
Lecture Notes: The Core of Backward Analysis

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

March 12, 2024

Backward analysis is a technique often deployed to bound the expected running time of random-
ized algorithms. In this lecture, we will discuss its core ideas through a contrived example. The next
few lectures will apply the technique to deal with non-trivial computational geometry problems.

Preliminaries. We will start by reviewing a rudimentary fact about probabilities. Let A be an
arbitrary event, and let B1, B2, ..., Bk (for any integer k ≥ 2) be mutually disjoint events that form
a partition of the probability space. It holds that

Pr[A] =
k∑

i=1

Pr[A | Bi] ·Pr[Bi]. (1)

For example, consider rolling a dice (with six facets) 10 times, each time getting a number from 1
to 6. Let A be the event “the 10 numbers obtained add up to at least 30”. Set k = 11 and for each
i ∈ [0, 10], define Bi be the event “among the 10 numbers obtained, i of them are 1”. The events
B0, B1, ..., B10 are mutually disjoint and cover the whole probability space because exactly one of
those events must occur in any case. From (1), we have Pr[A] =

∑10
i=0Pr[A | Bi] ·Pr[Bi].

A “Silly” Algorithm. Suppose that, given a set S of n ≥ 3 integers, our goal is to compute its
minimum bounding interval (MBI) [x, y], namely, x (resp., y) is the smallest (resp., largest) integer
of S. This can be trivially done in O(n) time, but our purpose is to illustrate backward analysis
through the following algorithm.

algorithm silly-MBI
1. randomly permute S and store the result in array A

/* this can be done in O(n) time; see the appendix */
2. x← min{A[1], A[2]} and y ← max{A[1], A[2]}
3. for i = 3 to n do
4. if A[i] ∈ [x, y] then continue

else
5. set x← min{A[1], A[2], ..., A[i]} by scanning A[1], A[2], ..., A[i] again
6. set y ← max{A[1], A[2], ..., A[i]} by scanning A[1], A[2], ..., A[i] again

/* note: Lines 5-6 cost O(i) time */

What a silly algorithm! Clearly, it requires O(n2) time in the worst case. At Line 5, any smart
student will choose to update x as min{x,A[i]}, which takes only O(1) time, as opposed to O(i); a
similar statement can be said about Line 6. These simple changes will allow you to reduce the time
complexity from O(n2) to O(n)!

Perhaps you would be surprised to learn that the silly-MBI algorithm is not too bad after all:
its expected running time is O(n)! Next, we will use backward analysis to prove it.

1



Analysis. We will focus on Lines 3-6, which perform an iteration for each i ∈ [3, n]. The iteration
for i takes

• O(1) time if A[i] ∈ [x, y] — in this case, we call this a lucky iteration;

• or O(i) time otherwise — in this case, we call this an unlucky iteration.

Let us introduce a random variable:

Xi =

{
1 if the iteration of i is unlucky
0 if the iteration of i is lucky

Thus, the iteration of i has an expected running time of O(1) +Pr[Xi = 1] ·O(i). Hence, we can
bound the overall expected cost of Lines 3-6 as

n∑
i=3

O(1) +Pr[Xi = 1] ·O(i). (2)

We will prove:

Lemma 1. Pr[Xi = 1] = 2/i.

Given the above lemma, the expected cost of silly-MBI in (2) evaluates to O(n), as claimed.
Before proving the lemma in general, let us discuss the special case of i = n: how to analyze
Pr[Xn = 1]? For this purpose, observe that the iteration of i = n is unlucky if and only if
A[n] is either the smallest or largest element of S. Due to random permutation (performed at
Line 1 of silly-MBI), every element of S has the same chance to sit at A[n]. It thus follows that
Pr[Xn = 1] = 2/n.

We are now ready to prove Lemma 1 for any i ∈ [3, n− 1]. Define a random variable

Π = the sequence A[i+ 1], A[i+ 2], ..., A[n]

Because the permutation is random, Π can take n!/i! possible “values”, each being a different way
to permute n− i elements of S; furthermore, each of those “values” occurs with the same probability.
To put this formally, let π be any possible permutation of n− i elements of S, it holds that

Pr[Π = π] = i!/n!.

We now apply (1) to derive

Pr[Xi = 1] =
∑
all π

Pr[Xi = 1 | Π = π] ·Pr[Π = π]

=
i!

n!

∑
all π

Pr[Xi = 1 | Π = π] (3)

We will argue shortly that Pr[Xi = 1 | Π = π] is always 2/i, with which we obtain

(3) =
i!

n!

∑
all π

2

i
= 2/i

where the last step used the fact that there are n!/i! different π.

2



All that remains is to prove Pr[Xi = 1 | Π = π] = 2/i. This, in fact, is no more complicated
than proving Pr[Xn = 1] = 2/i. Denote by S \π the set of elements in S that are outside π, namely,
S \ π = {e ∈ S | e /∈ π}. Under the event Π = π, the iteration of i is unlucky if and only if A[i] is
the smallest or largest element of S \ π. It thus follows that Pr[Xi = 1 | Π = π] = 2/i.

The approach we used to prove Pr[Xi = 1] is what is known as backward analysis.

Random Permutation. Let A be an array of n elements. The following algorithm computes a
random permutation of A:

algorithm permute
1. for i = 2 to n do
2. x← a random number in [1, i]
3. swap A[i] and A[x]

/* note: the swap has no effect if i = x */

The algorithm finishes in O(n) time.

3


