Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1*. Let $T : \mathbb{R}^d \to \mathbb{R}^d$ be an affine transformation. Given a set P of points in \mathbb{R}^d , define by $T(P) = \{T(p) \mid p \in P\}$, namely, T(P) is the set of points obtained by applying the affine transformation T to P. Prove: if $R \subseteq P$ is an ϵ -kernel of P, then T(R) is an ϵ -kernel of T(P).

Hint: Given a directional vector \boldsymbol{u} , the width of P at direction \boldsymbol{u} can be calculated as

$$W_{\boldsymbol{u}}(P) = \left(\max_{\boldsymbol{p}\in P} \boldsymbol{u}\cdot\boldsymbol{p}\right) - \left(\min_{\boldsymbol{p}\in P} \boldsymbol{u}\cdot\boldsymbol{p}\right)$$

where $\boldsymbol{u} \cdot \boldsymbol{p}$ is the dot product of vectors \boldsymbol{u} and \boldsymbol{p} . To prove the claim, use your knowledge from linear algebra to figure out how a dot product would change under an affine transformation. Recall that an affine transformation is: $T(\boldsymbol{p}) = \mathbf{A}\boldsymbol{p} + \boldsymbol{b}$ where \mathbf{A} is a $d \times d$ matrix, and both \boldsymbol{p} and \boldsymbol{b} are $d \times 1$ vectors.

Problem 2* $((1 - \epsilon)$ -Approximate Top-1 Search). Let P be a set of points in \mathbb{R}^d where d is a constant, and each point has a positive coordinate on every dimension. We will view each point $p \in P$ as a d-dimensional vector $\mathbf{p} = (p[1], p[2], ..., p[d])$ where p[i] $(1 \le i \le d)$ is the *i*-th coordinate of p. Given a directional vector \mathbf{u} where $u[i] \ge 0$ for each $i \in [d]$, define

$$\operatorname{top}_{\boldsymbol{u}}(P) = \max_{\boldsymbol{p} \in P} \boldsymbol{u} \cdot \boldsymbol{p}$$

where $\boldsymbol{u} \cdot \boldsymbol{p}$ is the dot product of vectors \boldsymbol{u} and \boldsymbol{p} . Given $0 < \epsilon < 1$, describe an algorithm that computes in O(n) expected time a subset $R \in P$ such that

- $|R| = O(1/\epsilon^d)$, and
- for any directional vector \boldsymbol{u} , it holds that $\operatorname{top}_{\boldsymbol{u}}(R) \geq (1-\epsilon) \cdot \operatorname{top}_{\boldsymbol{u}}(P)$.

Hint: Add the origin to P.

Problem 3. Prove the order-reversal property of dual transformation.

Problem 4. Prove the intersection preserving property of dual transformation.

Problem 5. Let ℓ_1 and ℓ_2 be two parallel non-vertical lines in the primal space \mathbb{R}^2 . Prove: their vertical distance equals the distance of points ℓ_1^* and ℓ_2^* in the dual space.

Problem 6. Let A, B, C, and D be four points in the primal space \mathbb{R}^2 that have distinct x coordinates. Suppose that triangle ABC has an area smaller than ABD. Let ℓ be the line passing points A and B in the primal space. Prove: in the dual space, point ℓ^* has a smaller vertical distance to line C^* than to line D^* .

Note: The vertical distance from a point (a, b) to a line $y = c_1 x - c_2$ equals $|b - (c_1 \cdot a - c_2)|$.