Lecture Notes: Minimum Enclosing Balls

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

March 26, 2024

Let P be a set of n points in \mathbb{R}^d . We want to find a ball B with the smallest radius to cover all the points in P. We refer to B as the minimum enclosing ball (MEB) of P and denote it as MEB(P). The MEB of P can be found in O(n) expected time in any constant dimensionality. This lecture will explain how to do so in 2D space, and in an exercise you will be asked to extend the algorithm to $d \geq 3$. Our discussion will make the general position assumption that no four points fall on the same circle.

1 Geometric Facts in 2D Space

Lemma 1. There is only one ball with the smallest radius covering all the points in P.

Proof. Assume, on the contrary, that there are two such balls B_1 and B_2 ; see the figure below. Then, P must be covered by the shaded area. Let π_1 and π_2 the intersection points of the two balls. Consider the ball B centering at the midpoint o of the segment $\overline{\pi_1 \pi_2}$ and having a radius half the length of $\overline{\pi_1 \pi_2}$. The ball B covers the shaded area (and hence, also P) but is smaller than B_1 and B_2 , giving a contradiction.

Lemma 2. The boundary of MEB(P) passes at least two points of P.

Proof. Let C be the boundary of MEB(P). If C passes no points of P, shrink C infinitesimally to obtain a smaller ball still covering P, which contradicts the definition of C.

Suppose that C passes only one point $p \in P$. Let o be the center of C. Consider sliding a point o' from o towards p infinitesimally, and look at the circle C' centered at o' with radius equal to the length of segment $\overline{o'p}$. C' is smaller than C but still contains P in the interior. This again gives a contradiction.

Lemma 3. Let C_1 and C_2 be two intersecting circles such that C_1 is no larger than C_2 (in terms of radius). Denote by L the area inside both circles. Consider an arbitrary point p that is covered by C_2 but not by C_1 . Then, there exists a circle C that is smaller than C_2 , passes points p, π_1 , π_2 , and covers the area L.

See the figure below for an illustration, where C is the circle in dashed line.

Proof. Let us first review a rudimentary geometric fact. Fix two distinct points π_1 and π_2 . Consider all the circles passing both π_1 and π_2 . The centers of these circles must be on the perpendicular bisector of segment $\overline{\pi_1 \pi_2}$. Every such circle C can be divided into (i) a left arc, which is the part of C on the left of $\overline{\pi_1 \pi_2}$, and (ii) a right arc, which is the part of C on the right of $\overline{\pi_1 \pi_2}$. As the center o of C moves away from the midpoint m of segment $\overline{\pi_1 \pi_2}$ towards right, the left arc "morphs" towards $\overline{\pi_1 \pi_2}$, while the right arc "morphs" away from $\overline{\pi_1 \pi_2}$; furthermore, C grows continuously. The behavior is symmetric when o moves towards left.

Returning to the context of the lemma, let π_1 and π_2 be the intersection points of C_1 and C_2 . Imagine "morphing" a circle C from C_2 to C_1 while ensuring that C passes π_1 and π_2 . Stop as soon as the right arc of C hits p. As C_1 is no larger than C_2 , we know that C must be smaller than C_2 (think: why?). Thus, C is the circle we are looking for.

2 Two Points Are Known

Next, we will discuss a variant of the MEB problem. Let p_1 and p_2 be two points in P such that at least one ball has the following property: it encloses the entire P and its boundary passes both p_1 and p_2 . We want to find such a ball with the smallest radius, denoted as MEB $(P, \{p_1, p_2\})$; this ball must be unique (the proof is similar to that of Lemma 1 and left as an exercise). We can solve the problem in O(n) time using the algorithm below.

Algorithm 1: Two-Points-Fixed-MEB $(P, \{p_1, p_2\})$

 $B \leftarrow$ the smallest ball covering p_1 and p_2 $(p_3, p_4, ..., p_n) \leftarrow$ an arbitrary permutation of the other points in P3 for i = 3 to n do $\mid if p_i \notin B$ then $\mid B \leftarrow$ the ball whose boundary passes p_1, p_2 , and p_i 6 return B

The next lemma proves the algorithm's correctness.

Lemma 4. Define $P_i = \{p_1, ..., p_i\}$ for each $i \in [1, n]$. For any $i \in [2, n]$, define $B_i^* = \text{MEB}(P_i, \{p_1, p_2\})$. If $p_{i+1} \in B_i^*$, then $B_{i+1}^* = B_i^*$. Otherwise, the boundary of B_{i+1}^* must pass p_{i+1} .

Proof. If $p_{i+1} \in B_i^*$, then $B_{i+1}^* = B_i^*$ follows from the uniqueness of MEB $(P_{i+1}, \{p_1, p_2\})$. Next, we consider $p_{i+1} \notin B_i^*$.

Assume on the contrary that the boundary of B_{i+1}^* does not pass p_{i+1} . Hence, p_{i+1} falls in the interior B_{i+1}^* . The radius of B_{i+1}^* cannot be smaller than that of B_i^* (both of them cover P_i and pass p_1 and p_2 , but B_i^* is MEB($P_i, \{p_1, p_2\}$)). The entire P_i must fall in the intersection of B_i^* and B_{i+1}^* (the shaded area in the figure below). By Lemma 3, there exists a ball smaller than B_{i+1}^* covering P_{i+1} and passing p_1, p_2 , which gives a contradiction.

3 One Point Is Known

Next, we will look at a less restrictive variant of the problem. Let p_1 be a point in P such that at least one ball has the following property: it encloses the entire P and its boundary passes p_1 . We want to find such a ball with the smallest radius, denoted as $MEB(P, \{p_1\})$; this ball must be unique (the proof is similar to that of Lemma 1 and left as an exercise). We can solve the problem using the algorithm below.

Algorithm 2: One-Point-Fixed-MEB $(P, \{p_1\})$

 $(p_2, p_3, ..., p_n) \leftarrow$ a random permutation of $P \setminus \{p_1\}$ $B \leftarrow$ the smallest ball covering p_1 and p_2 3 for i = 3 to n do $\mid if p_i \notin B$ then $\mid B \leftarrow$ Two-Points-Fixed-MEB $(\{p_1, ..., p_i\}, \{p_1, p_i\})$ 6 return B

The next lemma proves the algorithm's correctness.

Lemma 5. Define $P_i = \{p_1, ..., p_i\}$ for each $i \in [1, n]$. For any $i \in [2, n]$, define $B_i^* = \text{MEB}(P_i, \{p_1\})$. If $p_{i+1} \in B_i^*$, then $B_{i+1}^* = B_i^*$. Otherwise, the boundary of B_{i+1}^* must pass p_{i+1} .

Proof. The argument is nearly identical to the one used to prove Lemma 4. We will focus only one the case where $p_{i+1} \notin B_i^*$.

Assume on the contrary that the boundary of B_{i+1}^* does not pass p_{i+1} . Hence, p_{i+1} falls in the interior B_{i+1}^* . The radius of B_{i+1}^* cannot be smaller than that of B_i^* . The entire P_i must fall in the intersection of B_i^* and B_{i+1}^* (the shaded area in the figure below). By Lemma 3, there exists a ball smaller than B_{i+1}^* covering P_{i+1} and passing p_1 , which gives a contradiction.

Let us analyze the running time of the algorithm. Let t_i be the expected time of the iteration (Lines 3-5) for a specific $i \in [3, n]$. We will prove $\mathbf{E}[t_i] = O(1)$. At the beginning of the iteration, $B = B_{i-1}^*$ (guaranteed by the above lemma). The iteration takes O(i) time if $p_i \notin B_{i-1}^*$, or O(1) time otherwise.

Other than p_1 , the boundary of B_{i-1}^* must pass at least one more point in P_i (the proof is similar to that of Lemma 2 and left to you), but no more than two more points (due to our general position assumption). We deal with these cases separately:

- B_{i-1}^* passes two more points $\pi_1, \pi_2 \in P_i$. The event $p_i \notin B_{i-1}^*$ occurs only if $p_i = \pi_1$ or $p_i = \pi_2$, which happens with probability 2/(i-1) (backward analysis).
- B passes only one more point $\pi_1 \in P_i$. The event $p_i \notin B_{i-1}^*$ occurs only if $p_i = \pi_1$, which happens with probability 1/(i-1) (backward analysis).

It thus follows that $\mathbf{E}[t_i] = O(1)$.

4 No Point Is Known

We are ready to tackle the MEB problem in its most general form.

Algorithm 3: MEB(P)

 $(p_1, ..., p_n) \leftarrow$ a random permutation of P $B \leftarrow$ the smallest ball covering p_1 and p_2 3 for i = 3 to n do $\mid if p_i \notin B$ then $\mid B \leftarrow$ One-Point-Fixed-MEB($\{p_1, ..., p_i\}, \{p_i\}$) 6 return B

The next lemma proves the algorithm's correctness.

Lemma 6. Define $P_i = \{p_1, ..., p_i\}$ for each $i \in [1, n]$. For any $i \in [2, n]$, define $B_i^* = \text{MEB}(P_i)$. If $p_{i+1} \in B_i^*$, then $B_{i+1}^* = B_i^*$. Otherwise, the boundary of B_{i+1}^* must pass p_{i+1} .

Proof. The argument is again nearly identical to the one used to prove Lemma 4. We will discuss only the case where $p_{i+1} \in B_i^*$. Assume on the contrary that the boundary of B_{i+1}^* does not pass p_{i+1} . Hence, p_{i+1} falls in the interior B_{i+1}^* . The radius of B_{i+1}^* cannot be smaller than that of B_i^* . The entire P_i must fall in the intersection of B_i^* and B_{i+1}^* . By Lemma 3, there exists a ball smaller than B_{i+1}^* covering P_{i+1} , which gives a contradiction.

We can once again apply backward analysis to prove that Algorithm 3 runs in O(n) expected time. The details should have become straightforward and are left as an exercise.