ENGG1410-F Tutorial:

A Closer Look at

Linear Systems with Infinite Solutions

Yufei Tao

We learned about linear transformations. Today we will see an important application of this concept: finding all solutions to a linear system when there are infinitely many.

Let us warm up by discussing the projection of a set V of vectors. Take any V, e.g.:

$$
\begin{aligned}
& {[3,0,1,2]} \\
& {[6,1,0,0]} \\
& {[12,1,2,4]} \\
& {[6,0,2,4]}
\end{aligned}
$$

The projection of V onto the, say, 2nd and 3rd components is the following set V^{\prime} of vectors:

$$
\begin{aligned}
& {[0,1]} \\
& {[1,0]} \\
& {[1,2]} \\
& {[0,2]}
\end{aligned}
$$

Can you give a very short proof of the following claim: the dimension of V is at least that of V^{\prime}.

Let us warm up by discussing the projection of a set V of vectors. Take any V, e.g.:

$$
\begin{aligned}
& {[3,0,1,2]} \\
& {[6,1,0,0]} \\
& {[12,1,2,4]} \\
& {[6,0,2,4]}
\end{aligned}
$$

The projection of V onto the, say, 2nd and 3rd components is the following set V^{\prime} of vectors:

$$
\begin{aligned}
& {[0,1]} \\
& {[1,0]} \\
& {[1,2]} \\
& {[0,2]}
\end{aligned}
$$

Can you give a very short proof of the following claim: the dimension of V is at least that of V^{\prime}.
Proof: The rank of a matrix is at least the rank of any sub-matrix.

In general, let V be any (perhaps infinite) set of vectors. By taking the same components of the vectors in V, we get a projection of V, which is a set V^{\prime} of vectors.

The dimension of V is at least the dimension of V^{\prime}

We leave the simple proof to you (this is actually a problem in an exercise list on the course homepage).

Now we cut into our main topic: linear system with infinitely many solutions. Consider the following system:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 2 \\
0 & 1 & 1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Remark: This is another problem in the same exercise list.

The system can be transformed into:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

We can derive the set V of all the solutions $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ as follows.

The system can be transformed into:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

We can derive the set V of all the solutions $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ as follows.
First set x_{4}, x_{5} to any real numbers (i.e., they are unconstrained).
Then solve x_{1}, x_{2}, x_{3} as:

$$
\begin{aligned}
& x_{1}=-\left(x_{4}+x_{5}\right) \\
& x_{2}=-x_{5} \\
& x_{3}=-x_{5} .
\end{aligned}
$$

Now we ask the question: what is the dimension of V ?

The system can be transformed into:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

We can derive the set V of all the solutions $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ as follows.
First set x_{4}, x_{5} to any real numbers (i.e., they are unconstrained).
Then solve x_{1}, x_{2}, x_{3} as:

$$
\begin{aligned}
& x_{1}=-\left(x_{4}+x_{5}\right) \\
& x_{2}=-x_{5} \\
& x_{3}=-x_{5} .
\end{aligned}
$$

Now we ask the question: what is the dimension of V ?
Next, we show that the answer is 2, ie., the number of variables minus the rank of the coefficient matrix!

Denote by V^{\prime} the set of all vectors $\left[\begin{array}{l}x_{4} \\ x_{5}\end{array}\right]$.
Clearly, V^{\prime} has dimension 2 (remember: x_{4}, x_{5} are unconstrained).

$$
\begin{aligned}
x_{1} & =-\left(x_{4}+x_{5}\right) \\
x_{2} & =-x_{5} \\
x_{3} & =-x_{5} \\
x_{4} & =x_{4} \\
x_{5} & =x_{5}
\end{aligned}
$$

That is, V can be obtained from V^{\prime} through a linear transformation!

We know from the lecture that linear transformations do not increase the dimension! Therefore, the dimension of V is at most the dimension of V^{\prime}. In other words, the dimension of V is at most 2.
V^{\prime} : the set of all vectors $\left[\begin{array}{l}x_{4} \\ x_{5}\end{array}\right]$.

$$
\begin{aligned}
x_{1} & =-\left(x_{4}+x_{5}\right) \\
x_{2} & =-x_{5} \\
x_{3} & =-x_{5} \\
x_{4} & =x_{4} \\
x_{5} & =x_{5}
\end{aligned}
$$

On the other hand, note that V^{\prime} is the projection of V onto the 4-th and 5 -th components. From our earlier discussion, we know that the dimension of V is at least the dimension of V^{\prime}. In other words, the dimension of V is at least 2 .

We now conclude that the dimension of V is precisely 2 .

