Grid Decomposition: Closest Pair

Yufei Tao

CSE Dept Chinese University of Hong Kong

Grid Decomposition: Closest Pair

1/14

(日)

Lemma (Packing Lemma): Impose a regular grid on \mathbb{R}^d where every cell is a box with side length *s* on each dimension. Any ball with radius *r* can overlap with no more than

$$\left(1+\left\lceil\frac{2r}{s}\right\rceil\right)^d$$

cells.

When d and r/s are constants, the number of overlapping cells is O(1).

2/14

The packing lemma is surprisingly useful for solving computational geometry problems. Today, we will demonstrate an application of the lemma on the **closest pair** problem.

3/14

イロト イポト イラト イラト

Let P be a set of points \mathbb{R}^d . The objective of the closest pair **problem** is to return a pair of distinct points $p, q \in P$ with the smallest Euclidean distance to each other.

重した Grid Decomposition: Closest Pair

We will present an algorithm to solve the closest pair problem in $O(n \log n)$ expected time.

5/14

・ロト ・同ト ・ヨト ・ヨト

We will focus on 2D. Divide P evenly using a vertical line ℓ . Let P_1 (or P_2) be the set of points on the left (or right) of ℓ . Recursively find the closest pairs in P_1 and P_2 , respectively.

 r_1 = the distance of the closest pair in P_1 r_2 = the distance of the closest pair in P_2 . Define $r = \min\{r_1, r_2\}$.

Next, we consider the cross pairs (p_1, p_2) where $p_1 \in P_1$ and $p_2 \in P_2$.

Observation: We can focus on only the cross pairs within distance *r*.

Grid Decomposition: Closest Pair

7/14

< 4 → <

Impose a grid G where (i) each cell is an axis-parallel square with side length $r/\sqrt{2}$, and (ii) ℓ is a line in the grid.

Each point p can be covered by at most 4 cells.

Grid Decomposition: Closest Pair

For each cell c, denote by c(P) the set of points in P covered by c.

Observation: For every c, $|c(P)| \le 2$.

The diagonal of c has length r. Convince yourself that c covering more than 2 points would contradict the definition of r.

Grid Decomposition: Closest Pair

Group the points by the cells they belong. A cell is **non-empty** if it covers at least one point. There can be at most 4n non-empty cells.

For each cell c, create a linked list containing the points in c(P). This can be done in O(n) expected time by hashing.

Two cells c_1 and c_2 are *r*-neighbors if their minimum distance is at most *r*.

Observation: A cell can have O(1) *r*-neighbor cells (Packing Lemma).

It suffices to consider non-empty cells c_1 and c_2 such that (i) c_1 (resp., c_2) is on the left (resp., c_2) of ℓ , and (ii) they are *r*-neighbors.

Grid Decomposition: Closest Pair

The above discussion motivates the following algorithm for finding the closest cross pair within distance r:

- 1. for every non-empty cell c_1 on the left of ℓ
- 2. **for** every *r*-neighbor cell c_2 of c_1 on the right of ℓ
- 3. calculate the distance of each pair of points $(p_1, p_2) \in c_1(P) \times c_2(P)$
- 4. **return** the closest one among all the pairs inspected at Line 3 within distance *r*.

Think: How to implement the algorithm in O(n) time?

13/14

・ 同 ト ・ ヨ ト ・ ヨ

Let f(n) be the expected running time of our algorithm on n points. It follows that

$$f(n) \leq 2 \cdot f(n/2) + O(n)$$

while f(n) = O(1) for $n \le 2$. The recurrence solves to $f(n) = O(n \log n)$.

14/14

A D > A B > A B > A B >