CSCI: Regular Exercise Set 2

Prepared by Yufei Tao

Problem 1. Prove $30 \sqrt{n}=O(\sqrt{n})$.
Problem 2. Prove $\sqrt{n}=O(n)$.
Problem 3. Let $f(n), g(n)$, and $h(n)$ be functions of integer n. Prove: if $f(n)=O(g(n))$ and $g(n)=O(h(n))$, then $f(n)=O(h(n))$.

Problem 4. Prove $(2 n+2)^{3}=O\left(n^{3}\right)$.
Problem 5. Prove or disprove: $4^{n}=O\left(2^{n}\right)$.
Problem 6. Prove or disprove: $\frac{1}{n}=O(1)$.
Problem 7*. Prove that if $k \log _{2} k=\Theta(n)$, then $k=\Theta(n / \log n)$.
Problem 8. We can extend the big- O notation to multiple variables. In this problem, we will focus on two variables, but the idea extends to more variables in a straightforward manner.

Formally, let $f(n, m)$ and $g(n, m)$ be functions of variables n and m satisfying $f(n, m) \geq 0$ and $g(n, m) \geq 0$. We say $f(n, m)=O(g(n, m))$ if there exist constants c_{1} and c_{2} such that $f(n, m) \leq c_{1} \cdot g(n, m)$ holds for all $n \geq c_{2}$ and $m \geq c_{2}$.

Prove:

- $n^{2} m+100 n m=O\left(n^{2} m\right)$.
- $n^{2} m+100 n m^{2}=O\left(n^{2} m+n m^{2}\right)$.

