CSCI: Regular Exercise Set 2

Prepared by Yufei Tao

Problem 1. Prove $30\sqrt{n} = O(\sqrt{n})$.

Problem 2. Prove $\sqrt{n} = O(n)$.

Problem 3. Let f(n), g(n), and h(n) be functions of integer n. Prove: if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Problem 4. Prove $(2n+2)^3 = O(n^3)$.

Problem 5. Prove or disprove: $4^n = O(2^n)$.

Problem 6. Prove or disprove: $\frac{1}{n} = O(1)$.

Problem 7*. Prove that if $k \log_2 k = \Theta(n)$, then $k = \Theta(n/\log n)$.

Problem 8. We can extend the big-*O* notation to multiple variables. In this problem, we will focus on two variables, but the idea extends to more variables in a straightforward manner.

Formally, let f(n,m) and g(n,m) be functions of variables n and m satisfying $f(n,m) \ge 0$ and $g(n,m) \ge 0$. We say f(n,m) = O(g(n,m)) if there exist constants c_1 and c_2 such that $f(n,m) \le c_1 \cdot g(n,m)$ holds for all $n \ge c_2$ and $m \ge c_2$.

Prove:

- $n^2m + 100nm = O(n^2m)$.
- $n^2m + 100nm^2 = O(n^2m + nm^2).$