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Let P be a set of n points in Rd. We want to find a ball B with the smallest radius to cover all the
points in P . We refer to B as the minimum enclosing ball (MEB) of P and denote it as MEB(P ).
The MEB of P can be found in O(n) expected time in any constant dimensionality. This lecture
will explain how to do so in 2D space, and in an exercise you will be asked to extend the algorithm
to d ≥ 3. Our discussion will make the general position assumption that no four points fall on the
same circle.

1 Geometric Facts in 2D Space

Lemma 1. There is only one ball with the smallest radius covering all the points in P .

Proof. Assume, on the contrary, that there are two such balls B1 and B2; see the figure below.
Then, P must be covered by the shaded area. Let π1 and π2 the intersection points of the two balls.
Consider the ball B centering at the midpoint o of the segment π1π2 and having a radius half the
length of π1π2. The ball B covers the shaded area (and hence, also P ) but is smaller than B1 and
B2, giving a contradiction.
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Lemma 2. The boundary of MEB(P ) passes at least two points of P .

Proof. Let C be the boundary of MEB(P ). If C passes no points of P , shrink C infinitesimally to
obtain a smaller ball still covering P , which contradicts the definition of C.

Suppose that C passes only one point p ∈ P . Let o be the center of C. Consider sliding a point
o′ from o towards p infinitesimally, and look at the circle C ′ centered at o′ with radius equal to the
length of segment o′p. C ′ is smaller than C but still contains P in the interior. This again gives a
contradiction.
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Lemma 3. Let C1 and C2 be two intersecting circles such that C1 is no larger than C2 (in terms
of radius). Denote by L the area inside both circles. Consider an arbitrary point p that is covered by
C2 but not by C1. Then, there exists a circle C that is smaller than C2, passes points p, π1, π2, and
covers the area L.

See the figure below for an illustration, where C is the circle in dashed line.
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Proof. Let us first review a rudimentary geometric fact. Fix two distinct points π1 and π2. Consider
all the circles passing both π1 and π2. The centers of these circles must be on the perpendicular
bisector of segment π1π2. Every such circle C can be divided into (i) a left arc, which is the part
of C on the left of π1π2, and (ii) a right arc, which is the part of C on the right of π1π2. As the
center o of C moves away from the midpoint m of segment π1π2 towards right, the left arc “morphs”
towards π1π2, while the right arc “morphs” away from π1π2; furthermore, C grows continuously.
The behavior is symmetric when o moves towards left.
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Returning to the context of the lemma, let π1 and π2 be the intersection points of C1 and C2.
Imagine “morphing” a circle C from C2 to C1 while ensuring that C passes π1 and π2. Stop as soon
as the right arc of C hits p. As C1 is no larger than C2, we know that C must be smaller than C2

(think: why?). Thus, C is the circle we are looking for.
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2 Two Points Are Known

Next, we will discuss a variant of the MEB problem. Let p1 and p2 be two points in P such that at
least one ball has the following property: it encloses the entire P and its boundary passes both p1
and p2. We want to find such a ball with the smallest radius, denoted as MEB(P, {p1, p2}); this
ball must be unique (the proof is similar to that of Lemma 1 and left as an exercise). We can solve
the problem in O(n) time using the algorithm below.

Algorithm 1: Two-Points-Fixed-MEB(P , {p1, p2})
1 B ← the smallest ball covering p1 and p2
2 (p3, p4, ..., pn)← an arbitrary permutation of the other points in P
3 for i = 3 to n do
4 if pi /∈ B then
5 B ← the ball whose boundary passes p1, p2, and pi

6 return B

The next lemma proves the algorithm’s correctness.

Lemma 4. Define Pi = {p1, ..., pi} for each i ∈ [1, n]. For any i ∈ [2, n], define B∗
i = MEB(Pi, {p1, p2}).

If pi+1 ∈ B∗
i , then B∗

i+1 = B∗
i . Otherwise, the boundary of B∗

i+1 must pass pi+1.

Proof. If pi+1 ∈ B∗
i , then B∗

i+1 = B∗
i follows from the uniqueness of MEB(Pi+1, {p1, p2}). Next, we

consider pi+1 /∈ B∗
i .

Assume on the contrary that the boundary of B∗
i+1 does not pass pi+1. Hence, pi+1 falls in the

interior B∗
i+1. The radius of B∗

i+1 cannot be smaller than that of B∗
i (both of them cover Pi and

pass p1 and p2, but B
∗
i is MEB(Pi, {p1, p2})). The entire Pi must fall in the intersection of B∗

i and
B∗

i+1 (the shaded area in the figure below). By Lemma 3, there exists a ball smaller than B∗
i+1

covering Pi+1 and passing p1, p2, which gives a contradiction.
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3 One Point Is Known

Next, we will look at a less restrictive variant of the problem. Let p1 be a point in P such that
at least one ball has the following property: it encloses the entire P and its boundary passes p1.
We want to find such a ball with the smallest radius, denoted as MEB(P, {p1}); this ball must be
unique (the proof is similar to that of Lemma 1 and left as an exercise). We can solve the problem
using the algorithm below.
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Algorithm 2: One-Point-Fixed-MEB(P , {p1})
1 (p2, p3, ..., pn)← a random permutation of P \ {p1}
2 B ← the smallest ball covering p1 and p2
3 for i = 3 to n do
4 if pi /∈ B then
5 B ← Two-Points-Fixed-MEB({p1, ..., pi}, {p1, pi})

6 return B

The next lemma proves the algorithm’s correctness.

Lemma 5. Define Pi = {p1, ..., pi} for each i ∈ [1, n]. For any i ∈ [2, n], define B∗
i = MEB(Pi, {p1}).

If pi+1 ∈ B∗
i , then B∗

i+1 = B∗
i . Otherwise, the boundary of B∗

i+1 must pass pi+1.

Proof. The argument is nearly identical to the one used to prove Lemma 4. We will focus only one
the case where pi+1 /∈ B∗

i .
Assume on the contrary that the boundary of B∗

i+1 does not pass pi+1. Hence, pi+1 falls in the
interior B∗

i+1. The radius of B∗
i+1 cannot be smaller than that of B∗

i . The entire Pi must fall in the
intersection of B∗

i and B∗
i+1 (the shaded area in the figure below). By Lemma 3, there exists a ball

smaller than B∗
i+1 covering Pi+1 and passing p1, which gives a contradiction.
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Let us analyze the running time of the algorithm. Let ti be the expected time of the iteration
(Lines 3-5) for a specific i ∈ [3, n]. We will prove E[ti] = O(1). At the beginning of the iteration,
B = B∗

i−1 (guaranteed by the above lemma). The iteration takes O(i) time if pi /∈ B∗
i−1, or O(1)

time otherwise.
Other than p1, the boundary of B∗

i−1 must pass at least one more point in Pi (the proof is
similar to that of Lemma 2 and left to you), but no more than two more points (due to our general
position assumption). We deal with these cases separately:

• B∗
i−1 passes two more points π1, π2 ∈ Pi. The event pi /∈ B∗

i−1 occurs only if pi = π1 or pi = π2,
which happens with probability 2/(i− 1) (backward analysis).

• B passes only one more point π1 ∈ Pi. The event pi /∈ B∗
i−1 occurs only if pi = π1, which

happens with probability 1/(i− 1) (backward analysis).

It thus follows that E[ti] = O(1).

4 No Point Is Known

We are ready to tackle the MEB problem in its most general form.
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Algorithm 3: MEB(P )

1 (p1, ..., pn)← a random permutation of P
2 B ← the smallest ball covering p1 and p2
3 for i = 3 to n do
4 if pi /∈ B then
5 B ← One-Point-Fixed-MEB({p1, ..., pi}, {pi})

6 return B

The next lemma proves the algorithm’s correctness.

Lemma 6. Define Pi = {p1, ..., pi} for each i ∈ [1, n]. For any i ∈ [2, n], define B∗
i = MEB(Pi). If

pi+1 ∈ B∗
i , then B∗

i+1 = B∗
i . Otherwise, the boundary of B∗

i+1 must pass pi+1.

Proof. The argument is again nearly identical to the one used to prove Lemma 4. We will discuss
only the case where pi+1 ∈ B∗

i . Assume on the contrary that the boundary of B∗
i+1 does not pass

pi+1. Hence, pi+1 falls in the interior B∗
i+1. The radius of B∗

i+1 cannot be smaller than that of B∗
i .

The entire Pi must fall in the intersection of B∗
i and B∗

i+1. By Lemma 3, there exists a ball smaller
than B∗

i+1 covering Pi+1, which gives a contradiction.

We can once again apply backward analysis to prove that Algorithm 3 runs in O(n) expected
time. The details should have become straightforward and are left as an exercise.
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