Dimensionality Reduction 2: Rectangle-Point Containment

Yufei Tao

CSE Dept Chinese University of Hong Kong

Yufei Tao

Dimensionality Reduction 2: Rectangle-Point Containment

э

1/13

< ロ > < 同 > < 回 > < 回 > < 回 > <

Problem

Let *R* be a set of axis-parallel rectangles and *P* be a set of points, all in \mathbb{R}^d , where *d* is a fixed constant. We want to report all pairs of $(r, p) \in R \times P$ such that *r* contains *p*.

We will show how to solve the problem in $O(n \operatorname{polylog} n + k)$ where n = |R| + |P| and k is the number of pairs reported.

Dimensionality Reduction 2: Rectangle-Point Containment

2/13

ロト (同) (ヨ) (ヨ) (ヨ)

When d = 1, R is a set of intervals and P a set of points, both in \mathbb{R} .

It is easy to settle the problem in $O(n \log n + k)$ time.

Dimensionality Reduction 2: Rectangle-Point Containment

э.

3/13

Assumption: *R* does not contain any rectangle of the form $(-\infty, \infty) \times [y_1, y_2]$ (i.e., a horizontal stripe).

Removing the assumption will be left to you (it is easy).

Every rectangle in R defines at most two **finite** x-coordinates, and each point in P defines one x-coordinate. Call those coordinates the **input** x-coordinates.

A left-open or right-open rectangle defines only one input x-coordinate.

-

4/13

Dimensionality Reduction 2: Rectangle-Point Containment

5/13

Divide the input x-coordinates in half with a vertical line ℓ .

We will assume that such a line ℓ exists. Handling the opposite scenario is left to you.

э.

6/13

・ロト ・同ト ・ヨト ・ヨト

The line ℓ creates two sub-problems.

Note that each sub-problem can contain left-open or right-open rectangles. No new input x-coordinates are created.

Dimensionality Reduction 2: Rectangle-Point Containment

э

7/13

・ロト ・同ト ・ヨト ・ヨト

Divide the right sub-problem into two "sub-sub-problems":

Issue: In the first sub-sub-problem, r_2 and r_3 define no input x-coordinates. Thus, we **cannot** solve the sub-sub-problem recursively (think: why).

8/13

Dealing with the issue: solve a 1D instance of the problem on the y-dimension and get rid of such rectangles.

э

9/13

- 4 同 ト - 4 回 ト

The 2D Algorithm

- Let *R_{span}* be the set of rectangles that do not define input x-coordinates (they span the current data space in x-dimension).
- 2. Solve a 1D instance on R' and P' where R' and P' are obtained by projecting R_{span} and P onto the y-axis, respectively.
- 3. Remove R_{span} from R.
- 4. Divide the input x-coordinates equally with a vertical line ℓ .
- 5. Let R_1 (or R_2) be the set of rectangles in R that intersect with the left (or right, resp.) side of ℓ . Let P_1 (or P_2) be the set of points in P that fall on the left (or right, resp.) side of ℓ .
- 6. Solve the left sub-problem with inputs R_1 , P_1 and the right sub-problem with inputs R_2 , P_2 .

-

10/13

不得た 不足た 不足た

Let f(m) be the running time of our algorithm when there are m input x-coordinates.

$$f(m) \leq 2 \cdot f(m/2) + 2 \cdot g(m)$$

where g(m) is the cost of solving a 1D instance of size m.

Dimensionality Reduction 2: Rectangle-Point Containment

-

11/13

・ 同 ト ・ ヨ ト ・ ヨ ト

2D Analysis

$$f(m) \leq 2 \cdot f(m/2) + 2 \cdot g(m)$$

We know that $g(m) = O(m \log m + k')$ (where k' is the number of pairs reported by the 1D instance). Solving the recurrence gives $f(m) = O(m \log^2 m + k)$.

As $m \leq 2n$, we now have an algorithm of $O(n \log^2 n + k)$ time.

Remark: In this week's exercises, you will be guided to improve the running time to $O(n \log n + k)$.

12/13

伺 ト イ ヨ ト イ ヨ ト

In general, we can use a (d-1)-dimensional algorithm to solve the *d*-dimensional problem. It will be left as an exercise to design a *d*-dimensional algorithm in $O(n \operatorname{polylog} n + k)$ time.

- E

13/13

・ 戸 ・ ・ ヨ ・ ・ ヨ ・