ENGG1410-F Tutorial 5

Hao Xu

Department of Computer Science and Engineering The Chinese University of Hong Kong

Problem I: Eigenvalues and eigenvectors of a Diagonal Matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Calculate the eigenvalues of A.

Solution
Its characteristic equation is

$$
\begin{aligned}
\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 2-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right| & =0 \Rightarrow \\
(\lambda-1)(\lambda-2)(\lambda-3) & =0
\end{aligned}
$$

Hence, the eigenvalues are 1, 2, and 3 .

Remark: What patterns can you observe about the eigenvalues of a diagonal matrix?

Problem II: Eigenvalues and eigenvectors of a matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Do the following:

- Obtain all the eigenvalues A.
- One of the eigenvalues is 1 . Obtain all the eigenvectors of A corresponding to that eigenvalue.

Solution

Its characteristic equation is:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \Rightarrow \\
\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right| & =0 \Rightarrow \\
(\text { Expansion by } 2 \mathrm{nd} \text { col }) & \\
(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right| & =0 \Rightarrow \\
(1-\lambda)\left[(1-\lambda)^{2}-1\right] & =0 \Rightarrow \\
(1-\lambda)(1-\lambda-1)(1-\lambda+1) & =0 \Rightarrow \\
(1-\lambda)(\lambda)(2-\lambda) & =0 \Rightarrow \lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=2
\end{aligned}
$$

Solution Cont. - Calculate Eigenvectors
When $\lambda_{1}=1$

$$
\begin{aligned}
& \left(A-\lambda_{1} I\right) x
\end{aligned}=0 \Rightarrow \begin{gathered}
\\
{\left[\begin{array}{ccc}
1-1 & 0 & 1 \\
0 & 1-1 & 0 \\
1 & 0 & 1-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow}
\end{gathered}
$$

Any non-zero vectors satisfying

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
u \\
0
\end{array}\right]
$$

(with u begin an arbitrary real value) is an eigenvector of A corresponding to λ_{1}.

Problem III - Problem 4 in the Exercise list

Let A be an $n \times n$ square matrix such that A^{-1} exists. Prove: if λ is an eigenvalue of A, then $1 / \lambda$ is an eigenvalue of A^{-1}.

Problem IV - Geometric Interpretation of Eigenvalue/Eigenvectors

Suppose that we map each point (x, y) into its "image" $(x,-y)$, i.e., "mirroring" the original point by the x-axis. This mapping corresponds to the following linear transformation:

$$
\left[\begin{array}{c}
x \\
-y
\end{array}\right]=A\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Problem IV - Geometric Interpretation of Eigenvalue/Eigenvectors

Now consider an eigenvector $\left[\begin{array}{l}x \\ y\end{array}\right]$ of A corresponding to some eigenvalue λ. It must hold that

$$
\lambda\left[\begin{array}{l}
x \\
y
\end{array}\right]=A\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Combining the above with $\left[\begin{array}{c}x \\ -y\end{array}\right]=A\left[\begin{array}{l}x \\ y\end{array}\right]$ shows that $\lambda\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \\ -y\end{array}\right]$.
In other words, $(x, y),(x,-y)$, and the origin must all be on the same line! Where can (x, y) be? Answer: on the x - or y-axis!

As shown next, this is precisely the geometric interpretation of eigenvectors.

Problem IV - Geometric Interpretation of Eigenvalue/Eigenvectors

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

has eigenvalues: $\lambda_{1}=1, \lambda_{2}=-1$.
For eigenvalue 1 , the set of eigenvectors of A is $\left\{\left.\left[\begin{array}{l}u \\ 0\end{array}\right] \right\rvert\, u \in \mathbb{R}, u \neq 0\right\}$.
For eigenvalue -1 , the set of eigenvectors of A is $\left\{\left.\left[\begin{array}{l}0 \\ u\end{array}\right] \right\rvert\, u \in \mathbb{R}, u \neq 0\right\}$.
In general, let A be a square matrix. Given a point p, let q be the image of p under the linear transformation implied by A. If p is an eigenvector, then p, q, and the origin are all on the same line.

Problem IV - Geometric Interpretation of Eigenvalue/Eigenvectors
Consider now another matrix

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

The linear transformation of A rotates a vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ by 90 degrees counterclockwise into $\left[\begin{array}{c}-y \\ x\end{array}\right]$:

Problem IV - Geometric Interpretation of Eigenvalue/Eigenvectors

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

You won't be able to find p, q satisfying

In general, let A be a square matrix. Given a point p, let q be the image of p under the linear transformation implied by A. If p is an eigenvector, then p, q, and the origin are all on the same line.

Why this oddity? Answer: A has no real-valued eigenvalues! In other words, all its eigenvalues are complex numbers. We will not be concerned with such matrices in this course.

Problem V - Problem 6 in the Exercise list

Suppose that λ_{1} and λ_{2} are two distinct eigenvalues of matrix A. Furthermore, suppose that x_{1} is an eigenvector of A under λ_{1}, and that x_{2} is an eigenvector of A under λ_{2}.

Prove: there does not exist any real number c such that $c x_{1}=x_{2}$.

Problem VI - Problem 7 in the Exercise list

Suppose that λ_{1} and λ_{2} are two distinct eigenvalues of matrix A. Furthermore, suppose that x_{1} is an eigenvector of A under λ_{1}, and that x_{2} is an eigenvector of A under λ_{2}.

Prove: $x_{1}+x_{2}$ is not an eigenvector of A.

