a single node. Inductively, a binomial tree of order
k is a tree where

• the root has k child nodes;

• the i-th (i ∈ [k]) proper subtree of the root is a binomial tree of order i− 1.

58

Lecture Notes of CSCI5610, CSE, CUHK

Figure 10.1: Binomial trees of orders 0, 1, 2, and 3

The definition implies that if a non-root node u has child rank i, u itself must have exactly i−1
child nodes. See Figure 10.1 for an illustration. The next proposition is easy to prove.

Proposition 10.2. A binomial tree of order k has 2k nodes.

10.1.2 The structure of a binomial heap

We are ready to define the binomial heap.

Definition 10.3. Let S be a set of values in R. A binomial heap on S is a set Σ of binomial trees
such that

• each node of a tree in Σ stores an element of S as the key;

• every element in S is the key of exactly one node (counting all the trees in Σ);

• every tree in Σ is a heap.

The binomial heap is clean if no two trees in Σ have the same order; otherwise, it is dirty.

Proposition 10.4. A binomial heap on S uses space O(n), and every binomial tree in Σ has order
O(log n), where n = |S|.

Proof. The space bound follows directly from Definition 10.3. The claim on the order follows from
Proposition 10.2.

10.1.3 Insertion

To insert an element enew , we first make an order-0 binomial tree B where the (only) node stores
enew as the key and then add B into Σ. The cost is O(1). It is worth mentioning that an insertion
may leave the binomial heap in a dirty state.

10.1.4 Delete-min

Denote by m the current size of Σ. To perform a delete-min, we find in O(m) time the tree B in Σ
whose root has the smallest key (which must be the smallest in S). Next, we remove root(B) and,
for each child node u of root(B), add sub(u) to Σ. The cost is O(m+ f) = O(m+ log n) so far.

Finally, a cleanup process is launched to convert the binomial heap to a clean state. To start,
we create O(log n) linked lists Li, 0 ≤ i = O(log n), where Li stores a pointer to every binomial

59

Lecture Notes of CSCI5610, CSE, CUHK

. . .

B B′

⇒

. . .

1
2

i − 1

i

1
2

i − 1

i

Figure 10.2: Illustration of merge

tree in Σ with order i. Then, we process i in ascending order as follows: as long as Li has two trees
B and B′, merge them by making root(B′) the last child of root(B) (assume, w.l.o.g., that root(B)
has a smaller key than root(B′)). See Figure 10.2 for an illustration. B becomes an order-(i + 1)
tree and moves from Li to Li+1. B′, on the other hand, disappears from Li. The number of trees
in Σ decreases by one after each merge. Therefore, the cleanup process takes O(m+ log n) time in
total (Σ has at most m+O(log n) trees when the process starts).

10.1.5 Amortization

We will use the potential method (Section 8.1) to prove that an insertion and delete-min have O(1)
and O(log n) amortized cost, respectively. Define a potential function

Φ(Σ) = c · |Σ|

where c is a sufficiently large constant to be decided later.

Each insertion takes constant time and increases the potential by c. By Lemma 8.1, the insertion
has amortized cost O(1) + c = O(1).

We now turn attention to delete-min. At the beginning, the potential is c ·m where m is the size
of Σ at that moment. After the operation, the binomial heap is clean, meaning that |Σ| = O(log n).
Hence, the potential function changes by −c · m + O(log n). Given that the operation incurs
O(m+ log n) actual time, it is amortized

O(m+ log n)− c ·m+O(log n)

cost, which is O(log n) by choosing c sufficiently large.

10.2 The Fibonacci heap

The Fibonacci heap is similar to the Binomial heap except that it adopts a relaxed version of the
binomial tree.

10.2.1 Relaxed binomial trees

Definition 10.5. A relaxed binomial tree of (RBT) order 0 is a tree of a single node. Inductively,
an RBT of order k is a tree where

60

Lecture Notes of CSCI5610, CSE, CUHK

(a) (b) (c) (d) (e)

Figure 10.3: From (a) to e: relaxed binomial trees of orders 0, 1, 2, 2, and 3, respectively

• the root has k child nodes;

• the i-th (i ∈ [k]) proper subtree of the root is an RBT with order at least max{0, i− 2}.

Comparing the above to Definition 10.1, one can see that the relaxation is in the second bullet:
we no longer require the root’s i-th proper subtree to have a specific order; instead, we place a
lower bound on the order. See Figure 10.3 for an illustration. Note that, for k ≥ 1, order-k RBTs
are not unique; in fact, the number of possible order-k RBTs is infinite. Furthermore, observe that
Definition 10.5 implies:

Order invariant: If a node u has child rank i, u itself has at least max{0, i − 2} child
nodes.

We now prove an important lemma.

Lemma 10.6. An RBT of order k has at least (1+
√

5
2)k−2 nodes if k ≥ 2.

Proof. Define f(k) to be the smallest number of nodes in an RBT of order k. Clearly, f(0) = 1 and
f(1) = 2. By definition, an order-k RBT with k ≥ 2 must have at least 1 + f(0) +

∑k
i=2 f(i − 2)

nodes where the term 1 counts the root, f(0) is the minimum size of the root’s first proper subtree,
and

∑k
i=2 f(i− 2) is the minimum size of the root’s other proper subtrees. It follows that

f(k) ≥ 1 + f(0) +
k∑
i=2

f(i− 2) = 2 +
k−2∑
i=0

f(i). (10.1)

Fibonacci numbers F0, F1, F2, ... are defined as

Fk =

0 if k = 0
1 if k = 1
Fk−1 + Fk−2 if k ≥ 2

and have the following well-known properties (proof omitted):

Proposition 10.7. Fk+2 ≥ (1+
√

5
2)k and Fk+2 = 1 +

∑k
i=0 Fi.

Next, we will prove

Claim: f(k) ≥ Fk for k ≥ 0

61

Lecture Notes of CSCI5610, CSE, CUHK

which together with Proposition 10.7 will establish Lemma 10.6. It is easy to verify the claim for
k = 0 and k = 1. Fix an arbitrary t ≥ 2. Assuming inductively the correctness for any k ≤ t− 1,
next we prove the claim for k = t.

(10.1) and the inductive assumption⇒ f(t) ≥ 2 +

t−2∑
i=0

Fi

(by Proposition 10.7) = 1 + Ft

> Ft.

We now complete the proof of Lemma 10.6.

10.2.2 The structure of a Fibonacci heap

Definition 10.8. Let S be a set of values in R. A Fibonacci heap on S is a set Σ of RBTs such
that

• every node of each tree in Σ stores an element of S as the key;

• every element in S is the key of exactly one node (counting all the trees in Σ);

• every tree in Σ is a heap.

The Fibonacci heap is clean if no two RBTs in Σ have the same order; otherwise, it is dirty.

Proposition 10.9. A Fibonacci heap on S uses O(n) space and every RBT in Σ has order O(log n)
where n = |S|.

Proof. The space bound follows directly from Definition 10.8. The claim on the order follows from
Proposition 10.6.

Every node u (of each tree in Σ) has a color, denoted as color(u), which can be white or black.
At all times, we enforce the following invariant for every non-root node:

Color invariant: Suppose that a non-root node u has child rank i. If u is white, sub(u)
must be an RBT of order at least i − 1. If u is black, sub(u) must be an RBT of order
max{0, i− 2}.

No color constraints are placed on the roots of the trees in Σ.

Proposition 10.10. Let T be an RBT in Σ of order k. Let u be a non-root internal node in T
with color(u) = white, and v be an arbitrary child of u. T is still an RBT of order k even after we
remove sub(v) from T .

Proof. Suppose that sub(u) is an RBT of order ku ≥ 1 before the removal of sub(v). After the
removal, because the child rank can only decrease for each remaining child of u, sub(u) must be an
RBT of order ku − 1.

Let p = parent(u). Suppose that sub(v) is an RBT of order kp before the removal. Next, we
prove that, after the removal, sub(p) is still an RBT of order kp. Let i be the child rank of u. It
suffices to prove that, after the removal, ku − 1 ≥ max{0, i − 2}. This is true because u is white
and hence we must have ku ≥ max{1, i− 1} before the removal.

The proposition now follows.

62

Lecture Notes of CSCI5610, CSE, CUHK

One can intuitively understand the colors’ meanings as follows. A white u with child rank i
has at least i − 1 child nodes currently. It is “safe” in the sense that it can afford to lose a child
(Proposition 10.10). However, if u is black, there is a chance that it may have exactly max{0, i−2}
child nodes currently. In that case, it cannot afford to lose any child (see the order invariant in
Section 10.2.1).

10.2.3 Insertion

To insert an element enew , we make an order-0 RBT-tree R where the (only) node has key enew

and is colored white. Then, add R into Σ. The total cost is O(1). An insertion may leave the
Fibonacci heap in a dirty state.

10.2.4 Delete-min

Denote by m the size of Σ at the beginning of a delete-min. The operation finds in O(m) time
the tree R ∈ Σ whose root has the smallest key (which must be the smallest in S). Then, remove
root(R) and, for each child node u of root(R), color u white and add sub(u) to Σ. The cost is
O(m+ log n) (Proposition 10.6 shows that root(R) has O(log n) child nodes).

Launch a cleanup process to convert the Fibonacci heap to a clean state. First, create O(log n)
linked lists Li, 0 ≤ i = O(log n), where Li stores a pointer to every Fibonacci tree in Σ with order
i. Then, process i in ascending order as follows: as long as Li has two trees R and R′, merge them
as follows:

merge(R,R′)
/* R and R′ have the same order */
/* w.o.l.g., assume that root(R) has a smaller key than root(R′)*/
1. color root(R) and root(R′) white
2. make root(R′) the last child of root(R)

Proposition 10.11. After the merge, R is an RBT of order i+1. Furthermore, the color invariant
still holds.

Proof. Let r = root(R′). R′ has order i and becomes the (i + 1)-th proper subtree of root(R).
Hence, R is an RBT of order i + 1 after the merge. The color invariant holds after the merge
because r is white, consistent with the fact that r now has child rank i + 1 and sub(r) has order
i.

After the merge, R moves from Li to Li+1 and R′ disappears from Li. The cleanup process
finishes in O(m+ log n) time (same analysis as in Section 10.1.4).

10.2.5 Decrease-key

A salient functionality of the Fibonacci heap is the following operation:

Decrease-key(u, xnew): Parameter u is a node in some tree of Σ and needs to satisfy
key(u) > xnew . The operation deletes key(u) from S and adds xnew to S.

Let R ∈ Σ be the tree containing u. If u = root(R), the operation simply sets key(u) = xnew

and finishes (think: why correct?). Consider now u 6= root(R); let p = parent(u). If xnew > key(p),
we carry out the modification and finish (think: why correct?).

63

Lecture Notes of CSCI5610, CSE, CUHK

10

15 20

40 3017 23

(a) (b)

(c) (d)

(f)

(h)

(e)

80 10

15 20

40 3023

80 13

1015

20

40 30

1480 13 15 20

40 30

1480 13

15 20

40 30

14

80

13 20

40 30

14

80

13

15

20

40 3014

(g)

13

15

80 20

40 30

14

13

15

80

Figure 10.4: (a) shows a Fibonacci heap. (b) is the heap after decreasing 17 to 13, and (c) after
decreasing 23 to 14. (d) shows the heap during a delete-min operation; here the smallest element
10 has been removed. Continuing the delete-min, (e) merges the trees of 13 with 80, (f) merges the
trees of 14 with 15, (g) merges the trees of 13 with 14, and (h) merges the trees of 13 with 20.

In case xnew ≤ key(p), we remove sub(u) from R, color u white, and add sub(u) to Σ. Then,
we process p using the algorithm below.

fix-parent(p)
/* p just lost a child */
1. if color(p) = white then color p black and return

/* next consider color(p) = black */
2. remove sub(p) from the RBT containing p, color p white, and add sub(p) to Σ
3. if p has a parent then fix-parent(parent(p))

If Line 2 executes on p, we say that p is repaired. Note that fix-parent can propagate to ancestors.
The total cost of decrease-key is O(1 + g) where g is the number of nodes repaired.

Example. Figure 10.4(a) shows a Fibonacci heap where each node is labeled with its key. Σ has

64

Lecture Notes of CSCI5610, CSE, CUHK

two RBTs with order 0 and 2, respectively. Consider a decrease-key which reduces 17 to 13. The
operation first modifies 17 to 13, which, however, is less than the parent 15. Thus, we remove the
subtree of 13 and add it to Σ (which has 3 trees now). Node 15 turns black. Figure 10.4(b) gives
the current heap. The next decrease-key reduces 23 to 14. It modifies 23 to 14, removes its subtree,
and adds it to Σ. The color of node 14 changes from black to white. As node 15 is black, we repair
it by removing its subtree, adding its subtree to Σ, and coloring it white. Node 10 then turns black.
The current heap is presented in Figure 10.4(c).

A delete-min operation at this moment goes through the roots of all the 5 trees in Σ to identify
the smallest element 10. After 10 is deleted, its (only) subtree is added to Σ, giving rise to
Figure 10.4(d). A cleanup process is launched to merge the trees of the same order. Figure 10.4(e)
merges 13 and 80 into a tree of order 1, and similarly, Figure 10.4(f) merges 14 with 15. The trees
of 13 and 14 are then merged, yield a tree of order 2 as shown in Figure 10.4(g). Finally, the trees
of 13 and 20 are merged, producing the final Fibonacci heap in Figure 10.4(h).

The proof of the next proposition is left as an exercise.

Proposition 10.12. After a decrease-key, all the trees in Σ are still RBTs. Furthermore, the color
invariant still holds.

10.2.6 Amortization

We will prove that an insertion, delete-min, and decrease-key have amortized cost O(1), O(log n),
and O(1), respectively. Define a potential function:

Φ(Σ) = c1 · |Σ|+ c2 · (number of black nodes)

where c1 and c2 are constants to be decided later.

Each insertion takes constant time and increases the potential by c1. By Lemma 8.1, the
insertion is amortized a cost of O(1) + c1 = O(1).

Consider a delete-min. Let m be the size of Σ before the operation. When the delete-min
finishes, the Fibonacci heap is clean, meaning that |Σ| = O(log n). The clean-up process can only
decrease the number of black nodes. Therefore, the operation decreases the potential by at least
c1 ·m−O(log n). Given that the delete-min is processed in O(m+ log n) time, its amortized cost
is at most

O(m+ log n)− (c1 ·m−O(log n))

which is O(log n) when c1 is larger than the hidden constant in the first big-O.

Finally, consider a decrease-key performed on node u. If fix-parent is not invoked, the cost is
constant. Next, we assume that fix-parent is called. Denote by g the number of nodes repaired.
Let us make some observations.

• Every node repaired is black before the operation but white afterwards. On the other hand,
fix-parent can turn at most one node from white to black (this can happen only at Line 1).
Thus, the number of black nodes drops by g − 1 (if g = 0, then g − 1 = −1 and “dropping”
by −1 means increasing by 1).

• Because sub(u) and the subtree of every repaired node are inserted into Σ, |Σ| increases by
g + 1.

65

Lecture Notes of CSCI5610, CSE, CUHK

Hence, the decrease-key increases the potential by c1(g+1)−c2 · (g−1). As the decrease-key incurs
O(1 + g) actual computation time, its amortized cost is

O(1 + g) + c1(g + 1)− c2 · (g − 1)

which is O(1) as long as c2 is greater than the sum of c1 and the hidden constant of the first big-O.

10.3 Remarks

The binomial heap was proposed by Vuillemin [41], while the Fibonacci heap by Fredman and
Tarjan [20].

66

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove Proposition 10.12.

(Hint: First, prove that all the trees in Σ are still RBTs. For this purpose, use two facts. First,
if sub(u) is an RBT of order k, it must be an RBT of order k− 1 after u loses a child, regardless of
color(u). Second, if u is black, sub(u) is removed immediately after u loses a child; this makes sure
that the subtree of parent(p) is still an RBT. Second, prove that the color invariant holds because
after a white node loses a child, it satisfies the requirement of black node.)

Problem 2. Suppose that we want to support an extra operator called find-min which reports
the smallest key in S, but does not remove it. Explain how to adapt the binomial heap to support
this operation in O(1) worst-case time, without affecting the performance guarantees of insertion
and delete-min.

Problem 3*. Explain how to modify the binomial heap’s algorithm to support delete-min in
O(log n) time (no amortization) and (as before) an insertion in O(1) amortized time.

(Hint: keep the binomial heap clean at all times).

Problem 4. Prove or disprove: a relaxed binomial tree of n nodes has height O(log n).

Problem 5. Give a sequence of insert, delete-min, and decrease-key operations on an initially
empty set such that the Fibonacci heap after all the operations has a single tree that looks like:

Problem 6 (meld). Let S1 and S2 be two disjoint sets. Given a Fibonacci heap Σ1 on S1 and a
Fibonacci heap Σ2 on S2, explain how to obtain a Fibonacci heap on S1 ∪ S2 in constant time.

Problem 7. Implement Dijkstra’s algorithm on a graph of n nodes and m edges in O(m+n log n)
time.

67

Lecture 11: Union-Find Structures

This lecture will discuss the disjoint set problem. Let V be a set of n integers. F is a collection of
disjoint sets such that each set in F is a non-empty subset of V , and the union of all the sets in F
is V . We want to support the operations below:

• makeset(e): Given an integer e /∈ V , add e to V and add a singleton set {e} to F .

• find(e): Given an e ∈ V , report which set S ∈ F contains e ∈ V .

• union(e, e′): In this operation, we are given two elements e and e′ in V . Suppose that S and
S′ are the sets in F that contain e and e′, respectively. We want to remove S and S′ from F
and add S ∪ S′ to F . The operation essentially combines S and S′ into one set.

The output of find(e) can be anything that can uniquely identify the set containing e. However,
the same identifier must be used for the same set, i.e., if e and e′ belong to the same set, the
outputs of find(e) and find(e′) must be identical. For simplicity, we assume that V is empty in
the beginning (before any operation is performed).

Data structures solving the disjoint set problem are called union-find structures.

11.1 Structure and algorithms

Structure. We store each set S ∈ F in a tree T where

• T has |S| nodes;

• every element e ∈ S is stored at a distinct node u in T ;

• each node u stores an integer rank(u), referred to as the rank of u.

Note that the number of trees is |F|. The space consumption is obviously O(n).

Makeset(e). Create a tree with a single node storing e whose rank is 0. The operation finishes in
O(1) time.

Union(e, e′). Denote by T (or T ′, resp.) the tree that contains e (or e′, resp.). We will proceed by
making the following assumption.

Assumption 1: We are given the roots r and r′ of T and T ′, respectively.

The assumption’s removal is easy and will be left as an exercise. The union operation is
performed as follows:

68

Lecture Notes of CSCI5610, CSE, CUHK

I

II

III

IV

e

r

⇒

IV

r

I

e

II III

Figure 11.1: Illustration of find

union(r, r′)
/* assume, w.o.l.g., that rank(r) ≥ rank(r′) */
1. make r′ a child of r
2. if rank(r) = rank(r′) then
3. increase rank(r) by 1

The operation again finishes in O(1) time.

Find(e). For this operation, we need to make another assumption.

Assumption 2: The node where e is stored is given.

The operation proceeds as follows:

find(e)
/* let T be the tree where e is stored */
1. Π← the path from node e to the root r of T
2. for each node u on Π do
3. set parent(u)← r
4. return r

See Figure 11.1 for an illustration. Note that r is used as the identifier of the set stored in T .
The running time is O(|Π|) where |Π| gives the number of nodes on Π. This may appear large, but
as the rest of the lecture will discuss, the amortized cost of find turns out to be very small.

11.2 Analysis 1

We will prove an amortized cost of O(log∗ n) for all operations, where log∗ n is the smallest
t satisfying log2 log2 ... log2︸ ︷︷ ︸

t

n < 2. For example, log∗ 16 = 3 because log2 log2 16 = 2 while

log2 log2 log2 16 = 1. It is worth mentioning that log∗ n ≤ 5 for all n ≤ 265536, which is already
larger than the total number of atoms on earth. The O(log∗ n) bound will be subsumed by another
result to be established in Section 11.3. However, the argument in this section is (much) simpler,
and illustrates some properties that will also be useful in Section 11.3.

69

Lecture Notes of CSCI5610, CSE, CUHK

11.2.1 Basic properties

Let us start with several basic facts about the node ranks (Section 11.1).

Proposition 11.1. Once a node u stops being a root, rank(u) is fixed forever.

Proof. The rank of u is modified only in union and only when u is a root. Once u becomes a
non-root, it will never be a root again.

Proposition 11.2. For any non-root node u, rank(parent(u)) > rank(u).

Proof. Easy to show by induction on the operations performed.

Proposition 11.3. Consider an arbitrary node u in the structure. Every time find changes
parent(u), the new parent(u) must have a larger rank than the old parent(u).

Proof. Let p = parent(u) at the current moment. If find modifies parent(u), p cannot be the root
r of the tree where u belongs. By Proposition 11.2, rank(p) < rank(r). The claim follows from the
fact that r = parent(u) after the find operation.

Proposition 11.4. A root u with rank ρ has at least 2ρ nodes in its subtree.

Proof. This is obviously true for ρ = 0. Inductively, assuming the claim’s correction on ρ = i− 1,
we will prove its correctness on ρ = i. The rank of u can increase from i− 1 to i only when u takes
a new child v with rank i− 1 in a union operation. Before the operation, both sub(u) and sub(v)
must have 2i−1 nodes (inductive assumption). It follows that, after the operation, sub(u) has 2i

nodes after the operation.

Corollary 11.5. The rank of a node is O(log n).

Proof. Directly follows from Proposition 11.4.

Lemma 11.6. At most n/2ρ nodes have rank ρ.

Proof. When the rank of a node u increases to ρ in a union operation, we conceptually assign to
u all the nodes in sub(u); remember that u must be a root at the moment (due to the way union
runs). We argue that, for any two nodes u1 and u2 with rank ρ, the set of nodes assigned to u1

is disjoint with that to u2. This will complete the proof because, by Proposition 11.4, at least 2ρ

nodes are assigned to u when rank(u) reaches ρ.

Let v be a node assigned to u when rank(u) reaches ρ. We will show that v will not be assigned
to any other node. Suppose, on the contrary, that v is later assigned to a different node u′ when
rank(u′) reaches ρ. When this happens, u′ must be the root of the tree T containing v. Thus,
u is also in T (if two nodes are in the same tree, they will remain so forever). Hence, u′ is a
proper ancestor of u. However, Propositions 11.1 and 11.2 suggest that rank(u′) > rank(u) ≥ ρ,
contradicting rank(u′) = ρ.

Corollary 11.7. At most n/2ρ−1 nodes have ranks at least ρ.

Proof. By Lemma 11.6, the number of such nodes is at most

∞∑
i=ρ

n

2ρ
<

n

2ρ−1
.

70

Lecture Notes of CSCI5610, CSE, CUHK

11.2.2 An O(log log n) bound

In this subsection, we will prove an amortized bound of O(log log n) per operation. We will prove
a slightly weaker claim: any sequence of operations can be processed in O(n log log n) total time,
where n is the number of elements in V at the end of the sequence (think: why this is a weaker
claim?). It is easy to adapt the proof to prove an O(log log n) amortized bound.

We divide the nodes with positive ranks into groups. Specifically, group g ≥ 0 includes all the
nodes u satisfying

rank(u) ∈ [2g, 2g+1). (11.1)

Because of Corollary 11.5, the number of groups is O(log log n).

Now consider a find(e) operation. Recall that it finishes in O(|Π|) time, where Π is the path
from the root r to the node e. We account for the cost by looking at each node u ∈ Π:

• Case 1: If u has rank 0, charge O(1) cost on find.

• Case 2: If u = r or parent(u) = r, charge O(1) cost on find.

• Case 3: If u and parent(u) are in different groups, charge O(1) cost on find.

• Case 4: Otherwise, charge O(1) cost on u.

Thus, all the O(|Π|) time has been amortized on either find or individual nodes.

Proposition 11.8. Cases 1-3 charge O(log log n) time on each find.

Proof. Cases 1 and 2 obviously charge only O(1) time on find. Consider Case 3. By Proposi-
tion 11.2, as we ascend Π, the node rank monotonically increases. Thus, if Case 3 applies x times,
we can find x nodes on Π with increasingly larger group numbers. The claim follows because x is
at most the number of groups, which is O(log log n).

Lemma 11.9. Case 4 can charge O(n log log n) cost in total for all the find operations.

Proof. Case 4 can happen only on a node u whose group number g has already been forever fixed.
To see why, first note that, by definition of Case 4, u must be a non-root node. By Proposition 11.1,
rank(u) has already been fixed forever and, hence, so has g.

As every node in group g has rank at least 2g, Corollary 11.7 shows that group g can have at
most n/22g−1 = O(n/22g) nodes. Later, we will argue that every node in group g can be charged
at most 2g times. This will indicate that Case 4 charges a cost of

O
(n

22g
· 2g
)

= O(n) (11.2)

on group-g nodes in total. The lemma will then follow from the fact that there are O(log log n)
groups.

It remains to prove that a node u in group g can be charged at most 2g times. Every time u
is charged by a find operation, parent(u) must also be in group g (otherwise, Case 3 would have
applied). The operation changes parent(u) in the end because parent(u) 6= r before the operation
(otherwise, Case 2 would have applied; recall that r is the root of the tree containing u) while
parent(u) = r afterwards. By Proposition 11.3, the new parent(u) has a larger rank than the old
parent(u). As there are only 2g distinct ranks in group g, u can be charged in Case 4 at most 2g

times before the rank of parent(u) moves out of group g.

71

Lecture Notes of CSCI5610, CSE, CUHK

We amortize the O(n log log n) bound in Lemma 11.9 over the n makeset operations that
created the n nodes in V . Each operation therefore bears O(log log n) cost.

11.2.3 An O(log∗ n) bound

Let us change the definition of group g to

rank(u) ∈ [22g , 22g+1
). (11.3)

The number of groups drops to O(log log log n). Repeating the above analysis gives an amortized
bound of O(log log log n), as is left as an exercise. To push the power of the argument to the
extreme, let us adopt the following definition:

rank(u) ∈
[

22...
2︸︷︷︸

g

, 22...
2︸︷︷︸

g+1

)
. (11.4)

The number of groups is now O(log∗ n). The same argument yields an amortized bound of O(log∗ n)
and is also left as an exercise.

11.3 Analysis 2*

In this section, we will prove an amortized bound of O(α(n)) for each operation, where α(n) is the
inverse of the Ackermann’s function. As n grows, α(n) increases extremely slowly, e.g., α(n) ≤ 5

for n = 22...
2︸︷︷︸

22048

. We start with an introduction to this bizarre-looking function.

11.3.1 Ackermann’s function and its inverse

What we will discuss is one of the many variants of Ackermann’s function. Denote by N≥0 the set
of positive integers. Given a function f : N≥0 → N, we define for k ≥ 1

f (k)(n) = f(f(...f︸ ︷︷ ︸
k

(n)...)).

For example, log
(2)
2 n = log2 log2 n and should not be confused with log2

2 n = (log2 n)2.

Now, we introduce a family of functions from N≥0 to N:

A0(x) = x+ 1

Ak(x) = A
(x+1)
k−1 (x) for k ≥ 1. (11.5)

To see how quickly these functions grow, consider some small values of k:

A1(x) = A
(x+1)
0 (x) = A0(A0(...A0︸ ︷︷ ︸

x+1

(x)...)) = 2x+ 1 > 2x

A2(x) = A
(x+1)
1 (x) = A1(A1(...A1︸ ︷︷ ︸

x+1

(x)...)) > x2x ≥ 2x

A3(x) = A
(x+1)
2 (x) = A2(A2(...A2︸ ︷︷ ︸

x+1

(x)...)) > 22...
2︸︷︷︸

x

.

72

Lecture Notes of CSCI5610, CSE, CUHK

If we define 2 ↑ x = 22...
2︸︷︷︸

x

, then

A4(x) = A
(x+1)
3 (x) > 2 ↑ (2 ↑ (...(2 ↑ 2)...))︸ ︷︷ ︸

x ↑’s

Calling Ak(2) Ackermann’s function (which is a function of k), we define the inverse of Acker-
mann’s function as

α(n) = the smallest k satisfying Ak(1) ≥ n. (11.6)

11.3.2 An O(α(n)) bound

For every non-root node u with rank(u) ≥ 1, define k(u) as the largest integer k ≥ 0 satisfying

rank(parent(u)) ≥ Ak(rank(u)) (11.7)

whereAk(.) is given in (11.5). The definition is sound because, by Proposition 11.2, rank(parent(u)) ≥
rank(u) + 1 = A0(rank(u)). Note that, as k grows, Ak(rank(u)) increases very rapidly (Sec-
tion 11.3.1). The value of k(u) captures the largest k such that Ak(rank(u)) ≤ rank(parent(u)).

It is important to note that, even though rank(u) has been fixed forever (by Proposition 11.1
and the fact u is non-root), k(u) can still grow. This is because parent(u) may change due to find
operations, and every time it happens, rank(parent(u)) increases, which may bump up k(u). On
the other hand, it is easy to see that k(u) can never decrease.

We divide the non-root nodes into groups, but in a way different from Section 11.2.2. Specifically,
group g ≥ 0 includes all the non-root nodes u with k(u) = g. As mentioned earlier, as k(u) can
increase over time, u may move to groups of higher numbers.

Proposition 11.10. 0 ≤ k(u) ≤ α(n), namely, there are at most 1 + α(n) groups.

Proof. Lemma 11.6 implies that every node has rank at most O(log n). The claim follows from the
definition in (11.6).1

Consider a find(e) operation, which finishes in O(|Π|) time where Π is the path from the root
r to the node e. We account for the cost by looking at each node u ∈ Π:

• Case 1: If rank(u) = 0 or u is a root, charge O(1) cost on find.

• Case 2: If u has a proper non-root ancestor v such that k(v) = k(u), charge O(1) cost on u
(note: v can be, but is not necessarily, the parent of u).

• Case 3: Otherwise, charge the cost on find.

Thus, the O(|Π|) time of find has been amortized on either the operation itself or individual nodes.

Proposition 11.11. Case 1 can apply at most twice on each find.

Proof. There are only one rank-0 node and one root on Π.

1You would probably ask why not O(α(logn)). In fact, it is O(α(logn)), except that this is not very helpful
because we can prove α(n) = O(α(logn)).

73

Lecture Notes of CSCI5610, CSE, CUHK

Proposition 11.12. Case 3 charges O(α(n)) time on each find.

Proof. If Case 3 applies x times on a find, we can find x nodes u on Π with distinct k(u). The
claim follows then from Proposition 11.10.

The rest of the section serves as a proof for:

Lemma 11.13. Case 2 can charge O(n · α(n)) cost in total for all the find operations.

We amortize the above cost over the n makeset operations that created the n nodes in V .
Each operation therefore bears O(α(n)) cost.

11.3.3 Proof of Lemma 11.13

We will prove later:

Claim 1: A non-root node with rank ρ can be charged a total cost of O(ρ ·α(n)) in Case
2, summing over all the find operations.

Since there are O(n/2ρ) nodes with rank ρ (Lemma 11.6), it follows that the total time charged by
Case 2 is bounded by

O

 ∞∑
ρ=1

n

2ρ
· ρ · α(n)

 = O(n · α(n)).

which will complete the proof of Lemma 11.13.

Claim 1, on the other hand, is implied by:

Claim 2: For each g ∈ [0, α(n)], when node u stays in group g, Case 2 can charge u at
most rank(u) times.

The rest of the discussion will focus on proving Claim 2.

When u belongs to group g, we have g = k(u). Thus, by definition of k(u) in (11.7):

rank(parent(u)) ≥ Ag(rank(u)) = A(1)
g (rank(u))

while

rank(parent(u)) < Ag+1(rank(u)) = A(rank(u)+1)
g (rank(u)).

Consider an arbitrary find operation that charges u in Case 2. Let i be the largest integer in
[1, rank(u) + 1) satisfying

rank(parent(u)) ≥ A(i)
g (rank(u)) (11.8)

before the operation.

Lemma 11.14. After the find operation, it must hold that rank(parent(u)) ≥ A(i+1)
g (rank(u)).

74

Lecture Notes of CSCI5610, CSE, CUHK

Proof. Let v be the proper non-root ancestor of u in Case 2. Thus, k(v) = k(u) = g.

Let r be the root of the tree where u belongs. Since v is a non-root node, it is a proper
descendant of r. We have:

rank(r) ≥ rank(parent(v)) (by Proposition 11.2)

≥ Ag(rank(v)) (by def. of k(v))

≥ Ag(rank(parent(x))) (by monotonicity of Ag(.))

≥ Ag(A
(i)
g (rank(u))) (by (11.8))

= A(i+1)
g (rank(u)).

The lemma then follows from the fact that parent(u) = r after the find operation.

The lemma implies Claim 2, because after rank(u) applications of the Lemma 11.14, it must
hold that

rank(parent(u)) ≥ A(rank(u)+1)
g (rank(u)) = Ag+1(rank(u)). (11.9)

This indicates that u will then move up to a group numbered at least g + 1.

11.4 Remarks

The union-find structure we described is due to Tarjan [39]. The amortized bound in Section 11.3
was proved to be tight by Fredman and Saks [19]. In other words, Tarjan’s structure is already
asymptotically optimal. Analysis 1 was adapted from the lecture notes at http://people.seas.

harvard.edu/~cs125/fall16/lec3.pdf and those at https://people.eecs.berkeley.edu/~daw/
teaching/cs170-s03/Notes/lecture12.pdf. Analysis 2 was adapted from the book [26] of Kozen.

75

http://people.seas.harvard.edu/~cs125/fall16/lec3.pdf
http://people.seas.harvard.edu/~cs125/fall16/lec3.pdf
https://people.eecs.berkeley.edu/~daw/teaching/cs170-s03/Notes/lecture12.pdf
https://people.eecs.berkeley.edu/~daw/teaching/cs170-s03/Notes/lecture12.pdf

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove an O(log log log n) amortized bound when the group is defined using (11.3).

Problem 2. Prove an O(log∗ n) amortized bound when the group is defined using (11.4).

Problem 3. Show that Assumption 1 can be removed without affecting the amortized bound.

(Hint: what does the find operation return?)

Problem 4*. Prove: each find operation finishes in O(log n) worst-case time.

(Hint: for each node u, prove that its subtree has height at most rank(u).)

Problem 5*. Describe a union-find structure that processes any sequence of n1 makeset opera-
tions, n2 find operations, and m union operations in O(n1 + n2 +m log n1) time. Note that this
is better than the claim in Section 11.3 if m ≤ n1/ log n1.

(Hint: store each set of F in a linked list.)

For the following two exercises, we assume the availability of a union-find structure that can support
any sequence of t operations in O(t · T (t)) time.

Problem 6 (dynamic connectivity). Consider an undirected graph G = (V,E). Set n = |V |.
Initially, E is empty (i.e., no edges). Design a structure to support the following operations:

• insert(u, v): add an edge between vertices u, v ∈ V to E;

• query(u, v): given two vertices u, v ∈ V , report whether they belong to the same connected
component in G.

Your structure must consume O(n) space at all times (regardless of |E|), and support each operation
in O(T (n)) amortized time.

Problem 7 (minimum spanning tree). Consider a weighted undirected graph G = (V,E),
where each edge in E is associated with a positive weight. Suppose that the edges in E have been
sorted by weight. Describe an algorithm to obtaining a minimum spanning tree of G in O(m ·T (n))
time, where n = |V | and m = |E|.

(Hint: implement Kruskal’s algorithm with a union-find structure.)

76

Lecture 12: Dynamic Connectivity on Trees

Define V = {1, 2, ..., n} where each element is called a vertex. F is a forest (i.e., a set of trees) such
that

• for each tree in F , each node corresponds to a vertex from V ;

• every vertex in V corresponds to exactly one node, counting the nodes of all the trees in F .

We want to store F in a data structure to support the following operations:

• insert(u, v) where vertices u and v belong to different trees in F : add an edge {u, v}, which
effectively merges two trees (and hence, |F | decreases by 1).

• delete(u, v) where u and v belong to the same tree T ∈ F : remove an edge {u, v} from T ,
which effectively breaks T into two trees (and hence, |F | increases by 1);

• connected(u, v): return whether u, v ∈ V are in the same tree.

We will refer to the above problem as dynamic connectivity on trees. This lecture will introduce
the Euler-tour structure which consumes O(n) space, and performs all operations in O(log n) time.
Note that if no deletions are allowed, the problem can be settled with the union-find structure of
Lecture 11.

In the second part of the lecture, we will extend the functionality of the Euler-tour structure
beyond the above operations. Our final version of the structure will make a powerful tool for the
next lecture where we study the dynamic connectivity problem on graphs.

Notations. Given a tree T , we use |T | to represent the number of vertices in T .

12.1 Euler tour

Focusing on one tree T , this section will introduce a generic method for “linearizing” the vertices
of T .

12.1.1 Rooting a tree

Recall that a tree T , in general, is defined as an undirected, connected, graph without cycles. It
does not automatically have a “root”, without which concepts such as “parents”, “children”, and
“subtrees” are undefined.

Suppose that an arbitrary vertex r has been designated as the root of T . A vertex u parents
another vertex v if (i) {u, v} is a tree edge, and (ii) u is closer to r than v. Accordingly, v is a child
of u. Removing the edge {u, v} breaks T into two connected components (CCs):

77

Lecture Notes of CSCI5610, CSE, CUHK

A

B

H

GC

D FE

Figure 12.1: An Euler tour: ABACDCECFCAGHGA

• T uu,v: the CC containing u;

• T vu,v: the CC containing v.

We refer to T vu,v as the subtree of v. Specially, the subtree of r is the entire T .

Sometimes we will emphasize on the existence of a root by calling T a rooted tree.

12.1.2 Euler tour on a rooted tree

Given a rooted tree T , we define an Euler tour as a sequence Σ of vertices output by:

euler-tour(T)
1. r ← root of T
2. append r to the output sequence
3. for each child u of r do
4. euler-tour(the subtree of u)
5. append r to the output

Example. Figure 12.1 shows a tree rooted at A. The figure’s caption is an Euler tour, but so is
ACECFCDCABAGHGA (there are many more). Note that both Euler tours have the same length.

12.1.3 A cyclic view

Let m = |T | − 1 be the number of edges in T . Conceptually, replace each (undirected) edge {u, v}
in T with two directed edges (u, v) and (v, u). This creates 2m directed edges.

Did you notice that Σ always had length |Σ| = 2m + 1 in the earlier example? This is not a
coincidence. Denote the vertex sequence in Σ as: u1, u2, ..., u|Σ|. For each i ∈ [1, |Σ| − 1], interpret
the consecutive vertices ui, ui+1 as enumerating a directed edge (ui, ui+1). By how euler-tour
runs, each of the 2m directed edges is enumerated exactly once, implying that |Σ| = 2m + 1. Let
Q be the sequence of directed edges (u1, u2), (u2, u3), ..., (u2m, u2m+1), which is a cycle because
u1 = u2m+1.

Example. In Figure 12.1, the cycle Q is (A, B), (B, A), (A, C), (C, D), (D, C), (C, E), (E, C), (C, F), (F, C),
(C, A), (A, G), (G, H), (H, G), (G, A).

The reverse is also true:

Proposition 12.1. Let Q be any permutation of the 2m directed edges (u1, v1), (u2, v2), ..., (u2m, v2m)
satisfying

78

Lecture Notes of CSCI5610, CSE, CUHK

A B A C D C E C F

- -

- -

C A G H G A

- - -

A C

Figure 12.2: An Euler-tour structure for the tree in Figure 12.1 (for clarity, only the pointers of
edge {A, C} is shown)

• vi = ui+1 for i ∈ [1, 2m− 1];

• v2m = u1

defines an Euler tour u1u2u3...u2mu1 of T when T is rooted at u1.

The proof is left to you as an exercise.

12.2 The Euler-tour structure

Let T be a rooted tree with an Euler tour Σ. We store Σ in a 2-3 tree Υ where all the routing
elements are left empty1. It follows from Section 12.1.3 that Υ has space O(|T |).

For each edge {u, v} in T , we store two pointers:

• one referencing the the occurrence of u that corresponds to the directed edge (u, v);

• the other referencing the occurrence of v that corresponds to the directed edge (v, u);

The resulting structure is called an Euler-tour structure (ETS) of T . See Figure 12.2 for an illus-
tration. The following subsections will discuss several operations supported by Υ.

12.2.1 Cut

The cut(u, v) operation removes an edge {u, v} from a rooted T — assume, w.o.l.g., that u parents
v — which breaks T into two trees:

• T1: the subtree rooted at v;

• T2: the tree obtained by removing T1 from T .

The operation produces an ETS for T1 and T2, respectively.

Let Σ be the Euler tour of T stored in Υ. Identify the subsequence Σ1 of Σ that starts from
the first occurrence of v, and ends at the last occurrence of v. These two occurrences of v can be
identified using the pointers associated with the edge {u, v}. Denote by Σ2 the sequence obtained

1Alternatively, you can assume all the routing elements to have the same dummy key “0”, breaking ties as follows:
for two routing elements e1 and e2 in the same node, e1 ranks before e2 if the subtree of e1 is to the left of the subtree
of e2.

79

Lecture Notes of CSCI5610, CSE, CUHK

Σ1

Σ2

r ⇒ Σ1 uu ur r

Figure 12.3: Changing the Euler tour in a re-root

by removing Σv from Σ. Then, Σ1 must be an Euler tour of T1. At this moment, Σ2 has two
consecutive occurrences of u; if we remove one of those occurrences, the resulting Σ is an Euler
tour of T2.

Example. Consider deleting the edge {A, C} from Figure 12.1(a). Σ1 = CDCECFC is the Euler tour
of T1 (the subtree of C). Σ2 = ABAAGHGA. There are two consecutive occurrences of A in Σ2. After
removing one of them, Σ2 = ABAGHGA becomes an Euler tour of T2 (what remains in Figure 12.1
after trimming T1).

The ETS’s of T1 and T2 can be obtained using the split and join operations of 2-3 trees (Sec-
tion 2.2.3).

Lemma 12.2. A cut operation can be performed in O(log |T |) time.

The proof is easy and left as an exercise.

12.2.2 Re-root

Remember that the ETS of T depends on the root r. Given any node u 6= r, the re-root(u) operation
roots T at u and produces an ETS consistent with the new root.

Let Σ be the current Euler tour of T (rooted at r). We can obtain a new Euler tour Σnew

(rooted at u) as follows:

1. Identify an arbitrary occurrence of u. Let Σ1 be the subsequence of Σ from that occurrence
to the end. Let Σ2 be the subsequence obtained by trimming Σ1 from Σ.

2. Delete the first vertex of Σ2 (which must be r).

3. Σnew = Σ1 : Σ2, where “:” denotes concatenation.

4. Append u to Σnew .

See Figure 12.3 for an illustration. The correctness follows from the cyclic view explained in
Section 12.1.3, and makes a good exercise for you.

Example. . Consider re-rooting the tree of Figure 12.1 at u = C. Before the operation, Σ =
ABACDCECFCAGHGA. If Σ1 = CFCAGHGA, then Σ2 = ABACDCE. The procedure outputs Σnew =
CFCAGHGABACDCEC, which is indeed an Euler tour of T rooted at C.

Lemma 12.3. A re-root operation can be supported in O(log |T |) time.

The proof is obvious and omitted.

80

Lecture Notes of CSCI5610, CSE, CUHK

12.2.3 Link

Let T1 and T2 be two trees whose roots are u and v, respectively. The link(u, v) operation makes u
a child of v by adding an edge {u, v}, which coalesces T1 and T2 into a single tree T . The operation
produces an ETS for T .

Let Σ1 (or Σ2, resp.) be the Euler tour of T1 (or T2, resp.). An Euler tour of Σ of T can be
derived in two steps:

1. Σ = Σ1 : Σ2 (concatenation of Σ1 and Σ2).

2. Append another occurrence of u at the end of Σ.

Lemma 12.4. A link operation can be supported in O(log(|T1|+ |T2|)) time.

The proof should have become obvious, and is omitted.

12.3 Dynamic connectivity

We can now (easily) solve the dynamic connectivity problem on trees. Build an ETS on every tree
of F , and support each operation as follows.

Insert(u, v). First, identify the accommodating tree T1 ∈ F of u, and similarly T2 for v. Let the
ETS of T1 (or T2) be Υ1 (or Υ2, resp.). Re-root Υ1 at u, re-root Υ2 at v, and then perform a
link(u, v) operation. The cost is O(log n) by Lemma 12.3 and 12.4.

Deletion(u, v). Let T ∈ F be the tree containing the edge {u, v}. Simply perform cut(u, v) on the
ETS of T . The cost is O(log n) by Lemma 12.2.

Connected(u, v). Let T1 ∈ F be the tree containing u. Identify a leaf node in the ETS Υ1 of T1

which contains an arbitrary occurrence of u. Ascend from that leaf to the root r1 of Υ1. In the
same manner, find the root r2 of the ETS Υ2 of the tree T2 ∈ F containing v. Declare “u connected
to v” if and only if r1 = r2. The cost is O(log n) because every ETS has height O(log n).

12.4 Augmenting an ETS

Recall that we obtained the count BST (in Section 2.1.3) by augmenting the BST with aggregate
information at internal nodes. In this section, we will apply the same type of augmentation to the
ETS to enhance its power.

12.4.1 Weighted vertices and trees

Commutative monoids. In discrete mathematics, a commutative monoid is a pair (W,⊕) where

• W is a set of elements called the domain;

• ⊕ is an operation closed on W (i.e., for any w1, w2 ∈W , w1 ⊕ w2 ∈W);

• ⊕ is commutative (i.e., w1⊕w2 = w2⊕w1) and associative (i.e., w1⊕w2⊕w3 = w1⊕(w2⊕w3));

• W has an identity element I satisfying w ⊕ I = w for any w ∈W .

81

Lecture Notes of CSCI5610, CSE, CUHK

A,1 B,1 A,0 C,1 D,1 C,0 E,1 C,0 F,1 C,0 A,0 G,1 H,1 G,0 A,0

-,2 -,2 -,2 -,1 -,1

-,6 -,2

Figure 12.4: An augmented ETS (edge pointers omitted)

The following are some semi-groups commonly encountered in practice:

• (R,+): addition is closed on real numbers; I = 0.

• (R,min): minimization is closed on real numbers; I =∞;

• ({0, 1},∨): OR is closed on {0, 1}; I = 0.

For any subset S ⊆W , we refer to ⊕
w∈S

w

as the sum of the elements in S. For all the monoids in our discussion, we assume that

• each element in W can be stored in one cell;

• each evaluation of ⊕ takes constant time.

Vertex/tree weights. Fix a monoid (W,⊕). Suppose that T is weighted in the sense that every
vertex u in the tree T is associated with a weight w(u) drawn from W . The weight of T is defined
as ⊕

u in T

w(u).

By choosing (W,⊕) appropriately, we endow the weight of T with various semantics. For
instance, if (W,⊕) = (R,+) and every vertex is associated with weight 1, the weight of T is precisely
the number of nodes in T . As another example, if ({0, 1},∨) and every vertex is associated with
weight either 1 (black) or 0 (white), the weight of T indicates whether T has any black nodes.

12.4.2 Maintaining and querying weights

Let T be a weighted tree. Suppose that, in addition to the operations in Section 12.1, we want to
support:

• weight-update(u, x) where u is a vertex in T and x ∈W : change w(u) to x.

• tree-weight: report the weight of T .

We can achieve the purpose by slightly augmenting the ETS Υ of T . Let Σ be the underlying
Euler tour. For every vertex u in T , we

• store w(u) at the leaf element in Υ corresponding to an arbitrary occurrence of u in Σ;

82

Lecture Notes of CSCI5610, CSE, CUHK

• store I (the identical element of the monoid; see Section 12.4.1) at the leaf elements corre-
sponding to all the other occurrences of u;

• record (say, in a separate array) a pointer to the occurrence carrying w(u).

Also, at every routing element e of Υ, we store the sum of the weights in all the leaf entries
underneath e.

Example. Suppose that the monoid is (R,+) and that each vertex in the tree of Figure 12.1 is
associated with weight 1. Figure 12.4 augments the structure in Figure 12.2. A leaf element is
in the form “u,w” where u is a vertex and w a weight. A non-leaf element is in the form “-, w”,
where - is a routing element (which is empty) and w a weight.

Lemma 12.5. All the statements below are true:

• After augmentation, the ETS still retains the performance in Lemmas 12.2-12.3.

• Each weight-update can be performed in O(log |T |) time.

• Each tree-weight can be performed in O(1) time.

The proof is left as an exercise.

12.5 Remarks

The Euler-tour structure we described is an adaptation of the structure developed by Henzinger
and King in [22].

83

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove Proposition 12.1.

Problem 2. Prove Lemma 12.2.

Problem 3. Prove the correctness of the re-root algorithm in Section 12.2.2.

(Hint: Proposition 12.1.)

Problem 4. Prove Lemma 12.5.

(Hint: review an exercise in Lecture 2 about the “count 2-3 tree”.)

Problem 5 (colored vertices). Same settings as in the dynamic connectivity problem. Suppose
that each vertex is colored black or white. Design a data structure to satisfy all the requirements
below:

• insert, delete, and connected still in O(log n) time.

• given a vertex u ∈ V , change its color in O(log n) time.

• given a vertex u ∈ V , find in O(log n) time the number of black vertices in the tree of F
containing u.

Problem 6*. The same settings as in Problem 4, but one more requirement:

• given a vertex u ∈ V , find in O(log n) time an (arbitrary) black vertex in the tree of F
containing u or declare that the tree has no black vertices.

(Hint: top-down search in a 2-3 tree.)

Problem 7*. Let T be a tree where each vertex is colored black or white. Describe how to store
T in an augmented ETS to support the following operation in O(log |T |) time:

• given an edge {u, v} in T , find the number of black vertices in T uu,v (defined in Section 12.1.1).

(Hint: you can achieve the purpose using cut, tree-weight, and link as black boxes.)

Problem 8* (colored edges). Same settings as in the dynamic connectivity problem. Suppose
that each edge is colored black or white. Design a data structure to satisfy all the requirements
below:

• insert, delete, and connected still in O(log n) time.

• given an edge {u, v} in the forest, change its color in O(log n) time.

• given a vertex u ∈ V , find in O(log n) time the number of black edges in the tree of F
containing u.

• given a vertex u ∈ V , find in O(log n) time an (arbitrary) black edge in the tree of F containing
u or declare that the tree has no black edges.

(Hint: convert the problem to one with colored vertices.)

84

Lecture 13: Dynamic Connectivity on a Graph

This lecture will tackle the dynamic connectivity problem in its general form. Specifically, we want
to store an undirected graph G = (V,E) in a data structure that supports the following operations:

• insert(u, v): add an edge {u, v} into E;

• delete(u, v): remove an edge {u, v} from E;

• connected(u, v): return whether vertex u ∈ V is connected to vertex v ∈ V (namely, whether
a path exists between them).

We consider that G has no edges at the beginning.

If no deletions are allowed, the problem can be settled with the union-find structure of Lec-
ture 11. Intuitively, insertions are easy because adding an edge {u, v} always makes u and v
connected. Removing {u, v}, however, does not necessarily disconnect them. Supporting deletions
requires new ideas.

Set n = |V |. Naively, each insertion/deletion can be supported in O(|E|) time while ensuring
constant time for connected. In this lecture, we will describe a structure [23] of Õ(n) space that
performs all operations in Õ(1) amortized time. Recall that Õ(.) hides polylog n factors; we will not
be concerned with such factors in this lecture (our primary goal is to improve the O(|E|) update
bound).

Notations: For simplicity, we will assume that n is a power of 2. Set h = log2 n. For a tree T , |T |
represents the number of nodes in T . If u is a vertex, u ∈ T indicates that u belongs to T .

13.1 An edge leveling technique

13.1.1 Spanning trees, spanning forests, and Kruskal’s algorithm

If G is connected, a spanning tree of G is a tree made of |V | − 1 edges in E (such a tree includes
all the vertices in V). If G is not connected, then a spanning forest of G is a set F of trees, where
each tree in F is a spanning tree of a different connected component (CC) of G.

We will preserve the connectivity ofG by maintaining a spanning forest F . Two vertices u, v ∈ V
are connected if and only if they appear in the same tree in F . Remember that we have learned a
powerful tool for managing trees, i.e., the Euler-tour structure (ETS). We will store each tree of F
in an ETS, which processes any connected(u, v) operation in Õ(1) time.

The challenge is to update F along with edge insertions and deletions. For this purpose, we
need to be careful in choosing the F to maintain. Our strategy will be closely related to Kruskal’s
algorithm for finding a minimum spanning forest (MSF). More specifically, we will give each edge

85

Lecture Notes of CSCI5610, CSE, CUHK

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

3

3

3

4

3

4

2

1

4

2 4

4
4

4

1

(a)

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

3
3

2

1

2 4

4

1

(b)

Figure 13.1: (a) shows a weighted graph, and (b) gives an MSF.

a weight which is a non-negative integer. The weight of F is the sum of weights of all the edges
therein. F is an MSF if its weight is the minimum among all the spanning forests. Kruskal gave
the following algorithm for finding an MSF:

Kruskal
1. F ← the set of vertices, each regarded as a tree (of size 1)
2. while ∃ edge {u, v} where u, v are in different trees in F do

/* call {u, v} a cross edge */
3. e← a cross edge with the smallest weight
4. merge two trees in F with e
5. return F

We will maintain an F that can be thought of as having been picked by the above algorithm.

Example. Figure 13.1.1(a) shows a graph where the number next to each edge indicates its weight.
Figure 13.1.1(b) is one possible MSF that can be output by Kruskal.

The following is a useful fact (from the undergraduate level) that will be useful:

MSF property: Let F be an arbitrary spanning forest of G (not necessarily the mini-
mum one) and e be an edge that is not in F . Adding e to F creates a cycle. We call e
a short-cut edge if the weight of e is strictly less than the weight of another edge in the
cycle. The MSF property says that F is an MSF if and only if no short-cut edges exist.

13.1.2 Edge leveling

We assign each edge e ∈ E a level (a.k.a. its weight) — denoted as level(e) — which is an integer
between 1 and h. Define for each i ∈ [1, h]:

Ei = the set of edges in E with level at most i.

86

Lecture Notes of CSCI5610, CSE, CUHK

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O

1
1

1

(a) F1

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

2

1

2

1

(b) F2

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

3
3

2

1

2

1

(c) F3

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

3
3

2

1

2 4

4

1

(d) F4 = F

Figure 13.2: Spanning forests for the graph in Figure 13.1.1(a)

Clearly:

E1 ⊆ E2 ⊆ ... ⊆ Elog2 n = E.

Accordingly, define:

Gi = the graph (V,Ei). (13.1)

We demand:

Invariant 1: Each CC of Gi has at most 2i vertices.

We maintain a spanning forest Fi of Gi for every i ∈ [1, h], and make sure:

Invariant 2: For i ∈ [1, h− 1], all the edges in Fi must also be present in Fi+1.

87

Lecture Notes of CSCI5610, CSE, CUHK

Note that Fh must be a spanning forest of G (because Eh contains all the edges in G). For this
reason, we will also denote Fh as F .

Example. Consider that G is the graph in Figure 13.1.1(a), where the level of each edge is indicated
next to it. Here, h = 4. Figure 13.2 illustrates the spanning forests F1, F2, ..., F4.

13.1.3 Connections between edge leveling and Kruskal’s

Let F1, F2, ..., Fh be arbitrary spanning forests satisfying Invariant 1 and 2. We now give a crucial
observation.

Lemma 13.1. Consider any tree T ∈ Fi (of any i) and any edge e in T . Remove e from T which
disconnects T into trees T1 and T2. Then, any other edge connecting a node in T1 with a node in
T2 must have level at least level(e).

Proof. Assume the existence of an edge e′ = {u, v} of level j < level(e) such that u ∈ T1 and
v ∈ T2. Hence, u and v are in the same CC of Gj . Thus, there must exist a path Π from u to v
in Fj . By Invariant 2, all the edges in Π must be in Fi because j < level(e) ≤ i; this means that
Π must be in T . However, because Π cannot contain e, we have found two different edges between
T1 and T2 (i.e., e and some edge on Π), contradicting the fact that T is a tree.

Corollary 13.2. Fi is an MSF of Gi for each i ∈ [1, h].

Proof. Immediate from the previous lemma and the MSF property (Section 13.1.1).

13.2 Dynamic connectivity

For each vertex u in G and each level i ∈ [1, h], we store a linked list for:

Li(u) = {the set of level-i edges incident to u}. (13.2)

For each i ∈ [1, h], build an ETS (Lecture 12) on each tree T ∈ Fi, denoted as Υ(T).

The subsequent discussion will concentrate on maintaining the graphs G1, ..., Gh and their
spanning forests F1, ..., Fh. Once this is clear, generating the necessary operations on the linked
lists and ETS’s becomes elementary exercises.

13.2.1 Connected

Handling a connected(u, v) operation amounts to finding out whether u and v belong to the same
tree in F . We can do so in Õ(1) time (Lecture 12) using the ETS’s.

13.2.2 Insertion

To perform an insert(u, v), we set the level of the new edge {u, v} to h, and add it to Gh. If u and
v are not connected, we link up with {u, v} the trees in F containing u and v, respectively. This
also takes Õ(1) time (Section 13.2.1 and Lecture 12). It is obvious that Invariants 1 and 2 are still
satisfied.

88

Lecture Notes of CSCI5610, CSE, CUHK

T ∗
1

T ∗
2

u∗ v∗

v

u

Figure 13.3: Proof of Lemma 13.4

13.2.3 Deletion

Consider the deletion of an edge eold = {u∗, v∗}. Set ` = level(eold). If eold is not in F , no Fi
of any i needs to be altered; and we finish by deleting eold from G`, G`+1, ..., Gh. The subsequent
discussion considers the opposite.

Replacement edges. Removing eold from its tree T ∗ ∈ F disconnects T ∗ into trees T ∗1 and T ∗2 .
Our goal is to find a replacement edge between T ∗1 and T ∗2 to connect them back into one tree in
F . Of course, such a replacement edge may not exist, in which case T ∗1 , T

∗
2 are now spanning trees

of two different CCs.

Proposition 13.3. A replacement edge must have level at least `.

Proof. Immediate from Lemma 13.1.

Lemma 13.4. If {u, v} of level i ≥ ` is a replacement edge, then u, v, u∗, v∗ are all in the same
CC of Gi.

Proof. Since e = {u, v} is not in T ∗, adding it to T ∗ creates a cycle passing u, v, u∗, v∗ (MSF
property). See Figure 13.3. Furthermore, e must have the largest level (a.k.a. weight) in the cycle
(MST property). Therefore, the four vertices are connected by a path consisting of edges with
weight at most i.

Algorithm. First remove eold from all of G`, G`+1, ..., Gh and F`, F`+1, ..., Fh. Next, we aim to
find a replacement edge whose level is as low as possible, starting with i = `:

89

Lecture Notes of CSCI5610, CSE, CUHK

replacement(i)

/* find a replacement edge of level i, if exists */
/* let T be the tree in Fi used to contain eold ; deleting eold disconnects T into trees T1 and T2;

w.o.l.g., assume |T1| ≤ |T2| */

1. for each edge e = {u, v} in T1 of level i do
2. reduce level(e) to i− 1, and add e to Gi−1

/* i ≥ 2 by Invariant 1 (otherwise T cannot have two edges eold and e) */

3. connect two trees in Fi−1 with e
/* Proposition 13.6 will prove that u, v must be in different CCs before the addition of e to
Gi−1 */

4. while T1 has a vertex u on which there is an edge e = {u, v} of level i do
5. if e is a replacement edge then
6. return e

else
7. set level(e) to i− 1, and add e to Gi−1

8. return failure

If replacement returns failure, we increase i by 1 and try again, until i has exceeded h. If, on the
other hand, a replacement edge e is found, we add e to Fi, Fi+1, ..., Fh.

Example. Suppose that we want to delete the edge eold = {G, J} in Figure 13.1.1(a), assuming
F1, ..., F4 as in Figure 13.2. Thus, ` = 3.

Consider the execution of replacement(3). Figure 13.4(a) shows the current G after deleting
eold , while Figure 13.4(b) illustrates T1 (the left tree) and T2 (the right); note that T1 and T2 are
what remains after removing eold from the largest spanning tree in Figure 13.2(c). The algorithm
attempts to find a replacement edge of level 3 to reconnect T1 and T2. Lines 1-3 push all the level-3
edges in T1 to level 2 (only one such edge {D, G}), yielding the situation in Figures 13.4(c) and (d).
Lines 4-8 enumerate every level-3 edge incident to a vertex in T1 (i.e., {E, G} and {F, G}). Since no
such edges make a replacement edge, their levels are reduced to 2. Figures 13.4(e) and (f) illustrate
the situation at this moment. The procedure replacement(3) returns failure.

Next, we execute replacement(4), in an attempt to find a cross edge of weight 4. The current
graph is as shown in Figure13.5(a) (same as Figure 13.4(e)). Figure 13.4(b) illustrate T1 (the left
tree) and T2 (the right). Compare them to the right spanning tree in Figure 13.2(d) and understand
what has caused the differences. The algorithm finds a replacement edge {G, J} of level 4. No more
changes are done to G (Figure 13.5(c)), but we use {G, J} to link up T1 and T2 (Figure 13.5(d)),
which yields a spanning tree in F4 = F .

Proposition 13.5. Invariant 2 holds at all times.

Proof. For each line in replacement, it is easy to prove that if Invariant 2 holds before the line,
this is still true after the line.

To prove the algorithm’s correctness, we still need to show:

• Claim 1: If replacement(h) returns failure, no replacement edge exists.

• Claim 2: For each i ∈ [1, h], Fi is still a spanning forest of Gi.

90

Lecture Notes of CSCI5610, CSE, CUHK

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

3

3

3

4

4

2

1

4

2 4

4
4

4

1

D

E

F

G

I

J

L

M

1

2

3 2

1

2

(a) G at the beginning of replacement (b) T1, T2

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

2

3

3

4

4

2

1

4

2 4

4
4

4

1

D

E

F

G

I

J

L

M

1

2

2 2

1

2

(c) G after Lines 1-3 (d) T1, T2

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

2

2

2

4

4

2

1

4

2 4

4
4

4

1

D

E

F

G

I

J

L

M

1

2

2 2

1

2

(e) G at the end (f) T1, T2

Figure 13.4: Illustration of replacement(3)

• Claim 3: Invariant 1 still holds after the algorithm finishes.

Claim 1 is in fact a corollary of Lemma 13.4, and left as an exercise for you to prove. We will prove
the other two claims in the following subsections.

13.2.4 Proof of Claim 2

We will establish the claim by proving a series of facts about replacement.

Proposition 13.6. Consider one iteration of Lines 2-3. If Fi−1 is a spanning forest of Gi−1 before
Line 2, it remains so after Line 3.

Proof. It suffices to show that, for the edge e = {u, v} identified by the iteration at Line 1, the
vertices u and v must be in different CCs of Gi−1.

Suppose that this is not true. Consider the moment before level(e) is decreased at Line 2. There
exists a path Π in Fi−1 connecting u and v. All the edges in Π must belong to Fi (Proposition 13.5).
But then Π and e make a cycle in Fi, giving a contradiction.

Proposition 13.7. Fi−1 remains as a spanning forest of Gi−1 after each time Line 7 is executed.

Proof. True because, right before the line, u and v must be connected in T1 by a path in Gi−1 (they
must be connected in T1, and all the edges in T1 now have level at most i− 1).

91

Lecture Notes of CSCI5610, CSE, CUHK

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

2

2

2

4

4

2

1

4

2 4

4
4

4

1

D

E

F

G

I

J

K

L

M

N

O

1

2

2 2

1

2 4

1

4

(a) G at the beginning of replacement (b) T1, T2

1
A

B

C

D

E

F

G

I

J

K

L

M

N

O
2

1

2

2

2

2

4

4

2

1

4

2 4

4
4

4

1

D

E

F

G

I

J

K

L

M

N

O

1

2

2 2

1

2 4

1

4

4

(c) G at the end (d) T1, T2 merged by replacement edge {F, K}

Figure 13.5: Illustration of replacement(4)

Proposition 13.8. If replacement(i) returns failure, Fi is a spanning forest of Gi.

Proof. Consider the connected component C of Gi represented by T before the removal of eold . No
new vertex can join C because edge levels can only decrease. Every vertex of C is in either T1 or
T2. The edges in T1, which have level at most i, indicate that the vertices in T1 are connected in
Gi. Same for T2. That replacement returns failure indicates that no edges of level i exist between
T1 and T2. By Lemma 13.1, no edges of any level less than i can exist between T1 and T2, either.
Therefore, T1 and T2 are now spanning trees of two CCs in Gi.

Proposition 13.9. After adding the replacement edge e to Fj where j ≥ i, Fj is a spanning forest
of Gj.

Proof. Consider the connected component C of Gj represented by T before the removal of eold .
No new vertex can join C because edge levels can only decrease. Every vertex of C is in either T1

or T2. The edges in T1, which have level at most i, must belong to Gj and, thus, indicate that
the vertices in T1 are connected in Gj . Same for T2. The discovery of the edge e ascertains that
every vertex in T1 is connected to a vertex in T2 by a path of edges with level at most j. The tree
obtained by coalescing T1 and T2 with e is therefore a spanning tree of C.

This completes the proof of Claim 2.

13.2.5 Proof of Claim 3

Fix an i ∈ [1, h], and consider the execution of replacement(i). The following fact should have
become easy to prove (left as an exercise):

Proposition 13.10. After replacement(i), the tree T1 is the only new spanning tree in Fi−1,
merging possibly several spanning trees originally in Fi−1.

92

Lecture Notes of CSCI5610, CSE, CUHK

Hence, to prove Claim 3, it suffices to show that |T1| ≤ 2i−1. For this purpose, note first that
|T | ≤ 2i due to Invariant 1 because T was a spanning tree in Gi before eold disappeared. Thus,
|T1| ≤ 2i−1 follows from the fact that |T1| ≤ |T2| and |T1|+ |T2| = |T |.

13.2.6 Implementation

Replacement can be efficiently implemented using ETS’s:

• Obtain the size of a tree in Fi. See Section 12.4.

• At Line 1, the level-i edge e (of T1) can be found in Õ(1) time. This was an exercise in
Lecture 12 (colored edges; hint: give a special color to each level-i edge).

• Line 2 is easy.

• Line 3 takes Õ(1) time. See the same exercise as in the 1st bullet.

• At Line 4, an edge e can be found in Õ(1) time. This was an exercise in Lecture 12 (colored
vertices; hint: give a vertex a special color if it has level-i edges).

• The if-condition Line 5 can be checked in Õ(1) time (a connected operation on trees).

• Line 5 takes Õ(1) time. See the same exercise as in the 4th bullet.

• Line 7 is easy.

We also need to update the linked lists on all the Li(u)’s (see (13.2)) whenever an edge moves
from Gi to Gi−1 for some i ≥ 2. This can be trivially done in O(1) time per move.

13.2.7 Amortization

Next, we will prove that the total cost of all the deletions is Õ(m), where m is the number of edges
that have ever existed in G. Since every edge must be added by an insertion, we can amortize the
Õ(m) cost over all the insertions such that each insertion bears only Õ(1) cost.

By implementing our structure as in Section 13.2.6, we know that each deletion takesO(1)+Õ(x)
time, where x is the number of times we demote an edge, i.e., decreasing its level by 1. What is the
largest possible number of demotions of all deletions? The answer is clearly mh = Õ(m) because
there are h levels, and edge levels never increase. We thus conclude that all deletions require Õ(m)
time.

13.3 Remarks

The dynamic connectivity algorithm discussed in this lecture is based on an approach developed
by Holm, Lichtenberg, and Thorup in [23]. That paper also gives the precise polylog n factors we
omitted.

93

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove the MSF property (Section 13.1.1).

Problem 2. Prove Claim 1.

Problem 3. Prove Proposition 13.10.

Problem 4. Verify all the bullets in Section 13.2.6.

Problem 5. Suppose that we want to support one more operation in the dynamic connectivity
problem:

• CC-size(u): return the number of nodes in the CC that contains the given vertex u ∈ V .

Explain how to extend our structure to support the above operation in Õ(1) amortized time, while
retaining the same performance on insert, delete, and connected.

Problem 6. Same settings as in the dynamic connectivity problem, except that every vertex in G
is colored black or white. Besides insert, delete, and connected, we also want to support:

• blackest-CC: return any node in a CC with the largest number of black vertices.

Describe a structure that supports all operations in Õ(1) amortized time.

94

Lecture 14: Range Min Queries

(Lowest Common Ancestor)

This lecture discusses the range min query (RMQ) problem, where we want to preprocess an array
A of n real values to support:

Range min query: Given integers x, y satisfying 1 ≤ x ≤ y ≤ n, report minyi=xA[i].

The problem can be easily solved by an augmented BST (Section 2.1.3) which uses O(n) space,
and answers a query in O(log n) time. Today, we will learn an optimal structure that uses O(n)
space and answers a query in O(1) time.

Closely related is the lowest common ancestor (LCA) problem where we want to preprocess a
rooted tree T to support:

LCA query: Given two nodes u, v in T , return their lowest common ancestor in T .

As you will explore in exercises, the RMQ and LCA problems turn out to be equivalent. We will
focus on RMQ in the lecture.

We will consider that the elements inA are distinct (this assumption does not lose any generality;
why?). For any x, y satisfying 1 ≤ x ≤ y ≤ n, define

minindexA(x, y) =
y

arg min
i=x

A[i].

In other words, if k = minindexA(x, y), then A[k] is the smallest in A[x], A[x + 1], ..., A[y]. The
goal of an RMQ is to find k.

Notations. Given any x, y ∈ [1, n], A[x : y] is the subarray of A that starts from A[x] and ends at
A[y]. Specially, if x > y, A[x : y] denotes the empty set.

14.1 How many different inputs really?

At first glance, there seems to be an infinite number of inputs because each element in A can be
an arbitrary real number. This pessimistic view hardly touches the essence of the problem.

Let us define the rank permutation of A as a permutation R of {1, 2, ..., n} such that, for each
i ∈ [1, n], R[i] equals j if A[i] is the j-th smallest element in A. What matters for RMQ are not the
actual values in A, but instead, is its rank permutation. This is because, regardless of the content
of A, we always have:

minindexA(x, y) = minindexR(x, y).

95

Lecture Notes of CSCI5610, CSE, CUHK

Figure 14.1: The left is the cartesian tree for A = (4, 2, 5, 1, 3), and the right for A = (4, 3, 2, 1, 5).

Example. Suppose that n = 5, A1 = (16, 7, 20, 2, 10) and A2 = (25, 11, 58, 3, 12). R = (4, 2, 5, 1, 3)
is the rank permutation of both A1 and A2.

It thus follows that there are at most n! inputs that are “really” different. However, even this
is a serious over-estimate! The following example allows you to see the reason intuitively:

Example. Suppose that n = 5, R1 = (4, 2, 5, 1, 3) and R2 = (3, 2, 4, 1, 5). For any x, y satisfying
1 ≤ x ≤ y ≤ n, we always have minindexR1(x, y) = minindexR2(x, y).

Formally, two arrays A1 and A2 of size n are said to be identical if minindexA1(x, y) =
minindexA2(x, y) holds for any legal x, y. Next, we will show that the number of distinct inputs is
no more than 4n (which is considerably smaller than n!).

Let us define the cartesian tree T on A recursively:

• If n = 0, then T is empty.

• If n = 1, then T has a single node.

• Otherwise, let k = minindexA(1, n). T is a binary tree where the root’s left subtree is the
cartesian tree on A[1 : k−1], and the root’s right subtree is the cartesian tree on A[k+ 1 : n].

See Figure 14.1 for an illustration.

Lemma 14.1. Arrays A1 and A2 are identical if and only if their cartesian trees are equivalent.

The proof is left to you as an exercise.

It is well known that there are no more than 4n different binary trees with n nodes (you will
prove this in an exercise). Therefore, at most 4n distinct inputs exist.

14.2 Tabulation for short queries

Fix any s satisfying Ω(log n) = s ≤ 1
2 log4 n. Assume, w.o.l.g., that n is a multiple of s. We break

A into chunks of size s, namely, the first chunk is A[1 : s], the second A[s + 1 : 2s], and so on. In
this section, we consider only short queries where the indexes x and y fall into the same chunk. We
will describe a structure of O(n) space that answers all such queries in constant time.

Each chunk can be regarded as an array B of size s. How many different queries are there for
chunk B? The answer is s(s + 1)/2, which is the number distinct pairs (x, y) satisfying 1 ≤ x ≤
y ≤ s. As a brute-force approach, we can store the answers for all possible queries. This takes

96

Lecture Notes of CSCI5610, CSE, CUHK

x y

2k

2k

Figure 14.2: Using two pre-computed answers to cover a query

O(s2) space per chunk and, hence, O(ns s
2) = O(n log n) space overall. Unfortunately, this exceeds

our linear space budget.

But wait! If two chunks have the same cartesian tree, they are identical (for RMQ), and hence,
can share the same set of pre-computed answers! We only need at most 4s pre-computed answer
sets, because there are no more than 4s different cartesian trees with s nodes (Section 14.1). The
total amount of space required is bounded by

O(4s · s2) = O
(

4
1
2

log4 n · s2
)

= O(
√
n · log2 n)

which is significantly less than our O(n) budget!

Each pre-computed answer set is an array of size O(s2) length, referred to as an answer array.
We store all (no more than) 4s such arrays. For each chunk, we associate it with the starting
address of its answer array. The total space is O(n).

Given a query with interval [x, y], we can identify the chunk covering [x, y] in O(1) time (think:
how?), after which minindexA(x, y) can be easily acquired from the chunk’s answer array in O(1)
time.

Remark. The method of pre-computing the answers of all queries in a small domain is known as
the tabulation technique.

14.3 A structure of O(n log n) space

This section will describe a structure of O(n log n) space that answers an (arbitrary) RMQ in
constant time.

Structure. For each i ∈ [1, n], we store

• minindexA(i, j) for every j = i + 1, i + 22 − 1, ..., i + 2λ − 1 where λ is the largest integer
satisfying i+ 2λ − 1 ≤ n;

• minindexA(j, i) for every j = i − 1, i − 22 + 1, ..., i − 2λ + 1 where λ is the largest integer
satisfying i− 2λ + 1 ≥ 1.

In other words, for each i ∈ [1, n], we pre-compute the answers of all queries whose ranges [x, y]
satisfy two requirements:

• [x, y] covers a number of elements that is a power of 2;

• it starts or ends at i.

97

Lecture Notes of CSCI5610, CSE, CUHK

The number of such queries is O(log n). Therefore, the total space is O(n log n).

Query. Let [x, y] be the search interval; note that it covers y − x+ 1 elements. Set

λ = blog2(y − x+ 1)c (14.1)

If y−x+1 is a power of 2, the query answer has explicitly been pre-computed, and can be retrieved
in constant time.

Proposition 14.2. If y− x+ 1 is not a power of 2, [x, y] is covered by the union of [x, x+ 2λ− 1]
and [y − 2λ + 1, y].

The proof is obvious and hence omitted. See Figure 14.2 for an illustration. We can therefore
obtain from the pre-computed answers i = minindexA(x, x+2λ−1) and j = minindexA(y−2λ+1, y),
and then return the smaller between A[i] and A[j]. The time required is O(1).

To achieve O(1) query time overall, however, we must be able to compute λ in (14.1) in constant
time. This can be achieved with proper preprocessing, as you will explore in an exercise.

14.4 Remarks

Have we obtained the promised structure with O(n) space and O(1) query time? Well, not explicitly,
but almost. All we need to do is to combine the solutions in Sections 14.2 and 14.3. This will be
left as an exercise.

The elegant structure we discussed was designed by Bender and Farach-Colton [4]. It is worth
pointing out that the first optimal LCA (and hence RMQ) structure is due to Harel and Tarjan [21].

98

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove Lemma 14.1.

Problem 2. Let T be a (rooted) binary tree of n nodes, where each internal node has two child
nodes. Let Σ = (u1, u2, ..., u2n−1) be the Euler tour obtained using the algorithm in Section 12.1.2.
Σ decides a 0-1 sequence Σ′ of length 2n− 2 as follows: for each i ∈ [1, 2n− 2], Σ′[i] = 1 if ui is the
parent of ui+1, or 0 otherwise.

Prove: no two binary trees of n nodes can produce the same 0-1 sequence.

Problem 3. Prove: there are less than 22n different binary trees of n nodes.

(Hint: Problem 2.)

Problem 4. Describe a structure of O(n) space such that, given any integer x ∈ [1, n], we can
calculate blog2 xc in constant time.

Problem 5. Design an optimal RMQ structure of O(n) space and O(1) query time.

Problem 6. Construct an optimal RMQ structure in O(n log logn) time.

Problem 7**. Given an array A of size n, describe an algorithm to construct its cartesian tree in
O(n) time.

(Hint: scan A from left to right, and build the tree incrementally.)

Problem 8. Construct an optimal RMQ structure in O(n) time.
(Hint: Problem 7.)

Problem 9* (RMQ implies LCA). For the LCA problem, describe a structure of O(n) space
and O(1) query time, where n is the number of nodes in the input tree T .

(Hint: use an Euler tour of T .)

Problem 10 (LCA implies RMQ). Suppose that you know how to build an LCA structure of
O(n) space and O(1) query time. Show that you can obtain an optimal structure for the RMQ
problem.

99

Lecture 15: The van Emde Boas Structure

(Y-Fast Trie)

.
This lecture revisits the predecessor search problem, where we want to store a set S of n elements

drawn from an ordered domain to support:

• Predecessor query: given an element q (which may not be in S), return the predecessor of
q, namely, the largest element in S that does not exceed q.

We already know that the binary search tree (BST) solves the problem with O(n) space and O(log n)
query time.

Our focus in the lecture will be the scenario where the domain of the elements has a finite size
U . W.o.l.g., we will assume that all the elements in S are integers in {1, 2, ..., U}. We will learn the
van Emde Boas structure (vEBS) which uses O(n) space and answers a query in O(log logU) time.
Note that for practical scenarios where U is a polynomial of n, the query time is O(log logU) =
O(log log n), improving that of the BST.

The structure to be described also draws ideas from the y-fast trie (see Section 15.3 for more
details).

For simplicity, we will assume that log2 log2 U is an integer, namely, U = 22x for some integer
x ≥ 1 (think: why is this a fair assumption?). Also, we will assume, again w.o.l.g., that S contains
the integer 1 so that the predecessor of any q ∈ {1, ..., U} always exists.

15.1 A structure of O(n logU) space

If U = 4 (which implies n = O(1)) or n = O(1), we define the vEBS simply as a linked list storing
S (which ensures constant space and query time). Next, we will consider U ≥ 16.

15.1.1 Structure

We divide the domain [1, U] into
√
U disjoint chunks of size

√
U , namely, Chunk 1 is [1,

√
U], Chunk

2 is [
√
U + 1, 2

√
U], and so on. Note that

√
U is an integer. For each i ∈ [1,

√
U], define

Si = S ∩ Chunk i.

Chunk i is empty if Si = ∅.

Let P be the set of ids of all the non-empty chunks. Clearly, |P | ≤ min{n,
√
U}. Store P in a

perfect hash table H (Section 9), which we can use to check in constant time whether Chunk i is
empty for any i ∈ [1,

√
U].

100

Lecture Notes of CSCI5610, CSE, CUHK

... ...

C
non-empty chunkempty chunknon-empty chunk

leader of Csentinel of C

q1 q2 q3

Figure 15.1: Each box shows a chunk, where points represent integers in ascending order from left
to right.

Consider a non-empty chunk of id i ∈ [1,
√
U]. Recall that it corresponds to the range [(i −

1)
√
U + 1, i

√
U]. We define for the chunk:

• its leader as the largest element in Si;

• its sentinel as the predecessor of q = (i − 1)
√
U − 1, which is essentially the greatest leader

from Chunks 1, 2, ..., i− 1.

See Figure 15.1 for an illustration.

We are now ready to recursively define the vEBS on S as the collection of:

• hash table H;

• the leader and sentinel of every non-empty chunk;

• a vEBS ΥP on P ;

• a vEBS Υi on each non-empty Si (i ∈ [1,
√
U]).

Note that ΥP and each Υi are in a domain of size
√
U .

Let us analyze the space consumption. Denote by f(n,U) the space of a vEBS on n integers in
a domain of size U . We have:

f(n,U) ≤ O(n) + f(n,
√
U) +

√
U∑

i=1

f(|Si|,
√
U).

Clearly, f(0, U) = 0, and f(n,U) = O(1) when 1 ≤ n = O(1) or U ≤ 4. In an exercise, you will be
asked to prove:

Lemma 15.1. f(n,U) = O(n logU).

15.1.2 Query

To find the predecessor of an integer q ∈ [1, U], we first obtain the id λ = bq/
√
Uc+ 1 of the chunk

that contains q. The following observations are obvious:

• If Chunk λ is empty, the predecessor of q is the leader of the first non-empty chunk to the
left of Chunk λ.

• Otherwise, the predecessor of q is either the sentinel of Chunk λ or the predecessor of q in Si.

101

Lecture Notes of CSCI5610, CSE, CUHK

q

... ...
m

BSTs on buckets

Figure 15.2: Each box shows a bucket, each of which has at most s points (s = 4 in this example).

Queries q1, q2, and q3 in Figure 15.1 illustrates three different cases with queries q1, q2, and q3.

The above naturally leads to the following algorithm. First, use H to decide in constant time
whether Chunk λ is empty. If so, find the predecessor λ′ of λ in P by searching ΥP , and return the
leader of Chunk λ′. Now, consider that Chunk λ is not empty. In this case, find the predecessor
x of q in Si by searching Υλ. If x exists, we return x as the final answer; otherwise, return the
sentinel of Chunk λ.

Next, we prove that the query time is O(log logU). Denote by g(U) the query time of a vEBS
when the domain has size U . No matter whether Chunk λ is empty or not, we always search a
vEBS (i.e., ΥP or Υi) created for a domain of size

√
U . Therefore:

g(U) ≤ O(1) + g(
√
U).

Clearly, g(4) = O(1). It thus follows that g(U) = O(log logU).

15.2 Improving the space to O(n)

In this section, we will combine the structure of the previous section with a bucketing idea to reduce
the space to linear while retaining the query time O(log logU).

Structure. Set s = log2 U . Divide the input set S into buckets, each of which contains at most s
elements of S. Specifically, sort S in ascending order, and then, group the first s elements into the
first bucket, the next s elements into the second bucket, and so on. The total number of buckets is
O(n/s).

Collect the smallest element in each bucket into a set M . Build a vEBS on M , which consumes
O(|M | logU) = O(n

logU logU) = O(n) space. Finally, for each bucket, create a BST (i.e., there are
O(n/s) BSTs). All the BSTs consume O(n) space in total.

Query. Given a predecessor query q, we first find the predecessor m of q in M , which takes
O(log logU) time using the vEBS on M . The predecessor of q in the overall S must be the
predecessor of q in the bucket of m, which can be found using the BST on that bucket in O(log s) =
O(log logU) time. See Figure 15.2 for an illustration.

15.3 Remarks

The original ideas behind the vEBS are due to Boas [40], but the structure in [40] does not achieve
O(n) space. The version we described in this lecture is similar to what Willard [43] called the
y-fast trie. Patrascu and Thorup [37] proved that no structure of O(n polylog n) space can achieve

102

Lecture Notes of CSCI5610, CSE, CUHK

query time strictly better than O(log logU) (note: the BST improves the O(log logU) query time
sometimes — when n � U — but not always; indeed, when U = nO(1), the vEBS is faster than
the BST). In other words, the vEBS is worst-case optimal for the predecessor search.

103

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove Lemma 15.1.

Problem 2. Let S be a set of n integers in {1, ..., U}. Design a data structure of O(n) space
that answers a range reporting query (Section 2.2.1) on S in O(log logU + k) time, where k is the
number of integers reported.

Problem 3. Let S be a set of n integers in {1, ..., U}. Each integer in S is associated with a
real-valued weight. Given an interval q = [x, y] with 1 ≤ x ≤ y ≤ U , a range min query returns the
smallest weight of the integers in S ∩ [x, y]. Design a data structure of O(n) space that answers a
range min query in O(log logU) time.

Problem 4. Describe how to support an insertion/deletion on the structure of Section 15.1.1 in
O(logU) expected amortized time. You can assume that a perfect hash table can be updated in
constant expected amortized time.

(Hint: think recursively. At the level of domain size U , you are making two insertions each into
a domain size of

√
U .)

Problem 5**. Describe how to support an insertion/deletion on the structure of Section 15.2 in
O(log logU) expected amortized time.

(Hint: buckets can be split and merged periodically.)

104

Lecture 16: Leveraging the Word Length w = Ω(log n)

(2D Orthogonal Range Counting)

In all the structures discussed so far, we were never concerned about the length w of a word (a.k.a.,
a cell), i.e., the number of bits in a word. In the RAM model (Lecture 1), if the input set requires
at least n cells to store, then w ≥ log2 n because this is the least number of bits needed to encode a
memory address. Interestingly, this feature can often be used to improve data structures. We will
see an example in this lecture.

We will discuss orthogonal range counting in 2D space. Let S be a set of n points in R2. Given
an axis-parallel rectangle q = [x1, x2] × [y1, y2], a range count query reports |S ∩ q|, namely, the
number of points in S covered by q. At this stage of the course, you should know at least two
ways to solve the problem. First, you can use the range tree (Section 4.4) to achieve O(n log n)
space and O(log2 n) query time (this was an exercise of Lecture 4). Second, by resorting to partial
persistence, you can improve the query time to O(log n) although the space remains O(n log n) (an
exercise of Lecture 8).

Today we will describe a structure with O(n) space consumption and O(log n) query time. Our
structure is essentially just the range tree, but incorporates bit compression to reduce the space by
a factor of Θ(log n).

It suffices to consider that every range count query is 2-sided, namely, with search rectangle of
the form q = (−∞, x]× (−∞, y] (this is known as dominance counting). Every general range count
query can be reduced to four 2-sided queries (think: how?). We will assume that n is a power of
2; if not, simply add some dummy points to make it so. Finally, we will make the general position
assumption that the points in S have distinct x- and y-coordinates (the assumption’s removal was
an exercise in Lecture 4).

Notations. Given a point p ∈ R2, we denote by xp and yp its x- and y-coordinates, respectively.
Given an array A of length `, and any i, j ∈ [1, `], we will denote by A[i : j] the subarray that starts
from A[i] and ends at A[j].

16.1 The first structure: O(n log n) space and O(log n) query time

We will first explain how to achieve O(n log n) space and O(log n) query time. Our structure can
be regarded as a fast implementation of the range tree.

A real number λ ∈ R is said to have

• x-rank r in S, if S has r points p satisfying xp ≤ λ;

• y-rank r in S, if S has r points p satisfying yp ≤ λ.

105

Lecture Notes of CSCI5610, CSE, CUHK

c

a

i

b

d
e

f
g

h

j
k

l
m

n
o

p

c

a

a

b

b

d

d

e

e

f

f

g

g

h

h

j

k

l

m

n

o

p

i

i jkl mn opc

a

b

d

e

f

g

h

j

k

l

m

n

o

p

i

c

Bu

Bv1 Bv2

A

1 0

2

2

3

3

3

4

5

6

6

6

7

7

8

8

8

0

1

1

2

3

3

3

3

4

5

5

6

6

7

8
left y-rank right y-rank

(a) The input set (b) Array A, and the B-arrays of the
root u and its child nodes v1 and v2

Figure 16.1: The first structure

Structure. Sort the points of S in ascending order of x-coordinate, and store the ordering in an
array A of size n.

Construct a binary tree T as follows. First, create the root node which corresponds to A[1 : n].
In general, given a node u which corresponds to A[a : b] for some integers a < b, create its left and
right child nodes v1, v2 which correspond to A[a : b−a+1

2] and A[b−a+1
2 + 1 : b], respectively. On the

other hand, if a = b, u is a leaf of T . In any case, denote by Su the set of points in A[a : b].

Consider an arbitrary internal node u with left child v1 and right child v2. Note that Sv1∪Sv2 =
Su and Sv1 ∩Sv2 = ∅. We associate u with an array Bu which sorts Su in ascending of y-coordinate.
Along with each p ∈ Su, we store two integers:

• left y-rank: the y-rank of yp in Sv1 ;

• right y-rank: the y-rank of yp in Sv2 .

The B-arrays of all the nodes at the same level of T consume O(n) space in total. Since T has
O(log n) levels, the overall space of our structure is O(n log n).

Example. Figure 16.1(a) gives a set S of 16 points. The array A is shown at the bottom of
Figure 16.1(b). Suppose that node u is the root of T , whose left and right child nodes are v1 and
v2, respectively. Figure 16.1(b) also shows Bu, Bv1 , and Bv2 . The left and right y-ranks of each
point in Bu are also indicated.

Query. Let q = (−∞, x]× (−∞, y] be the search region. We assume that we are given the x-rank
λ1 of x in S, and the y-rank λ2 of y in S (why is the assumption fair?).

106

Lecture Notes of CSCI5610, CSE, CUHK

Let us deal with a more general subproblem. Suppose that we are at a node u of T , and want
to find out how many points in Su are covered by q (if u is the root of T , Su = S; and hence, the
answer is precisely the final query result). We are told:

• λ1: the x-rank of x in Su;

• λ2: the y-rank of y in Su.

If u is a leaf node, Su has only a single point; the answer can be found in constant time. Next,
we consider that u has left child v1 and right child v2. We consider λ2 ≥ 1 because otherwise the
answer is clearly 0.

Let p∗ be the point at Bu[λ2] (p∗ is the λ2-th highest point in Su). We distinguish two scenarios:

• Case 1: λ1 > |Su|/2. This means that all the points in Sv1 (note: |Sv1 | = |Su|/2) have
x-coordinates less than x. Thus, the number of points in Sv1 covered by q is exactly the left
y-rank of p∗, which has already been pre-computed, and can be retrieved in constant time.
However, we still need to find out how many points in Sv2 are covered by q. For this purpose,
it suffices to solve the same subproblem recursively at v2. But to do so, we need to prepare
the x-rank of x in Sv2 , and the y-rank of y in Sv2 . Both can be easily obtained in constant
time: the former equals λ1 − |Sv1 | = λ1 − |Su|/2, while the latter is simply the right y-rank
of p∗.

• Case 2: λ1 ≤ |Su|/2. It suffices to find the number of points in Sv1 covered by q. We do so
by recursively solving the subproblem at v1. For this purpose, we need to prepare the x-rank
of x in Sv1 , and the y-rank of y in Sv1 . Both can be obtained directly: the former is just λ1,
while the latter is the left y-rank of p∗.

In summary, we answer a range count query by descending a single root-to-leaf path in T , and
spend O(1) time at each node on the path. The query time is therefore O(log n).

16.2 Improving the space to O(n)

What is the culprit that makes the space complexity O(n log n)? The B-arrays! For each node u
in T , the array Bu has length |Su| and thus require Θ(|Su|) words to store. Next, we will compress
Bu into O(1+ |Su|/ log n) words. Accordingly, the overall space is reduced from O(n log n) to O(n).

Henceforth, let s be an integer satisfying Ω(log n) = s ≤ 1
2 log2 n. We will need:

Lemma 16.1. With o(n) pre-processing time, we can build a structure of o(n) space to support the
following operation in O(1) time: given any bit vector of length s and any integer t ∈ [1, s], return
the number of 0’s in the vector’s first t bits.

The proof is left to you as an exercise with hints.

Compressing Bu. We divide Bu into chunks of length s, except possibly for one chunk. Specif-
ically, Chunk 1 includes the first s points of Bu, Chunk 2 the next s points, and so on. The last
chunk may have less than s points if |Su| is not a multiple of s.

Let v1 and v2 be the left and right child nodes of u, respectively. For each chunk, we store two
integers:

• left y-rank: the y-rank of yp in Sv1 , where p is the highest point in the chunk;

107

Lecture Notes of CSCI5610, CSE, CUHK

3

5

7

8

1

3

5

8
left y-rank right y-rank

1

0

0

0

0

0

1

1

0

0

1

1

0

1

1

1

chunk

Figure 16.2: The compressed version of the array Bu in Figure 16.1

• right y-rank: the y-rank of yp in Sv2 .

The total space to store the left/right y-ranks of all the chunks is O(d|Su|/se) = O(1 + |Su|/s)
words, which is O(w + w·|Su|

s) bits.

For every chunk of σ points (1 ≤ σ ≤ s), we also store a bit vector of length σ. To explain, let
the points in the chunk be p1, p2, ..., pσ in ascending order of y-coordinate. The i-th (i ∈ [1, σ]) bit
in the bit-vector equals

• 0, if pi comes from Sv1 ;

• 1, otherwise (i.e., pi from Sv2).

The bit vectors of all the chunks have precisely |Su| bits.

Example. Continuing the example of Figure 16.1, again let u be the root node. Figure 16.2
illustrates the compressed form of Bu. Here, s = 4, and Bu is cut into 4 chunks. The left and right
y-ranks of each chunk are indicated outside the boxes. The bit vector of a chunk is given inside the
boxes. For instance, the bit vector of the first (i.e., bottom-most) chunk is 0010, that of the second
chunk is 1100, and so on.

Other than the chunks’ left/right y-ranks and bit vectors, we store nothing else for u (in par-
ticular, Bu is no longer necessary). The space required for u is therefore:

O

(
w +

w · |Su|
s

+ |Su|
)

bits = O

(
1 +
|Su|
s

+
|Su|
w

)
words = O

(
1 +

|Su|
log n

)
words

where the last equality used the fact w ≥ log2 n.

Consider any point p ∈ Su. Recall that, in the structure of Section 16.1, we stored the left and
right y-ranks of p explicitly. This is no longer the case in our new structure. Nevertheless, the
lemma below shows that this information is implicitly captured:

108

Lecture Notes of CSCI5610, CSE, CUHK

Lemma 16.2. If we know that p is the r-th highest point in Su (for some r ∈ [1, |Su|]), we can
obtain the left and right y-ranks of p in O(1) time.

Proof. Since the left and right y-ranks of p add up to r, it suffices to explain how to find the left
y-rank in constant time.

Let i = br/sc + 1 be the id of the chunk that contains p. If i ≥ 2, denote by rprefix the left
y-rank of Chunk i− 1; otherwise, define rprefix = 0. The value of rprefix has been pre-computed and
can be fetched in O(1) time. Set j = r− s(k− 1); point p is the j-th highest point within Chunk k.
Denote by v the bit-vector of the Chunk k. Use Lemma 16.1 to retrieve in O(1) time the number
rchunk of 0’s in the first j-th bits of v. The left y-rank of p equals rprefix + rchunk .

Example. Continuing the previous example, suppose that we want to find out the left y-rank of
point j (see Figure 16.1) in Bu, knowing that j is the 10-th highest point in Su. We first obtain the
id 3 of the chunk containing j. Thus, rprefix = 5, which is the left y-rank of Chunk 2. Within Chunk
3, point j is the second highest. In the bit-vector 0110 of the chunk, there is only rchunk = 1 zero
in the first 2 bits. Therefore, we conclude that the left y-rank of j must be rprefix + rchunk = 6.

Space. We leave it as an exercise for you to prove that the overall space consumption of structure
is now O(n) words.

Query. Recall that the core in solving a range count query q = (−∞, x] × (−∞, y] is to tackle
the following subproblem where, standing at an internal node u of T , we want to find out |Su ∩ q|,
assuming that the following are known:

• λ1: the x-rank of x in Su;

• λ2 ≥ 1: the y-rank of y in Su.

The algorithm in Section 16.1 spends O(1) time at u before recursing into a child node of u.
Lemma 16.2 allows us to obtain the left and right y-ranks of p∗ in constant time, where p∗ is the
λ2-th highest point in Su. With this, the algorithm of Section 16.1 can still be implemented to run
in O(1) time at u.

The overall query time is therefore still O(log n).

16.3 Remarks

The structure we described is due to Chazelle [12]. When the x- and y-coordinates of all the points
are integers, JaJa, Mortensen, and Shi [25] showed that the w = Ω(log n) feature can even be used
to improve the query time: they developed a structure of O(n) space and O(log n/ log logn) query
time. Patrascu [36] showed that O(log n/ log log n) query time is the best possible for any structure
of O(n polylog n) space.

109

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Prove Lemma 16.1.

(Hint: tabulation; see Lecture 14.)

Problem 2. Prove that the structure of Section 16.2 uses O(n) space.

Problem 3. Describe an algorithm to construct the structure of Section 16.2 in O(n log n) time.

Problem 4*. Make the structure of Section 16.2 fully dynamic to support each insertion and
deletion in O(log2 n) amortized time. The space consumption should still be O(n). The structure
must answer a range count query in O(log2 n) time.

(Hint: logarithmic rebuilding + global rebuilding.)

110

Lecture 17: Approximate Nearest Neighbor Search 1:

Doubling Dimension

We define a metric space as a pair (U, dist) where

• U is a non-empty set (possibly infinite), and

• dist is a function mapping U × U to R≥0 (where R≥0 is the set of non-negative real values)
satisfying:

– dist(e, e) = 0 for any e ∈ U ;

– dist(e1, e2) ≥ 1 for any e1, e2 ∈ U such that e1 6= e2;

– symmetry, i.e., dist(e1, e2) = dist(e2, e1) for any e1, e2 ∈ U ;

– the triangle inequality, i.e., dist(e1, e2) ≤ dist(e1, e3) + dist(e3, e2) for any e1, e2, e3 ∈ U .

We will refer to each element in U as an object, and to dist as a distance function. For any e1, e2 ∈ U ,
dist(e1, e2) is the distance between the two objects.

This lecture will discuss nearest neighbor search. The input is a set S of n objects in U . Given
an object q ∈ U \ S, a nearest neighbor query reports an object e∗ ∈ S with the smallest distance
to q, namely:

dist(q, e∗) = min
e∈S

dist(q, e).

The object e∗ is a nearest neighbor of q.

Ideally, we would like to preprocess S into a data structure such that all nearest neighbor queries
can be answered efficiently, no matter what the metric space is. Unfortunately, this is impossible: n
distances must be calculated in the worst case, regardless of the preprocessing (we will discuss this
in Section 17.4). In other words, the trivial algorithm which simply computes the distances from
q to all the objects in S is already optimal. In fact, this problem is not easy even in the specific
metric space where U = N3 and dist is the Euclidean distance; see the remarks in Section 17.4

We therefore resort to approximation. Fix some constant c > 1. If e∗ ∈ S is a nearest neighbor
of an object q ∈ U \ S, an object e ∈ S is a c-approximate nearest neighbor of q if

dist(q, e) ≤ c · dist(q, e∗).

Accordingly, a c-approximate nearest neighbor (c-ANN) query returns an arbitrary c-approximate
nearest neighbor of q (note: even nearest neighbors may not be unique, let alone c-ANNs). Unfor-
tunately, this problem is still hopelessly difficult: calculating n distances is still necessary in the
“hardest” metric space (Section 17.4).

111

Lecture Notes of CSCI5610, CSE, CUHK

Fortunately, the metric spaces encountered in practice may not be so hard, such that by pre-
computing a structure of near-linear space we can answer c-ANN queries efficiently. For example,
this is possible for U = Nd with a constant dimensionality d, and dist being the Euclidean distance.
In this lecture, we will learn a structure for c = 3 that works for many metric spaces, and is generic
because it treats objects and the function dist as black boxes. It does not matter whether the
objects are multi-dimensional points or DNA sequences, or whether dist is the Euclidean distance
(for points) or the edit distance (for DNA sequences); our structure works in exactly the same way.

Crucial to the structure is the concept of doubling dimension which allows us to measure how
hard a metric space is. The performance of our structure is established with respect to the doubling
dimension. Our structure is efficient when the doubling dimension is small (i.e., the metric space is
easy), but is slow when the dimension is large (the metric space is hard). Even better, the concept
is data dependent. More specifically, even if the metric space (U, dist) is hard, the input set S
may still allow c-ANN queries to be answered efficiently, if the metric space (S, dist) has a small
doubling dimension. This is useful in practice: even though c-ANN search under the edit distance
may be difficult for arbitrary DNA sequences, it is possible to do much better on a particular set
S of sequences.

We need to be clear how to measure the space and query time of a structure (remember: we
will treat objects and the distance function as black boxes):

• The space of a structure is the number of memory cells occupied, plus the number of objects
stored. For example, “O(n) space” means not only the occupation of O(n) memory, but also
the storage of O(n) objects.

• The query time will be measured as the sum of two terms: (i) the number of atomic operations
of the RAM model, and (ii) the number of times that dist is invoked. For example, “O(log n)
time” means that the algorithm performs O(log n) atomic operation and calculates O(log n)
distances.

We define the aspect ratio of S as

∆(S) =

(
sup

e1,e2∈S
dist(e1, e2)

)
/

(
inf

distinct e1,e2∈S
dist(e1, e2)

)
(17.1)

namely, the ratio between the maximum and minimum pair-wise distances in S.

Notations. We will reserve e, x, y, z for objects, and X,Y for sets of objects.

17.1 Doubling dimension

Consider an arbitrary metric space (U, dist). We will formalize its doubling dimension in three
definitions:

Definition 17.1. Let X be a non-empty subset of U . The diameter of X — denoted as diam(X)
— is the maximum distance of two objects in X, or formally:

sup
e1,e2∈X

dist(e1, e2).

112

Lecture Notes of CSCI5610, CSE, CUHK

e1

e2

e3

e4

e5

e6

e7

e8

Figure 17.1: When U = N2 and dist is the Euclidean distance, any set X of points can be divided
into 7 disjoint subsets whose diameters are at most 1

2diam(X).

Definition 17.2. A non-empty X ⊆ U can be 2λ-partitioned (where λ ≥ 0 is a real value) if X
can be divided into (disjoint) subsets X1, X2, ..., Xm such that

• m ≤ 2λ

• every Xi (i ∈ [m]) has diameter at most 1
2diam(X).

Definition 17.3. The doubling dimension of the metric space (U, dist) is the smallest real value
λ such that every finite non-empty X ⊆ U can be 2λ-partitioned.

Example. Let us look at a specific metric space where U = N2 and dist is the Euclidean distance.
We will show that (N2,Euclidean) has a doubling dimension less than 3.

Suppose that we are given any set X of points in N2 with |X| ≥ 2; Figure 17.1 shows an example
where X is a finite set of 8 points. Denote by D the smallest disc covering X; in Figure 17.1, D is
enclosed by the circle in solid line. The diameter of D is at most diam(X) (think: why?). We can
always find 7 discs D1, ..., D7 of diameter 1

2diam(D) such that they together cover D (the proof
requires only high-school geometry, and is left as an exercise); in the figure, those discs are indicated
in dashed lines. Now, assign each point e ∈ X to a disc that covers it; if e is covered by more than
one disc, assign it to an arbitrary disc (but only one disc). For each i ∈ [1, 7], define Xi as the
set of points assigned to disc Di. Thus, X1, ..., X7 partition X; and each Xi has diameter at most
1
2diam(D) ≤ 1

2diam(X).

It thus follows that X can be 2log2 7-partitioned. Therefore, the metric space has a doubling
dimension of log2 7 < 3.

The fact below follows immediately from Definition 17.3:

Proposition 17.4. For any non-empty subset X ⊆ U , the doubling dimension of (X, dist) is no
more than that of (U, dist).

113

Lecture Notes of CSCI5610, CSE, CUHK

17.2 Two properties in the metric space

Balls. Recall that, in Rd, a “ball” is the set of points inside a d-dimensional sphere (a 2D ball is
a disc). Next, we generalize the concept to metric spaces:

Definition 17.5. For any object e ∈ U and real value r ≥ 0, the ball B(e, r) includes all the
objects e′ ∈ U such that dist(e, e′) ≤ r. The object e is the center of the ball, while the value r is
the radius.

In Rd, a d-dimensional ball of radius r can be covered by 2O(d) balls of radius Ω(r). A similar
result holds for metric spaces too.

Lemma 17.6. Let λ be the doubling dimension of the metric space (U, dist), and c ≥ 1 be a
constant. Then, any ball B(e, r) can be covered by at most 2O(λ) balls of radius r/c, namely, there
exist objects e1, ..., em ∈ U such that

• m ≤ 2O(λ);

• B(e, r) ⊆
⋃m
i=1B(ei, r/c).

Proof. Set X = B(e, r). The triangle inequality implies that diam(X) ≤ 2r (think: why?).

Let us first prove the theorem for c = 2. By definition of λ, we can divide X into subsets
X1, ..., Xm′ (m′ ≤ 2λ) all of which have diameter at most r. In turn, each Xi (i ∈ [m]′) can
be divided into at most 2λ subsets, each of which has diameter at most r/2, and hence, can be
covered by a ball with radius r/2 (think: why?). It thus follows that X can be covered by at most
2λ · 2λ = 22λ balls of radius r/2.

The proof for the case c 6= 2 is left to you as an exercise.

Constant aspect-ratio object sets. In Rd, you can place at most 2O(d) points in a sphere
of radius 1 while ensuring the distance of any two points to be at least 1/2. The next lemma
generalizes this to any metric space:

Lemma 17.7. Suppose that the metric space (X, dist) has doubling dimension λ, and that the
aspect ratio of X is bounded by a constant. Then, X can have no more than 2O(λ) objects.

Proof. If |X| = 1, the lemma is vacuously true. Next, we consider |X| ≥ 2. Define:

distmin = inf
distinct x1,x2∈X

dist(x1, x2)

Thus, diam(X)/distmin = ∆(X) = O(1). This means diam(X) ≤ O(1) · distmin .

Set

c = 4 · diam(X)

distmin
= 4 ·∆(X) = O(1).

Take any object x ∈ X. Clearly, the entire X ⊆ B(x, diam(X)). By Lemma 17.6, B(x, diam(X))
is covered by m ≤ 2O(λ) balls of radius diam(X)/c = 1

4distmin . Denote those balls as B1, ..., Bm.

EachBi (i ∈ [m]) can cover exactly one object inX. To see this, assume that e is the center ofBi.
If Bi contains two objects x, y ∈ X, it must hold that dist(x, y) ≤ dist(x, e) + dist(e, y) ≤ 1

2distmin ,
which contradicts the definition of distmin .

114

Lecture Notes of CSCI5610, CSE, CUHK

r

Figure 17.2: A sample net example: X is the set of all points shown, and Y the set of black points.

17.3 A 3-approximate nearest neighbor structure

We are now ready to introduce the promised 3-ANN structure. As before, denote by (U, dist) the
underlying metric space, and by S ⊆ U the input set of n ≥ 2 objects. Set

h = dlog2 diam(S)e (17.2)

where diam(S) is the diameter of S (Definition 17.1). Denote by λ the doubling dimension of
(S, dist); note that λ can be smaller than the doubling dimension of (U, dist) (Proposition 17.4).

We aim to establish:

Theorem 17.8. There is a structure of 2O(λ) · n · h space that answers a 3-ANN query in 2O(λ) · h
time.

When λ = O(1), the space is O(nh) and the query time is O(h). In Section 17.4, we will discuss
a number of scenarios where this is true.

17.3.1 Sample nets

Definition 17.9. Consider any X ⊆ S and any real value r > 0. A non-empty Y ⊆ X is an
r-sample net of X if the following two conditions hold:

• for any distinct objects y1, y2 ∈ Y , dist(y1, y2) > r;

• X ⊆
⋃
y∈Y B(y, r).

Note that the second bullet indicates that, for any object x ∈ X, Y has an object y such that
dist(x, y) ≤ r. See Figure 17.2 for an example for the metric space (N2, Euclidean).

115

Lecture Notes of CSCI5610, CSE, CUHK

......

Yh

Yh−1

Yh−2

Yh−3

Y0

Figure 17.3: Illustration of G

17.3.2 Structure

Our strategy is to gradually “sparsify” the input set S. Define for each i ∈ [0, h]:

Yi = 2i-sample net of S.

The following facts are obvious:

• Yh has a single object, noticing that 2h ≥ diam(S) (see (17.2));

• |Yi| ≤ n for all i.

It thus follows that the total size of Y0, Y1, ..., Yh is O(n · h).

We will build a directed graph G as follows. The vertices of G form h+1 layers 0, 1, ..., h, where
the i-th layer (1 ≤ i ≤ h) contains a vertex for each object in Yi. Edges of G exist only between
two consecutive layers. Specifically, an object y (a.k.a. vertex) in Yi (i ≥ 1) has an out-going edge
to an object z (a.k.a. vertex) in Yi−1 if and only if

dist(y, z) ≤ 7 · 2i. (17.3)

See Figure 17.3 for an illustration.

For each object y ∈ Yi, we denote by N+
i (y) the set of out-neighbors of y. Each node in N+

i (y)
will be referred to as a child of y.

Lemma 17.10. |N+
i (y)| = 2O(λ).

Proof. Due to Lemma 17.7, it suffices to show that N+
i (y) has a constant aspect ratio. Clearly,

N+
i (y) ⊆ Yi−1; hence, any two distinct objects z1, z2 ∈ N+

i (y) must have distance at least 2i−1. On
the other hand, dist(z1, z2) ≤ dist(z1, y) + dist(y, z2) ≤ 7 · 2i + 7 · 2i = 14 · 2i. Therefore, N+

i (y) has
an aspect ratio at most 28.

The G constitutes our data structure. It is clear that the space consumption is 2O(λ) · n · h.

116

Lecture Notes of CSCI5610, CSE, CUHK

17.3.3 Query

Given a query object q ∈ U \ S, we descend a single path π in G as follows:

• The first node visited is the root of G, namely, the sole vertex in Yh.

• Suppose that π contains an object (i.e., vertex) y ∈ Yi for some i ≥ 1. Then, we add to π the
child z of y with the smallest dist(q, z), breaking ties arbitrarily.

Then, we return the object in π closest to q as our final answer.

The query time is clearly 2O(λ) · h (Lemma 17.10). In the rest of the section, we will prove that
our answer is a 3-ANN of q.

Denote by e∗ the (exact) nearest neighbor of q. Let yh, yh−1, ..., y0 be the objects in π, where yi
belongs to Yi for each i ∈ [0, h]. It suffices to prove that at least one of yh, yh−1, ..., y0 has distance
to q at most 3 · dist(q, e∗).

Let j be the largest integer satisfying

dist(q, yj) > 3 · 2j . (17.4)

Note that j may not exist. Indeed, our argument proceeds differently depending on whether it
does.

Case 1: j does not exist. This means d(q, y0) ≤ 3 · 20 = 3 ≤ 3 · dist(q, e∗), where the last
inequality used the fact that dist(q, e∗) ≥ 1 (recall that q /∈ S).

Case 2: j = h. In other words, dist(q, yh) > 3 · 2h ≥ 3 · diam(S). We have:

dist(q, e∗) ≥ dist(q, yh)− dist(e∗, yh)

≥ 3 · diam(S)− diam(S) = 2 · diam(S) (17.5)

which intuitively means that q is far away from the entire S. We can further derive:

dist(q, yh) ≤ dist(q, e∗) + dist(e∗, yh)

≤ dist(q, e∗) + diam(S)

≤ 1.5 · dist(q, e∗)

where the last inequality used (17.5).

Case 3: j < h. It thus follows that dist(q, yj+1) ≤ 3 · 2j+1. Next, we will argue that yj+1 is a
3-ANN of q.

Recall that Yj is a 2j-sample net of S. Hence, there must exist an object z ∈ Yj such that
dist(e∗, z) ≤ 2j .

Lemma 17.11. z is a child of yj+1.

Proof.

dist(z, yj+1) ≤ dist(z, e∗) + dist(e∗, yj+1)

≤ dist(z, e∗) + dist(q, e∗) + dist(q, yj+1)

(e∗ is the nearest neighbor) ≤ dist(z, e∗) + 2dist(q, yj+1)

≤ 2j + 2 · 3 · 2j+1 < 7 · 2j+1.

117

Lecture Notes of CSCI5610, CSE, CUHK

Also recall that yj is the child of yj+1 closest to q, which means:

dist(q, z) ≥ dist(q, yj) ≥ 3 · 2j .

We now have:

dist(q, e∗) ≥ dist(q, z)− dist(e∗, z)

≥ 3 · 2j − 2j = 2j+1.

Therefore, dist(q, yj+1) ≤ 3 · dist(q, e∗).

We now complete the whole proof of Theorem 17.8.

17.4 Remarks

The above structure, which is due to Krauthgamer and Lee [27], is efficient when the underlying
metric space (U, dist) has a small doubling dimension λ. This is true when U = Nd for a constant
dimensionality d, and dist is the Euclidean distance. It can be proved [3] that (Nd,Euclidean) has
a doubling dimension of O(d) = O(1) (you will be asked to prove a somewhat weaker statement
in an exercise). It immediately follows from Theorem 17.8 (with an improvement you will see in
the exercises) that, we can store a set S of n points in Nd in a structure of O(n · log ∆(S)) space
such that a 3-ANN of any query point can be found in O(log ∆(S)) time. In comparison, for exact
nearest neighbor search in N3 (Euclidean distance), no known structure can achieve n polylog n
space and polylog n query time simultaneously, even if ∆(S) is a polynomial of n.

Given a point p ∈ Nd, let us use p[i] to denote the coordinate of p on dimension i. For any real
value t > 0, the so-called Lt-norm between two points p and q is:(

d∑
i=1

∣∣∣p[i]− q[i]∣∣∣t)1/t

.

The Euclidean distance is simply the L2 norm. It is known that the metric space (Nd, Lt-norm)
also has doubling dimension O(d), regardless of t. When d is a constant, we can once again obtain
an efficient 3-ANN structure using Theorem 17.8.

What if λ is large? In this case, the metric space is “hard”; and Theorem 17.8 does not work
for all inputs S. In the next lecture, we will introduce another technique that permits us to deal
with some hard metric spaces (but not all). On the other hand, note that the λ in Theorem 17.8
pertains only to the metric space (S, dist), as opposed to (U, dist). Hence, if the input set S is
“easy”, the theorem still yields a good structure, even though the underlying metric space is hard.

Let us also briefly discuss lower bounds. Remember that our goal is to design a generic data
structure that treats objects and distance functions as black boxes. In that case, a simple adversary
argument suffices to show that no structure can avoid calculating n distances in answering a query
if the exact nearest neighbor is desired. For this purpose, simply define a set S of n objects where
the distance between any two distinct objects is 4. Now, issue a query with an object q /∈ S. Design
the distances in such a way that dist(q, e∗) = 1 for exactly one object e∗ ∈ q while dist(q, e) = 4
for all other e ∈ S \ {e∗}. The design clearly satisfies the requirements of a metric space. The
trick, however, is that the adversary decides which object in S is e∗ by observing how the query
algorithm A runs. Specifically, whenever A asks for the distance dist(q, x) for some x ∈ S, the

118

Lecture Notes of CSCI5610, CSE, CUHK

adversary answers 4. The only exception happens when x is the last object in S whose distance to
q has not been calculated; in this case, the adversary answers dist(q, x) = 1, i.e., setting e∗ = x.
Therefore, A cannot terminate before all the n distances have been calculated (think: what could
go wrong if A terminates, say, after computing n− 1 distances?).

The same argument also shows that n distances must be calculated even if our goal is to return
a 3-ANN (think: why?). Krauthgamer and Lee [27] presented a stronger lower bound argument.
They showed that if λ is the doubling dimension of the metric space (S, dist), 2Ω(λ) log |S| distances
must be calculated to answer c-ANN queries with constant c.

Finally, it is worth mentioning that Krauthgamer and Lee [27] developed a more sophisticated
structure that uses O(n) space and answers any (1 + ε)-ANN query in 2O(λ) log ∆(S) + (1/ε)O(λ)

time, where λ is the doubling dimension of (S, dist) and ε > 0 is an arbitrary real value.

119

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1*. Prove: in R2, any disc of radius 1 can be covered by 7 discs of radius 1/2.

(Hint: observe the intersection points made by the 7 + 1 = 8 circles in Figure 17.1.)

Problem 2. Finish the proof of Lemma 17.6.

(Hint: for c < 2, manually increase c to 2. To prove c = 4, apply the argument in the proof of
Lemma 17.6 twice.)

Problem 3. Given an algorithm to find an r-sample net of S in O(n2) time where n = |S|.

Problem 4. Consider the metric space (U, dist) where dist(e, e′) = 1 for any distinct e, e′ ∈ U . If
U has a finite size, what is the doubling dimension of (U, dist)?

Problem 5*. Prove: the metric space (Nd,Euclidean) has doubling dimension O(d log d).

(Hint: in 2D space, a disc of radius 1 is covered by a square of side length 2, and covers a square
of side length

√
2. Extend this observation to Nd.)

Problem 6. Let w be the word length. Let Nw be the set of integers from 0 to 2w − 1. Let P be
a set of n points in Ndw where d is a fixed constant. The value of n satisfies w = Θ(log n). Describe
a structure of O(n log n) space such that, given any point q ∈ Ndw, we are able to find a 3-ANN of
q in P using O(log n) time. The distance metric is the Euclidean distance.

Problem 7*. Improve the structure of Theorem 17.8 to achieve 2O(λ) ·O(n · log ∆(S)) space and
2O(λ) ·O(log ∆(S)) query time.

(Hint: Yi = S until i becomes sufficiently large).

120

Lecture 18: Approximate Nearest Neighbor Search 2:

Locality Sensitive Hashing

This lecture continues our discussion on the c-approximate nearest neighbor (c-ANN) search prob-
lem. We will learn a technique called locality sensitive hashing (LSH). If (U, dist) is a metric space
with a constant doubling dimension λ, LSH usually performs worse than the structure of Theo-
rem 17.8. However, the power of LSH is reflected in its ability to deal with “hard” metric spaces
with large λ.

For example, consider the metric space (U, dist) = (Nd,Euclidean), where the dimensionality d
should not be regarded as a constant. The metric space has doubling dimension Θ(d). Theorem 17.8
yields a structure that calculates 2min{log2 n,Ω(d)} distances, which is already n even for d = Ω(log n)!
In fact, for a difficult problem like this, it is challenging even just to beat the naive query algorithm
(which computes n distances) by a polynomial factor, while consuming a polynomial amount of
space; e.g., O((dn)2) space and O(dn0.99) query time would make a great structure. LSH allows us
to achieve the purpose.

When the objects in U and dist are treated as black boxes, we will measure the space and query
time of a structure in a more careful manner compared to the last lecture:

• The space of a structure is expressed with two terms: (i) the number of memory cells occupied,
and (ii) the number of objects stored.

• The query time is also expressed with two terms: (i) the number of atomic operations per-
formed, and (ii) the number of distances calculated.

Notations and math preliminaries. We will reserve e, x for objects, and Z for sets of objects.
Given a set Z ⊆ U , we denote by diam(Z) the diameter of Z, defined in the same way as in
Definition 17.1.

If Z1, Z2 are two sets of objects, their multi-set union is the collection of all the objects in Z1

and Z2, with duplicates retained.

If x is a point in Nd, x[i] denotes its coordinate on the i-th dimension (i ∈ [1, d]).

We will reserve X for random variables. If X ≥ 0 is a real-valued random variable, we must
have for any t ≥ 1

Pr
[
X ≥ t ·E[X]

]
≤ 1

t
(18.1)

which is known as Markov’s inequality.

121

Lecture Notes of CSCI5610, CSE, CUHK

qe1

e2

e3

q

e1 e2

e3

q

e1

e2

e3

(a) Case 1 (b) Case 2 Case 3

Figure 18.1: Illustrate of (r, 2)-near neighbor queries

18.1 (r, c)-near neighbor search

We will define a problem called (r, c)-near neighbor search, where r ≥ 1 and c > 1 are real values.
Let S be a set of n objects in U . Given an object q ∈ U , an (r, c)-near neighbor query — abbreviated
as (r, c)-NN query — returns:

• Case 1: an object with distance at most cr to q, if S has an object with distance at most r
to q;

• Case 2: nothing, if S has no object with distance at most cr to q;

• Case 3: either nothing or an object with distance at most cr to q, otherwise.

Example. Suppose that U = N2 and dist is the Euclidean distance. Figure 18.1(a) illustrates
Case 1, where the inner and outer circles have radii r and 2r, respectively. S = {e1, e2, e3}. The
cross point q indicates an (r, 2)-NN query. Since dist(q, e1) ≤ r, the query must return an object,
but the object can be either e1 or e2. In Figure 18.1(b), however, the query must not return
anything because all the objects in S have distances to q greater than 2r (Case 2). Figure 18.1(c)
demonstrates Case 3, where the query may or may not return something; however, if it does, the
object returned must be either e2 or e3.

Lemma 18.1. Suppose that, for any r ≥ 1 and constant c > 1, we know how to build a structure
on S that answers (r, c)-NN queries. By building O(log diam(S)) such structures, we can answer
any c2-ANN query on S by issuing O(log diam(S)) (r, c)-NN queries with the same c but different
r.

The proof is left to you as an exercise. In the rest of the lecture, we will focus on (r, c)-NN
search.

18.2 Locality sensitive hashing

A random function h as a function that is drawn from a family H of functions according to a certain
distribution.

Definition 18.2. Consider a metric space (U, dist). Let r, c, p1, and p2 be real values satisfying:

122

Lecture Notes of CSCI5610, CSE, CUHK

• r ≥ 1, c > 1;

• 0 < p2 < p1 ≤ 1.

A random function h : U → N is an (r, cr, p1, p2)-locality sensitive hash function if:

• for any objects x, y ∈ U satisfying dist(x, y) ≤ r, it holds that Pr[h(x) = h(y)] ≥ p1;

• for any objects x, y ∈ U satisfying dist(x, y) > cr, it holds that Pr[h(x) = h(y)] ≤ p2.

We will abbreviate ‘locality sensitive hash function” as “LSH function”. Given a (r, cr, p1, p2)-
LSH function h, we define

ρ =
ln(1/p1)

ln(1/p2)
(18.2)

as the log-ratio of h. Note that ρ < 1.

Lemma 18.3. (The amplification lemma) Suppose that we know how to obtain an (r, cr, p1, p2)-
LSH function h. Then, for any integer ` ≥ 1, we can build an (r, cr, p`1, p

`
2)-LSH function g such

that for any object x:

• g(x) can be computed in cost O(`) times higher than h(x);

• g(x) can be stored in O(`) space.

Proof. Take ` independent (r, cr, p1, p2)-LSH functions h1, h2, ..., h`. Design g(x) to be the string
that concatenates h1(x), h2(x), ..., h`(x). For any objects x and y, g(x) = g(y) if and only if
hi(x) = hi(y) for all i ∈ [1, `].

Example. We will describe how to obtain an (r, cr, p1, p2)-LSH function for (Nd,Euclidean). First,
generate d independent random variables α1, α2, ..., αd each of which follows the normal distribution
(i.e., mean 0 and variance 1). Let β > 0 be a real value that depends on c, and γ a real value
generated uniformly at random in [0, β]. For any point x ∈ Nd, define:

h(x) =

⌊
γ +

∑d
i=1(αi · x[i]/r)

β

⌋
. (18.3)

Lemma 18.4 ([15]). For any r ≥ 1 and any constant c > 0, the function in (18.3) is an
(r, cr, p1, p2)-LSH function satisfying:

• p2 is a constant;

• the log-ratio ρ of the function is at most 1/c.

The proof is non-trivial and not required in this course.

123

Lecture Notes of CSCI5610, CSE, CUHK

18.3 A structure for (r, c)-NN search

We will now describe a structure for answering (r, c)-NN queries on a set S of n objects in U ,
assuming the ability to build (r, cr, p1, p2)-LSH functions with a log-ratio ρ (see (18.2)). Denote by
tlsh the time needed to evaluate the value of an (r, cr, p1, p2)-LSH function (e.g., tlsh = O(d) for the
function in (18.3)).

Our goal is to prove:

Theorem 18.5. There is a structure using O(n1+ρ · log1/p2 n) memory cells and storing O(n1+ρ)
objects that can answer one single (r, c)-NN query correctly with probability at least 1/10. The query
time is O(nρ · log1/p2 n · tlsh), plus the cost of calculating O(nρ) distances.

You may be disappointed: the structure can answer only one query with a low success proba-
bility. Don’t be! Using standard techniques, we can improve the structure to support an arbitrary
number of queries with high probability (e.g., 1− 1/n100), by increasing the space and query time
only by a logarithmic factor; you will explore this in an exercise.

18.3.1 Structure

Let ` ≥ 1 and L ≥ 1 be integers to be determined later. Use Lemma 18.3 to obtain L independent
(r, cr, p`1, p

`
2)-LSH function g1, g2, ..., gL. For each i ∈ [1, L], define a bucket as a maximal set of

objects x ∈ S with the same gi(x). A hash table Ti collects all the non-empty buckets.

The hash tables T1, ..., TL constitute our structure. The space consumption is O(n·L·`) memory
cells plus O(n · L) objects.

18.3.2 Query

Consider an (r, c)-NN query with search object q. For each i ∈ [1, L], let bi be the bucket of gi(q).

We take a collection Z of 2L+ 1 arbitrary objects from the multi-set union of b1, ..., bL. In the
special case where

∑L
i=1 |bi| ≤ 4L+1, Z collects all the objects in those buckets. We find the object

e in Z closest to q, breaking ties arbitrarily. Return e if dist(q, e) ≤ cr, or nothing, otherwise.

The query time is O (tlsh · ` · L) atomic operations, plus the cost of computing O(L) distances.

18.3.3 Analysis

We now choose the values of ` and L:

` = log 1
p2

n (18.4)

L = nρ. (18.5)

Clearly, the space and query time of our structure match the claims in Theorem 18.5. We
still need to prove that the query algorithm succeeds with probability at least 1/10. It suffices to
consider that S contains an object e∗ with dist(q, e∗) ≤ r; otherwise, the algorithm is obviously
correct (think: why?).

An object x ∈ S is good if dist(q, x) ≤ cr, or bad otherwise. Note that we succeed only if a good
object is returned.

Lemma 18.6. The query is answered correctly if the following two conditions hold:

124

Lecture Notes of CSCI5610, CSE, CUHK

• C1: e∗ appears in at least one of b1, ..., bL;

• C2: there are at most 2L bad objects in the multi-set union of b1, ..., bL.

Proof. If the multi-set union of b1, ..., bL has a size at most 2L, then C1 ensures e∗ ∈ Z. Otherwise,
by C2, Z must contain at least a good object.

Lemma 18.7. C1 fails with probability at most 1/e.

Proof.

Pr

[
e∗ /∈

L⋃
i=1

bi

]
=

L∏
i=1

Pr[e∗ /∈ bi]

=
L∏
i=1

(
1− Pr[gi(e

∗) = gi(q)]
)

(gi is an (r, cr, p`1, p
`
2)-LSH function) ≤

L∏
i=1

(
1− p`1

)
=

(
1− p`1

)L
. (18.6)

By (18.4), we know

p`1 = p
log1/p2

n

1

=
(

(1/p2)log1/p2
p1
)log1/p2

n

= nlog1/p2
p1

= (1/n)log1/p2
(1/p1)

= n−ρ.

Therefore:

(18.6) =
(

1− n−ρ
)L
≤ exp

(
−n−ρ · L

)
= 1/e

where the “≤” used the fact (1 + z) ≤ ez for all z ≥ 0, and the last equality used (18.5).

Lemma 18.8. C2 fails with probability at most 1/2.

Proof. Let X be the total number of bad objects in the multi-set union of b1, ..., bL. Fix an arbitrary
i ∈ [1, L]. Since gi is an (r, cr, p`1, p

`
2)-LSH function, a bad object has probability at most p`2 = 1/n

to fall in the same bucket as q. Hence, in expectation, there is at most 1 bad object in bi. This
means E[X] ≤ L. By Markov’s inequality (18.1), Pr[X ≥ 2L] ≤ 1/2.

Therefore, C1 and C2 hold simultaneously with probability at least 1− (1/e+1/2) > 0.1. This
completes the proof of Theorem 18.5.

125

Lecture Notes of CSCI5610, CSE, CUHK

18.4 Remarks

The LSH technique was proposed by Indyk and Motwani [24]. Today, effective LSH functions have
been found for a large variety of spaces (U, dist), making the technique applicable to many distance
functions. The function (18.3) is due to Datar, Immorlica, Indyk, and Mirrokni [15]. The function
requires generating only d+ 1 real values: α1, ..., αd, and γ. This is not a problem in practice, but
we must exercise care in theory. Consider, for example, γ, which is a real value in [0, β]. In the
RAM model, we simply cannot generate γ because the only random atomic operation — RAND
(Lecture 1) — has only finite precision. The same issue exists for α1, ..., αd whose distributions
are even more complex. To remedy the issue, we must carefully analyze the amount of precision
required to attain a sufficiently accurate version of Lemma 18.4, which is rather difficult (and
tedious). We will not delve into that in this course.

Exercises

Problem 1. Prove Lemma 18.1.

Problem 2. Prove the following stronger version of Theorem 18.5: there is a structure using
O(n1+ρ · log1/p2 n · log n) memory cells and storing O(n1+ρ · log n) objects that can answer one single

(r, c)-NN query correctly with probability at least 1 − 1/n100. The query time is O(nρ · log1/p2 n ·
tlsh · log n), plus the cost of calculating O(nρ · log n) distances.

(Hint: build O(log n) independent structures of Theorem 18.5; a query succeeds if it succeeds
in any of those structures.)

Problem 3. Prove an even stronger statement: there is a structure using O(n1+ρ · log1/p2 n · log n)

memory cells and storing O(n1+ρ · log n) objects that, with probability at least 1−1/n2, can answer
n98 (r, c)-NN queries correctly. The query time is O(nρ · log1/p2 n · tlsh · log n), plus the cost of
calculating O(nρ · log n) distances.

(Hint: if each query fails with probability at most 1/n100, the probability of answering all n98

queries correctly is at least 1− 1/n2.)

Problem 4. Let w be the word length. Let Nw be the set of integers from 0 to 2w − 1. Let P be
a set of n points in Ndw where d ≥ 1 should not be regarded as a constant. The value of n satisfies
w = Θ(log n). Given a point q ∈ Ndw, a query returns a 4-ANN of q in P . Describe a structure
of Õ(dn1.5) space that can answer one query in Õ(d

√
n) time with probability at least 1− 1/n100.

The distance metric is the Euclidean distance.

Problem 5 (LSH for the hamming distance). Consider U = {0, 1}d where d ≥ 1 is an integer.
Call each element in U a string (i.e., a bit sequence of length d). Given a string e, use e[i] to denote
its i-th bit, for i ∈ [1, d]. Given two strings e1, e2, dist(e1, e2) equals the number of indexes at which
e1 and e2 differ, or formally |{i ∈ [1, d] | e1[i] 6= e2[i]}|.

Design a function family H where each function maps a string x ∈ {0, 1}d to {0, 1}. Specifically,
H has exactly d functions h1, ..., hd where

hi(x) = x[i].

126

Lecture Notes of CSCI5610, CSE, CUHK

A random function h is drawn uniformly at random from H. For any integers r ≥ 1 and c ≥ 2,
prove: h is a (r, cr, d−rd , d−crd)-LSH function.

127

Lecture 19: Pattern Matching on Strings

In this lecture, we will discuss data structures on strings. Denote by Σ an alphabet which can be
an arbitrarily large set (possibly infinite) where each element is called a character. A string σ is
defined as a finite sequence of characters; denote by |σ| the length of σ. Specially, define an empty
sequence — denoted as ∅ — as a string of length 0. We will use σ[i] (1 ≤ i ≤ |σ|) to represent the
i-th character of σ, and σ[i : j] (1 ≤ i ≤ j ≤ |σ|) to represent the substring of σ which concatenates
σ[i], σ[i+ 1], ..., σ[j]. We will assume that each character in Σ can be stored in a cell.

Suppose that we are given a (long) string σ∗ of length n. Given a string q, we say that a
substring σ∗[i : j] is an occurrence of q if

• j − i+ 1 = |q|, and

• q[x] = q[i+ x− 1] for every x ∈ [1, |q|].

A pattern matching query reports the starting positions of all the occurrences of q, namely, all
i ∈ [1, |σ|] such that σ∗[i : i+ |q| − 1] is an occurrence of q.

Example. Suppose that σ∗ = aabcaabcabc. Given q = abc, the query should return 2, 6, and 9,
whereas given q = aabca, the query should return 1 and 5.

We want to store Σ in a data structure such that all pattern matching queries can be answered
efficiently. We will refer to this as the pattern matching problem. Our goal is to prove:

Theorem 19.1. There is a data structure that consumes O(n) space, and answers any pattern
matching query with a non-empty search string q in O(|q|+ occ) time, where occ is the number of
occurrences of q.

Both the space usage and the query time are optimal.

19.1 Prefix matching

Consider two strings q and σ with |q| ≤ |σ|. We say that q is a prefix of σ if q = σ[1 : |q|]. For
example, aabc is a prefix of aabcaab. The empty string ∅ is a prefix of any string.

Our discussion will mainly concentrate on a different problem called prefix matching. Let S be
a set of n distinct non-empty strings σ1, σ2, .., σn. The subscript i ∈ [1, n] will be referred to as
the id of σi. We are not responsible for storing S; to make this formal, we assume that there is an
oracle which, given any i ∈ [1, n] and any j ∈ [1, |σi|], tells us the character σi[j] in constant time.
Given a query string q, a prefix matching query reports all the ids i ∈ [1, n] such that q is a prefix
of σi. We want to design a data structure such that any such query can be answered efficiently.

Example. Suppose that S consists of 11 strings as shown in Figure 19.1. Given q = abc, the query
should return 3, 6, and 10, whereas given q = aabca, the query should return 7 and 11.

128

Lecture Notes of CSCI5610, CSE, CUHK

c

bcabc

aabcaabcabc

bc
abc
cabc

abcabc
aabcabc
caabcabc
bcaabcabc
abcaabcabc

σ1
σ2
σ3
σ4
σ5
σ6

σ7
σ8
σ9
σ10

σ11

Figure 19.1: An input set S of strings for the prefix matching problem

We will prove:

Theorem 19.2. There is a data structure that consumes O(n) space, and answers any prefix
matching query with a non-empty search string q in O(|q|+ k) time, where k is the number of ids
reported.

Sections 19.2 and 19.3 together serve as a proof of the above lemma.

19.2 Tries

Let us append a special character ⊥ to each string in S; e.g., σ2 in Figure 19.1 now becomes bc⊥.
The distinctness of the (original) strings in S ensures that, with ⊥ appended, now no string in S
is a prefix of another.

In this section, we will introduce a simple structure — which is called the trie — that is able
to achieve the query time in Theorem 19.2, but consumes more space than desired.

We define a trie on S as a tree T satisfying all the properties below:

• Every edge of T is labeled with a character in Σ.

• Concatenating the characters on any root-to-leaf path in Σ gives a string in S.

• There do not exist distinct nodes u, v in T such that, concatenating the characters on the
root-to-u path gives the same string as concatenating the characters on the root-to-v path.

The second bullet implies that the number of leaf nodes of T is precisely n (i.e., the number of
strings in Σ).

Example. Figure 19.2 shows a trie T on the set S of strings in Figure 19.1. The right most path
of T , for example, corresponds to the string cabc⊥.

We answer a prefix-matching query q as follows. At the beginning, set i = 0 and u to the root
of T . Iteratively, assuming i < |q|, we carry out the steps below:

1. Check whether u has a child v such that the edge (u, v) is labeled with q[i].

2. If not, terminate the algorithm by returning nothing.

3. Otherwise, set u to v, and increment i by 1.

4. If i < |q|, repeat from Step 1.

129

Lecture Notes of CSCI5610, CSE, CUHK

a b c

ba

ba

b

c

a

c

⊥

b

c

a

b

c

⊥

c

⊥ a

a b

b

c

a

b

c

⊥

c

⊥

c

⊥ a

ba

b

c

a

b

c

⊥

c

⊥

⊥ a

ba

b

c

a

b

c

⊥

c

⊥

u1

u2

v1

v2

v3

Figure 19.2: A trie

5. Otherwise, report the ids of strings corresponding to the leaves underneath u.

Example. Consider answering a query with a = abc on the trie of Figure 19.2. The query algo-
rithm descends to the node marked as a black square. There are three leaves under that node,
corresponding to strings σ3, σ6, and σ10, respectively.

The correctness of the algorithm is obvious. To implement the algorithm in O(|q| + k) time,
we need to (i) find v at Step 1 or declare its absence in O(1) time, and (ii) report all the k leaves
underneath the final u in O(k) time. Achieving these purposes is easy and left to you as an exercise.

T , however, can have Ω(
∑n

i=1 |σi|) nodes, and thus, may consume more than O(n) space.
However, we have not utilized a crucial property stated in the prefix-matching problem: we are not
responsible for storing S! In the next section, we will show how to leverage the property to reduce
the space to O(n) without affecting the query time.

19.3 Patricia Tries

A trie may have many nodes that have only one child (see Figure 19.2). Intuitively, such nodes
waste space because they do not help to distinguish the strings in S. Our improved structure —
called the Patricia trie — saves space by compressing such nodes.

Let the first define the longest common prefix (LCP) of S as the longest string that is a prefix
of all the strings in S.

Example. For example, if S is the set of strings in Figure 19.1, then the LCP is ∅. On the other

130

Lecture Notes of CSCI5610, CSE, CUHK

0,σ3

a b c

8,σ7

1,σ3

b
a

5,σ7 3,σ3

ba

12,σ11

⊥ a

4,σ6

ba

11,σ10 7,σ6

4,σ3

2,σ2

3,σ2

⊥ a

3,σ4

ba

10,σ9 6,σ5

1,σ1

2,σ1

⊥ a

2,σ4

ba

5,σ49,σ8

Figure 19.3: A Patricia trie

hand, if S consists of only σ3, σ6, and σ10, then the LCP is abc. If we add also σ11 to S, then the
LCP becomes a.

Given a string π, we define Sπ = {σ ∈ S | π is a prefix of σ}.

Example. Let S be the set of strings in Figure 19.1. Sa = {σ3, σ6, σ7, σ10, σ11} and Saabca =
{σ7, σ11}.

Now consider π to be the the LCP of S. Given a character x ∈ Σ, we denote by π ◦x the string
obtained by appending x to π. We call x an extension character of S if |Sπ◦x| ≥ 1. Note that π
being an LCP implies Sπ◦x is a proper subset of S.

Proposition 19.3. If |S| ≥ 2, then S has at least two extension characters.

The proof is easy and left to you.

Example. Let S be the set of strings in Figure 19.1. Its LCP is ∅. Characters a, b, and c are
all extension characters. For Saa = {σ7, σ11}, the LCP is aabca. Character c is not an extension
character of Saa because Sπ◦c is empty. The extension characters of Saa are a and b.

We are ready to define the Patricia trie T on a non-empty S recursively:

• If S has only a single string σ, T is a tree with only one node, labeled as (|σ|, id(σ)) where
id(σ) is the id of σ.

• Consider now |S| ≥ 2. Let π be the LCP of S, and X be the set of extension characters of S.
T is a tree where

– the root is labeled as (|π|, id(σ)), where σ is an arbitrary string in S;

– for every extension character x ∈ X, the root has a subtree which is the Patricia trie on
Sπ◦x.

Example. Figure 19.3 shows the Patricia trie on the set S of strings in Figure 19.1. Recall that
each string in Figure 19.1 has been appended with the special character ⊥.

We leave the proof of the following lemma to you as an exercise:

131

Lecture Notes of CSCI5610, CSE, CUHK

Lemma 19.4. The patricia trie on S has n leaves and at most n− 1 internal nodes.

As mentioned earlier, the Patricia trie is merely a compressed version of the trie. We illustrate
this using an example:

Example. Compare the Patricia trie in Figure 19.3 to the trie in Figure 19.2. It is easy to see that
nodes (1, σ3) and (5, σ7) in Figure 19.3 correspond to nodes u1 and u2 in Figure 19.2, respectively.
As explained next, whenever needed, the entire path u1 a−→v1 b−→v2 c−→v3 a−→u2 in Figure 19.2 can be
reconstructed based on the integer 5 and string σ7.

Denote by S′ the set of strings corresponding to the leaves in the left subtree of node u2 in
Figure 19.2 (S′ = {σ7, σ11} but we do not need this in the following discussion). By how the
Patricia trie was constructed, from (5, σ7) we know that S′ must have an LCP π of length 5. As
can be inferred from (1, σ3), for constructing the path u1 a−→v1 b−→v2 c−→v3 a−→u2, it suffices to derive the

last 5 − 1 = 4 characters of π, i.e., π[2], π[3], π[4], and π[5]. This is easy: π[i] is simply σ7[i] for
each 2 ≤ i ≤ 5, and thus, can be obtained from the oracle in constant time.

The proof for the next lemma is left as an exercise.

Lemma 19.5. The patricia trie on S can be used to answer any prefix matching query with a
non-empty search string q in O(|q|+ k) time, where k is the number of ids reported. .

Theorem 19.2 thus follows from Lemmas 19.4 and 19.5.

19.4 The suffix tree

We now return to the pattern matching problem. Recall that the input is a string σ∗ of length n.
For each i ∈ [1, n], define

σi = σ∗[i : n].

Note that σi is a suffix of σ∗. The next fact is immediate:

Proposition 19.6. For any non-empty string q and any i ∈ [1, n], σ∗[i : i+ |q|−1] is an occurrence
of q if and only if q is a prefix of σi.

Create a structure of Theorem 19.2 on S = {σi | i ∈ [1, n]}. The structure — called the suffix
tree on S — achieves the performance guarantees in Theorem 19.1. The proof is left to you as an
exercise (think: what is the oracle?).

19.5 Remarks

The suffix tree is due to McCreight [30]. Farach [18] developed a (rather sophisticated) algorithm
for constructing the tree in O(n) time.

132

Lecture Notes of CSCI5610, CSE, CUHK

Exercises

Problem 1. Complete the query algorithm in Section 19.2 to achieve the time complexity of
O(|q|+ k).

Problem 2. Complete the proof of Lemma 19.4.

(Hint: Proposition 19.3 implies that every internal node has at least two children.)

Problem 3. Complete the proof of Lemma 19.5.

Problem 4. Complete the proof of Theorem 19.1 in Section 19.4.

Problem 5. Let σ∗ be a string of length n. Design a data structure of O(n) space such that, given
any non-empty string q, we can report the number of occurrences of q in σ∗ in O(|q|) time.

Problem 6*. Let S be a set of n strings σ1, σ2, ..., σn. Define m =
∑n

i=1 |σi|. Given a non-empty
string q, an occurrence of q is defined by a pair (i, j) such that σi[j : j + |q| − 1] = q. A general
pattern matching query reports all such pairs. Design a data structure of O(m) space that can
answer any query in O(|q|+ occ) time, where occ is the number of occurrences of q.

133

Appendix A: Basic Mathematical Facts

Fact A.1. For any integers n and k satisfying 1 ≤ k ≤ n, it holds that (nk)k ≤
(
n
k

)
≤ (enk)k.

Lemma A.2 (Union Bound). For any probabilistic events E1, E2, ..., Et, it holds that

Pr[E1 ∨ E2 ∨ ... ∨ Et] ≤
t∑
i=1

Pr[Et].

134

Bibliography

[1] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal range reporting in three and higher
dimensions. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 149–158, 2009.

[2] S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal range searching.
In Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 198–207, 2000.

[3] P. Assouad. Plongements lipschitziens dans rn. Bull. Soc. Math. France, 111(4):429–448, 1983.

[4] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Latin American Sympo-
sium on Theoretical Informatics (LATIN), volume 1776, pages 88–94.

[5] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM (CACM), 18(9):509–517, 1975.

[6] J. L. Bentley. Solutions to klee’s rectangle problems. Technical report, Carnegie Mellon
University, 1977.

[7] J. L. Bentley. Decomposable searching problems. Information Processing Letters (IPL),
8(5):244–251, 1979.

[8] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic transfor-
mation. Journal of Algorithms, 1(4):301–358, 1980.

[9] N. Blum and K. Mehlhorn. On the average number of rebalancing operations in weight-
balanced trees. Theoretical Computer Science, 11:303–320, 1980.

[10] T. M. Chan, K. G. Larsen, and M. Patrascu. Orthogonal range searching on the ram, revisited.
In Proceedings of Symposium on Computational Geometry (SoCG), pages 1–10, 2011.

[11] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal of Comput-
ing, 15(3):703–724, 1986.

[12] B. Chazelle. A functional approach to data structures and its use in multidimensional searching.
SIAM Journal of Computing, 17(3):427–462, 1988.

[13] B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting case. Journal of
the ACM (JACM), 37(2):200–212, 1990.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second
Edition. The MIT Press, 2001.

135

Lecture Notes of CSCI5610, CSE, CUHK

[15] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. In Proceedings of Symposium on Computational Geometry (SoCG),
pages 253–262, 2004.

[16] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.
Journal of Computer and System Sciences (JCSS), 38(1):86–124, 1989.

[17] H. Edelsbrunner. Dynamic data structures for orthogonal intersection queries. Report F59,
Inst. Informationsverarb., Tech. Univ. Graz, 1980.

[18] M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 137–143, 1997.

[19] M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic data structures. In
Proceedings of ACM Symposium on Theory of Computing (STOC), pages 345–354, 1989.

[20] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[21] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal of Computing, 13(2):338–355, 1984.

[22] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarith-
mic time per operation. Journal of the ACM (JACM), 46(4):502–516, 1999.

[23] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of
the ACM (JACM), 48(4):723–760, 2001.

[24] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of ACM Symposium on Theory of Computing (STOC), pages
604–613, 1998.

[25] J. JaJa, C. W. Mortensen, and Q. Shi. Space-efficient and fast algorithms for multidimensional
dominance reporting and counting. pages 558–568, 2004.

[26] D. C. Kozen. The Design and Analysis of Algorithms. Springer New York, 1992.

[27] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity search. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
798–807, 2004.

[28] D. T. Lee and C. K. Wong. Quintary trees: A file structure for multidimensional database
systems. ACM Transactions on Database Systems (TODS), 5(3):339–353, 1980.

[29] G. S. Lueker. A data structure for orthogonal range queries. In Proceedings of Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 28–34, 1978.

[30] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM
(JACM), 23(2):262–272, 1976.

[31] E. M. McCreight. Efficient algorithms for enumerating intersecting intervals and rectangles.
Report CSL-80-9, Xerox Palo Alto Res. Center, 1980.

136

Lecture Notes of CSCI5610, CSE, CUHK

[32] E. M. McCreight. Priority search trees. SIAM Journal of Computing, 14(2):257–276, 1985.

[33] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIAM Journal of
Computing, 2(1):33–43, 1973.

[34] M. H. Overmars. The Design of Dynamic Data Structures. Springer-Verlag, 1987.

[35] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[36] M. Patrascu. Lower bounds for 2-dimensional range counting. In Proceedings of ACM Sym-
posium on Theory of Computing (STOC), pages 40–46, 2007.

[37] M. Patrascu and M. Thorup. Time-space trade-offs for predecessor search. In Proceedings of
ACM Symposium on Theory of Computing (STOC), pages 232–240, 2006.

[38] J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash functions. SIAM
Journal of Computing, 19(5):775–786, 1990.

[39] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM
(JACM), 22(2):215–225, 1975.

[40] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space.
Information Processing Letters (IPL), 6(3):80–82, 1977.

[41] J. Vuillemin. A data structure for manipulating priority queues. Communications of the ACM
(CACM), 21(4):309–315, 1978.

[42] D. E. Willard. The super-b-tree algorithm. Technical report, Harvard University, 1979.

[43] D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Information
Processing Letters (IPL), 17(2):81–84, 1983.

137

	Course Overview and Computation Models
	The Binary Search Tree and the 2-3 Tree
	The binary search tree
	The 2-3 tree
	Remarks

	Structures for Intervals
	The interval tree
	The segment tree
	Remarks

	Structures for Points
	The kd-tree
	Bootstrapping
	The priority search tree
	The range tree
	Pointer-machine structures
	Remarks

	Global Rebuilding and Charging Arguments
	Amortized cost
	Charging arguments
	Dynamic arrays

	The Logarithmic Method
	Decomposable problems
	The logarithmic method
	Remarks

	Weight Balancing
	BB[]-trees
	Insertion
	Deletion
	Amortized analysis
	Dynamization with weight balancing
	Remarks

	Partial Persistence
	The potential method
	Partially persistent BST
	General pointer-machine structures
	Remarks

	Dynamic Perfect Hashing
	Two random graph results
	Amortized expected update cost
	Cuckoo hashing
	Analysis
	Remarks

	Binomial and Fibonacci Heaps
	The binomial heap
	The Fibonacci heap
	Remarks

	Union-Find Structures
	Structure and algorithms
	Analysis 1
	Analysis 2*
	Remarks

	Dynamic Connectivity on Trees
	Euler tour
	The Euler-tour structure
	Dynamic connectivity
	Augmenting an ETS
	Remarks

	Dynamic Connectivity on a Graph
	An edge leveling technique
	Dynamic connectivity
	Remarks

	Range Min Queries (Lowest Common Ancestor)
	How many different inputs really?
	Tabulation for short queries
	A structure of O(n logn) space
	Remarks

	The van Emde Boas Structure(Y-Fast Trie)
	A structure of O(n logU) space
	Improving the space to O(n)
	Remarks

	Leveraging the Word Length w = (logn) (2D Orthogonal Range Counting)
	The first structure: O(n logn) space and O(logn) query time
	Improving the space to O(n)
	Remarks

	Approximate Nearest Neighbor Search 1: Doubling Dimension
	Doubling dimension
	Two properties in the metric space
	A 3-approximate nearest neighbor structure
	Remarks

	Approximate Nearest Neighbor Search 2: Locality Sensitive Hashing
	(r,c)-near neighbor search
	Locality sensitive hashing
	A structure for (r,c)-NN search
	Remarks

	Pattern Matching on Strings
	Prefix matching
	Tries
	Patricia Tries
	The suffix tree
	Remarks

	Basic Mathematical Facts

