Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1* (General Binary Search). Let A be an array of n real values. If we start from some position and then look at these values in a cyclic manner, we see a pattern where the values initially increase monotonically and then decrease monotonically. For example, A = (10, 20, 30, 25, 15, 0, 5) has the property: by inspecting the values in the order "0, 5, 10, 20, 30, 25, 15", we observe the pattern mentioned earlier. On the other hand, A = (5, 20, 30, 25, 15, 0, 10) does not have the property. Design an algorithm to find the maximum value in A in $O(\log n)$ time.

Problem 2 (Gift Wrap). Let $P_1, ..., P_m$ be *m* arbitrary convex polygons, each of which has no more than *k* vertices. Let ℓ be a line in the plane such that all of $P_1, ..., P_m$ fall on the left side of ℓ . Now, fix a point *p* on ℓ . We want to turn ℓ counterclockwise with *p* as the pivot, and stop as soon as ℓ hits a vertex of any polygon (e.g., in the figure below, the answer is p'). Design an algorithm to find in $O(m \log k)$ time the first vertex hit.

Problem 3. Let S be a set of n points in \mathbb{R}^2 . You are given an integer \hat{k} that is guaranteed to be larger than or equal to the number of vertices on the convex hull of S. Give an algorithm that computes the convex hull in $O(n \log \hat{k})$ time.

(Hint: Arbitrarily divide S into groups of size \hat{k} and apply the result of Problem 2.)

Problem 4. Design an algorithm to compute the convex hull of n 2D points in $O(n \log k)$ time, where k is the number of points on the convex hull.