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Abstract—Line-rate data traffic monitoring in high-speed
networks is essential for network management. To satisfy the
line-rate requirement, one can leverage multi-core architectures
to parallelize traffic monitoring so as to improve information
processing capabilities over traditional uni-processor architec-
tures. Nevertheless, realizing the full potential of multi-core
architectures still needs substantial work, especially in the
face of the ever-increasing volume and complexity of network
traffic. This paper addresses the issue through the design
of a lock-free, cache-efficient synchronization mechanism that
serves as a basic building block for a general class of multi-
threaded, multi-core traffic monitoring applications. We embed
the synchronization mechanism into MCRingBuffer, a multi-
core shared ring buffer that provides fast data accesses among
threads running in different cores. MCRingBuffer allows con-
current lock-free data accesses and improves the cache locality
of accessing the control variables that are used for thread
synchronization. Through extensive evaluation on an Intel Xeon
multi-core machine, we show that MCRingBuffer achieves a
throughput gain of up to 5× over existing lock-free ring buffers.
Finally, we present a parallel traffic monitoring prototype that
is built upon MCRingBuffer, and demonstrate via trace-driven
simulation how MCRingBuffer facilitates packet processing at
line rate.

I. INTRODUCTION

Monitoring the behavior of data traffic in communication

networks is essential for a variety of network management

applications such as accounting, resource provisioning, fail-

ure diagnosis, and intrusion detection. One crucial require-

ment of network traffic monitoring is to process packets at

line rate, meaning that the packet processing speed must

keep up with the bandwidth of the communication link

where data traffic is monitored. However, as the volume

of network traffic continuously surges, so does the link

bandwidth, typically to Gigabit-per-second scales. Also,

as networking applications are getting more diversified,

data traffic contains more sophisticated information that

further complicates the monitoring process. Conventional

uni-processor architectures may no longer support line-rate

traffic monitoring, and this motivates the need of more

advanced architectures.

The emergence of commercial multi-core architectures

(e.g., Intel Xeon and AMD Opteron) provides a potential

solution to line-rate traffic monitoring, since we may now

divide the packet processing into smaller subtasks and

parallelize their executions with multiple threads running on

different cores. The idea of parallelizing packet processing

has been advocated in prior work [1], [7], [12], [18], [19], yet

exploiting the full potential of multi-core architectures re-

mains a challenging issue. One such challenge is to minimize

the cost of inter-core communication, so that threads residing

in different cores can efficiently exchange state information

for complete analysis. This issue can be addressed in the

application protocols (i.e., the upper layer) where protocol

messages exchanged across threads need to be minimized.

On the other hand, we are also interested in looking into the

shared data structures (i.e., the lower layer) through which

threads exchange information since they are necessary for

most multi-threaded applications.

Every shared data structure for multi-threaded applica-

tions requires a synchronization mechanism to coordinate

the correct data accesses among multiple threads. However,

most synchronization mechanisms involve different kinds

of overhead that could reverse the effectiveness of paral-

lelism. For example, locks are commonly used to enforce

mutual exclusion of resources shared by multiple threads.

However, lock-based approaches are generally inefficient, as

they serialize thread accesses and limit only one thread to

access the entire shared resources at one time. In addition,

thread synchronization involves operations on a number of

control variables. However, if these variables are frequently

accessed via main memory rather than cache, then the

memory access overhead can slow down the synchronization

process. Therefore, we need to carefully design an efficient

synchronization mechanism, especially in the context of

multi-core architectures.

In this paper, we propose MCRingBuffer, a shared ring

buffer that embeds a lock-free, cache-efficient synchroniza-

tion mechanism and hence speeds up the shared data ac-

cesses in multi-core architectures. MCRingBuffer eliminates

the use of locks, and allows different threads to concurrently

access the ring buffer while ensuring the correctness of



insertions and extractions of data elements. Also, MCRing-

Buffer improves the cache locality of accessing the control

variables that are used for thread synchronization in multi-

core architectures. Furthermore, we make MCRingBuffer

generic in the sense that: (i) it is purely a software-based

data structure that works on general-purpose CPUs, and (ii)

its performance gain is independent of the data types of

elements being transferred and the implementation of the

multi-threaded applications.

We prove the correctness of MCRingBuffer under the

single-producer/single-consumer framework. We then con-

duct evaluation on an Intel Xeon 5355 quad-core machine,

and show that MCRingBuffer improves the throughput of

conventional lock-free ring buffers by up to 5×. We also

profile different ring buffers with the Intel VTune Perfor-

mance Analyzer [3], and further confirm that MCRingBuffer

significantly reduces cache misses in thread synchronization.

We next propose a parallel traffic monitoring system

that is built upon MCRingBuffer. Through the simulation

driven by real traces collected from an operational network,

we show that MCRingBuffer significantly improves the

packet processing throughput by up to 5.2× and 1.9×
over the single-threaded case and the multi-threaded case

with conventional lock-free ring buffers, respectively. This

further confirms the applicability of MCRingBuffer in line-

rate traffic monitoring.

The remainder of the paper proceeds as follows. Section II

presents the design of MCRingBuffer. Section III presents

a parallel traffic monitoring prototype built upon MCRing-

Buffer and its trace-driven simulation results. Section IV

discusses the related work, and we conclude in Section V.

II. MCRINGBUFFER

We describe MCRingBuffer, a shared ring buffer tailored

for multi-core architectures. We start by describing an exist-

ing concurrent lock-free ring buffer that we use as a building

block for MCRingBuffer. Then we present MCRingBuffer,

including its design, sketch proof of correctness, and evalu-

ation results.

A. Background

Ring buffer design, also known as the producer/consumer

problem, is a classical problem in many introductory oper-

ating systems textbooks. In the problem, we have a bounded

buffer with a fixed number of slots. A producer inserts

elements to the buffer only when the buffer is not full, while

a consumer extracts elements from the buffer only when the

buffer is not empty. In addition, the first-in-first-out (FIFO)

property needs to be guaranteed, meaning that the elements

extracted by the consumer appear in the same order as the

elements inserted by the producer.

Figure 1 illustrates a high-level block diagram of a multi-

core architecture on which a ring buffer is deployed. Suppose

that a single pair of the producer and consumer threads

core

producer thread

second-level cache

memory

control variables

ring buffer

first-level cache

core

consumer thread

first-level cache

Figure 1. Block diagram of a multi-core architecture on which a ring buffer
is deployed. Note that two cores may share a second-level (L2) cache if
they reside in the same CPU module (see Section II-D).

function Insert(T element)
1: lock(lock);
2: if buffer is full then
3: unlock(lock);
4: return INSERT FAILED;
5: end if
6: write element to next available buffer slot;
7: unlock(lock);
8: return INSERT SUCCESS;

function Extract(T* element)
1: lock(lock);
2: if buffer is empty then
3: unlock(lock);
4: return EXTRACT FAILED;
5: end if
6: read element from next available buffer slot;
7: unlock(lock);
8: return EXTRACT SUCCESS;

Figure 2. LockRingBuffer, a lock-based ring buffer.

have information to exchange. Then both threads share the

information through the ring buffer located in the shared

main memory, and operate on a set of control variables

associated with the ring buffer for thread synchronization.

To reduce memory accesses, which are generally expensive

operations, variables that have just been accessed may be

cached to speed up subsequent accesses to themselves.

1) Lock-based Ring Buffers: One simple way to im-

plement a ring buffer is to use a lock-based approach,

which defines a critical section for the entire ring buffer

and allows only one thread (i.e., either the producer or

the consumer) to access the buffer at one time. A thread

needs to first acquire a lock before accessing the buffer,

and it releases the lock after it is done accessing the buffer.

Figure 2 shows the pseudo-code of a lock-based ring buffer,

which we call LockRingBuffer. The lock-based approach

is generally inefficient since it prevents the producer and

consumer threads from simultaneously accessing the ring

buffer even though they may access different buffer slots.

Instead of using the lock-based approach, we implement

MCRingBuffer as a lock-free ring buffer so that the pro-

ducer and the consumer can simultaneously access the ring

buffer provided that they do not touch the same buffer slot.

MCRingBuffer is built upon the work in [10], which we

2



function Insert(T element)
1: if NEXT(write) == read then
2: return INSERT FAILED;
3: end if
4: buffer[write] = element;
5: write = NEXT(write);
6: return INSERT SUCCESS;

function Extract(T* element)
1: if read == write then
2: return EXTRACT FAILED;
3: end if
4: *element = buffer[read];
5: read = NEXT(read);
6: return EXTRACT SUCCESS;

Figure 3. BasicRingBuffer [10].

describe as follows. We also describe other lock-free ring

buffers proposed in the literature.

2) Lock-Free Ring Buffers: Suppose that the single-

producer/single-consumer model is considered, meaning that

a ring buffer is only accessed by two threads, i.e., the

producer and the consumer. Then Lamport [10] considers

a concurrent lock-free ring buffer that does not require

any hardware synchronization primitives (e.g., compare-and-

swaps and load-locked/store-conditionals). We call this ring

buffer BasicRingBuffer and Figure 3 shows its implementa-

tion. BasicRingBuffer uses two control variables read and

write to refer to the buffer slots that the consumer and

the producer will extract from and insert to, respectively.

Let max be the capacity of the ring buffer, and NEXT()
be the function that advances read or write to the next

buffer slot and wraps around the buffer if needed. The ring

buffer is said to be full if NEXT(write) == read, and empty

if read == write. The operations on read and write

allow the producer and the consumer to concurrently access

different buffer slots as long as the buffer is neither full nor

empty.

Using the same single-producer/single-consumer model,

FastForward [2], whose pseudo-code is shown in Figure 4,

improves BasicRingBuffer by comparing the control vari-

ables directly with the buffer slots that hold data elements.

The buffer slots use a special null value to denote whether

they are empty slots. However, with this data/control cou-

pling approach, the ring buffer must define a null data

element that cannot be used by applications, thereby intro-

ducing an additional constraint when the ring buffer is to be

used for generic data types1.

Wang et al. [18] improve FastForward by aggregating

the insert and extract operations on a per-cache-line basis

1The authors of [2] suggest to transfer pointers to an external storage
over the ring buffer, so that the NULL pointer can be used to indicate
empty slots. However, transferring a pointer implies two memory accesses,
including inserting (extracting) the pointer to (from) the ring buffer, and
inserting (extracting) the element payload referenced by the pointer to/from
the external storage. This incurs one more memory access than transferring
the element payload over the ring buffer directly.

function Insert(T element)
1: if buffer[write] != NULL then
2: return INSERT FAILED;
3: end if
4: buffer[write] = element;
5: write = NEXT(write);
6: return INSERT SUCCESS;

function Extract(T* element)
1: if buffer[read] == NULL then
2: return EXTRACT FAILED;
3: end if
4: *element = buffer[read];
5: buffer[read] = NULL;
6: read = NEXT(read);
7: return EXTRACT SUCCESS;

Figure 4. FastForward [2].

to make the producer and the consumer work on different

cache lines. However, the mechanism is useful only when

the element size is less than that of a cache line. Also, [18]

still uses the data/control coupling approach, which limits

the data types of elements that can be transferred.

Many lock-free FIFO ring buffers have been proposed for

the more complicated multiple-producer/multiple-consumer

model (e.g., [8], [15], [17]), yet they are built on hardware

synchronization primitives (e.g., compare-and-swaps and

load-locked/store-conditionals). Given that such primitives

are generally computationally expensive [2], we focus on the

single-producer/single-consumer model without compromis-

ing our goal of achieving line-rate traffic monitoring.

B. Design

MCRingBuffer is built upon BasicRingBuffer to support

concurrent lock-free accesses, and enhances BasicRing-

Buffer with a key objective to improve the cache locality

of thread synchronization. In particular, MCRingBuffer is

a software-based data structure without any hardware syn-

chronization primitives. MCRingBuffer de-couples the data

and control operations as in BasicRingBuffer, so that it

can transfer data elements of general data types. Also, the

producer and consumer threads do not need to specifically

schedule their insert and extract operations to maximize the

performance gain of MCRingBuffer.

We make several assumptions for MCRingBuffer, while

these assumptions are inherited from BasicRingBuffer. First,

the single-producer/single-consumer model is used. Also,

reading and writing the shared control variables read and

write, which are of integer type, are indivisible, atomic

operations. In general, atomic operations on 32-bit integers

are guaranteed in modern 32/64-bit CPUs such as Intel (see

[5], Chapter 8). Furthermore, the memory model satisfies

sequential consistency [11], in which the order of operations

executed by all threads preserves the order of operations

specified by each individual thread. Note that sequential

consistency is guaranteed in the Intel architecture (see [5],
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Chapter 8). For other processor architectures with weaker

consistency models, we need to include memory barriers

to ensure proper ordering of memory accesses by multiple

cores. From this point forward, we focus on the Intel

architecture as our deployment platform.

Figure 5 shows the software-based implementation of

MCRingBuffer, including the placement of control vari-

ables as well as the pseudo-code of the insert and extract

procedures executed by the producer and the consumer,

respectively. MCRingBuffer comprises two major design

features: (i) cache-line protection, which seeks to minimize

the frequency of reading the shared control variables from

main memory, and (ii) batch updates of control variables,

which seeks to minimize the frequency of writing the shared

control variables to main memory. We explain both features

in detail as follows.

1) Cache-line Protection: When a variable has been ac-

cessed, it is placed in cache so as to reduce the latency of the

subsequent accesses of the same variable. A requirement of

efficient thread synchronization on multi-core architectures

is to avoid false sharing [4], meaning that two threads

each access different variables residing in the same cache

line2, the basic block of a cache. When a thread modifies a

variable in cache, it invalidates the whole cache line as being

modified. When another thread accesses a different variable

on the same cache line, a cache miss will be triggered and

the whole cache line will be reloaded from main memory,

even though the variable being accessed remains unchanged.

Our goal is to carefully place the control variables so

that the local, non-shared variables of different threads do

not reside in the same cache line. We classify the control

variables of MCRingBuffer into four groups: (i) shared

variables read and write, which are accessed by both the

producer and consumer threads, (ii) local variables for the

consumer, (iii) local variables for the producer, and (iv)

constant variables. We separate the variable groups with

padding bytes whose length is large enough to put each

variable group in a different cache line. This approach is

known as cache line protection, in which modifying values

within a variable group does not cause false sharing to other

variable groups.

Note that the addition of padding bytes itself is not

sufficient. It is important to re-design the synchronization

operations so as to take advantage of cache-line protection.

Instead of directly checking with shared control variables

read and write for synchronization, the producer and

the consumer can check with non-shared, local control

variables that reside in their own cache lines. We let

nextWrite and nextRead be the local variables of the

producer and the consumer that point to the next buffer

slot to be inserted to and extracted from, respectively, and

2For example, the size of a cache line in Intel Xeon 5300 series is
64 bytes.

/* Variable definitions */
1: char cachePad0[CACHE LINE];
2: /*shared control variables*/

3: volatile int read;
4: volatile int write;
5: char cachePad1[CACHE LINE - 2 * sizeof(int)];
6: /*consumer’s local variables*/

7: int localWrite;
8: int nextRead;
9: int rBatch;
10: char cachePad2[CACHE LINE - 3 * sizeof(int)];
11: /*producer’s local variables*/

12: int localRead;
13: int nextWrite;
14: int wBatch;
15: char cachePad3[CACHE LINE - 3 * sizeof(int)];
16: /*constants*/

17: int max
18: int batchSize;
19: char cachePad4[CACHE LINE - 2 * sizeof(int)];
20: T* element;

/* Insert: called by the producer */
function Insert(T element)
1: int afterNextWrite = NEXT(nextWrite);
2: if afterNextWrite == localRead then
3: if afterNextWrite == read then
4: return INSERT FAILED;
5: end if
6: localRead = read;
7: end if
8: buffer[nextWrite] = element;
9: nextWrite = afterNextWrite;
10: wBatch++;
11: if wBatch ≥ batchSize then
12: write = nextWrite;
13: wBatch = 0;
14: end if
15: return INSERT SUCCESS;

/* Extract: called by the consumer */
function Extract(T* element)
1: if nextRead == localWrite then
2: if nextRead == write then
3: return EXTRACT FAILED;
4: end if
5: localWrite = write;
6: end if
7: *element = buffer[nextRead];
8: nextRead = NEXT(nextRead);
9: rBatch++;
10: if rBatch ≥ batchSize then
11: read = nextRead;
12: rBatch = 0;
13: end if
14: return EXTRACT SUCCESS;

Figure 5. MCRingBuffer.

let afterNextWrite denote NEXT(nextWrite). Also, we

let localRead and localWrite be the local variables that

the producer and the consumer “guess” for the current

values of read and write, respectively. When the pro-
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ducer (consumer) is about to insert (extract) an element, it

first checks the condition afterNextWrite == localRead

(nextRead == localWrite) to decide whether the buffer

is potentially full (empty). If the buffer is potentially full

(empty), then the producer (consumer) further checks the

condition afterNextWrite == read (nextRead == write)

to decide whether the buffer is actually full (empty), and

updates localRead (localWrite) with the latest value of

read (write). The producer (consumer) will insert (extract)

elements whenever the buffer is neither potentially nor

actually full (empty).

Here, the intuition is that when the producer (consumer)

sets localRead = read (localWrite = write) and reloads

read (write) from main memory, the shared variable read

(write) may have been incremented multiple times by the

consumer (producer) to refer to a few buffer slots ahead.

Thus, the producer (consumer) only needs to access read

(write) after more than one insert (extract) operation. This

is in contrast to BasicRingBuffer, in which the producer

(consumer) needs to reload read (write) from main mem-

ory every time the variable is incremented to refer to the next

buffer slot. Therefore, MCRingBuffer reduces the frequency

for the producer and consumer threads to read the shared

control variables from main memory.

2) Batch Updates of Control Variables: In BasicRing-

Buffer, the shared variable read (write) is updated after ev-

ery extract (insert) operation. When the producer (consumer)

thread modifies write (read), the consumer (producer) is

forced to reload from memory this shared variable when it

checks for the empty (full) condition. The frequent updates

of the shared variables cause the memory reload operations

to occur frequently as well.

We apply batch updates on the shared control variables

read and write, so as to have them modified less fre-

quently. We divide a ring buffer into blocks, each of which

contains batchSize slots. The variable batchSize is a

tunable parameter determined by applications. We advance

read (write) to the next block only after a batchSize

number of elements have been extracted (inserted). Specif-

ically, we put non-shared variables wBatch and rBatch in

the local cache lines for the producer and the consumer,

respectively. The value of wBatch (rBatch) is incremented

by one for every element being inserted (extracted). If

wBatch (rBatch) equals batchSize, the shared variable

read (write) will then be updated. Our goal here is

to minimize the frequency of writing the shared control

variables to main memory.

If the arrival rate of elements is too small, then the

variables read and write will not advance since they do

so only after a batchSize number of elements have been

processed. In such cases, elements may not be inserted

(extracted) even the buffer is not full (empty). Therefore,

we assume that the batch update scheme is applied to the

scenario where elements are constantly available so as to

function Insert(T element)
1: wait until write - read < max;
2: buffer[write mod max] = element;
3: write = write + 1;

function Extract(T* element)
1: wait until read < write;
2: *element = buffer[read mod max];
3: read = read + 1;

Figure 6. The variant of BasicRingBuffer, where read and write are
monotonically increasing.

update the control variables. Nevertheless, this is justified in

many practical environments. For example, if we monitor a

high volume of packets in a high-speed network, then we

can apply our batch update scheme for the ring buffers that

share the packet information (see Section III).

To ensure that no elements are permanently stalled in the

ring buffer, we can have the producer periodically inject

unused elements to drive the control variables, where such

elements will be discarded by the consumer. Note that

the unused elements are defined by applications and are

transparent to the underlying MCRingBuffer.

In addition to minimizing the updates of the shared control

variables, a side benefit of our batch update scheme is to

avoid false sharing of data elements. Note that we have

the producer and consumer threads access different blocks,

each of which has size given by the product of batchSize

and the slot size. If the block size is large enough, then it

is highly probable that the producer and consumer threads

operate on data elements that are separated by more than

one cache line (unless they work near the boundary of

two blocks). This property follows the same line as in

the batched producer-consumer model [4], where elements

are inserted or extracted in batch, and in the temporal

slipping algorithm [2]. However, both approaches in [2], [4]

require the producer and consumer threads to specifically

schedule the insert and extract operations. In contrast, our

batch update scheme fundamentally achieves this property

through the updates of control variables, and the throughput

improvement is made independent of how the insert and

extract operations on the data elements are scheduled.

C. Proof of Correctness

We now provide a sketch of proof for the correctness of

MCRingBuffer. By correctness, we mean: (i) the producer

and the consumer insert and extract an element only when

the ring buffer is neither full nor empty, respectively, and (ii)

the elements that the consumer extracts from the ring buffer

are in the same order as they are inserted by the producer.

The correctness of MCRingBuffer is built upon that of

BasicRingBuffer [10]. A formal proof based on formal

axioms for the correctness of BasicRingBuffer is shown

in [10], while a simplified sketch of proof is also given

in [9]. To understand the correctness of BasicRingBuffer,
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function Insert(T element)
1: wait until nextWrite - localRead < max OR

nextWrite - read < max;
2: set localRead = read if nextWrite - localRead = max;
3: buffer[nextWrite mod max] = element;
4: nextWrite = nextWrite + 1;
5: update wBatch, write as in Figure 5;

function Extract(T* element)
1: wait until nextRead < localWrite OR

nextRead < write;
2: set localWrite = write if nextRead = localWrite;
3: *element = buffer[nextRead mod max];
4: nextRead = nextRead + 1;
5: update rBatch, read as in Figure 5;

Figure 7. The variant of MCRingBuffer, where read and write are
monotonically increasing.

we first consider an identical variant of BasicRingBuffer

shown in Figure 6, where NEXT(x) is given by x+ 1. This

implies that the control variables read and write are always

monotonically increasing. Given that reading and writing

of read and write are atomic operations, [9], [10] show

that if the conditions in line 1 of the insert and extract

procedures of the BasicRingBuffer variant (Figure 6) hold,

then the buffer is neither full nor empty when the specified

buffer slot is accessed in line 2, respectively. We apply this

intuition for MCRingBuffer. Specifically, we want to show

that the producer and consumer threads access the buffer

only if they satisfy the equivalent conditions that ensure the

buffer is neither full nor empty, respectively.

We consider an identical variant of MCRingBuffer as

shown in Figure 7, in which we replace NEXT(x) with x+ 1

so as to make all control variables monotonically increasing.

We now prove the following theorems.

Theorem 1. In MCRingBuffer, the producer inserts an

element to the buffer only when the buffer is not full, and

the consumer extracts an element from the buffer only when

the buffer is not empty.

Proof: We first consider the producer. In the MCRing-

Buffer variant, the producer inserts an element to the buffer

only when at least one of the following conditions holds:

nextWrite - localRead < max (1)

nextWrite - read < max (2)

Note that nextWrite and localRead are only modified

by the producer itself, so the producer always obtains their

correct values.

The operations of Insert() in MCRingBuffer ensure that

the condition localRead ≤ read holds. Note that read

is modified by the consumer, and hence the producer may

not obtain the latest value of read. More precisely, the

producer may load read from memory right before the

consumer updates the variable, and the producer checks for

the full condition using the older value of read. However,

since read is monotonically increasing, the value of read

obtained by the producer is always no greater than the latest

value of read. This implies that localRead ≤ read still

holds.

In addition, the operations of Extract() always

ensure that read ≤ nextRead, and this implies

localRead ≤ nextRead. When the producer inserts

an element to the buffer (i.e., when at least one of the

conditions (1) and (2) holds), we ensure that the condition

nextWrite - nextRead < max must hold.

Similar to the above arguments, we can show that when

the consumer extracts an element from the buffer, the

condition nextRead < nextWrite must hold.

Note that nextWrite and nextRead refer to the buffer

slots accessed by the producer and the consumer, respec-

tively. In essence, the variant of MCRingBuffer applies the

same full and empty conditions as does the variant of Basi-

cRingBuffer. Based on the correctness of BasicRingBuffer

[10], we can infer that the theorem holds.

Theorem 2. In MCRingBuffer, the elements extracted by the

consumer appear in the same order as they are inserted by

the producer.

Proof: Consider the variant of MCRingBuffer. Note that

nextWrite and nextRead are monotonically increasing and

are incremented by one each time an element is inserted and

extracted, respectively. Also, by Theorem 1, the producer

and the consumer access the buffer only when the buffer is

neither full nor empty, respectively. The theorem follows.

D. Evaluation

We now evaluate various lock-based and lock-free ring

buffers, including: (i) LockRingBuffer (see Figure 2), (ii)

BasicRingBuffer [10] (see Figure 3), (iii) FastForward [2]

(see Figure 4), and (iv) MCRingBuffer with different values

of batchSize (see Figure 5).

For MCRingBuffer, we test different values of batchSize

to see how each design component affects the performance.

With batchSize = 1, we show the improvement of applying

cache-line protection alone, while with batchSize > 1,

we show the additional improvement of applying the batch

updates of control variables.

Assumptions: Since the lock-free ring buffers considered

in this paper assume the single-producer/single-consumer

model, we focus on having two running threads: one pro-

ducer and one consumer. Section III also describes how to

allow shared data accesses among more than two threads

by using multiple ring buffers. In particular, we assume that

both the producer and consumer threads use busy-waiting to

poll for the availability of a ring buffer, as the sleep-and-wait

approach generally gives poor performance due to context

switching. For LockRingBuffer, we use a spin lock instead

of a sleep-and-wait lock.
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Evaluation testbed: We conduct our evaluation on a

machine equipped with two Intel Xeon 5355 64-bit quad-

core 2.66 GHz CPUs (i.e., a total of eight cores) and 32 GB

RAM. Our evaluation here uses only one of the CPUs, while

in Section III we use both. Each CPU is composed of two

replicas of dual-core modules [4], each with a pair of cores

and a shared second-level (L2) cache. The L2 cache provides

fast shared data accesses for the core pair in the same

module. We call a pair of cores sibling cores if they reside in

the same module and share an L2 cache. On the other hand,

we call a pair of cores non-sibling cores if they belong to

the same CPU, but reside in different modules and do not

share an L2 cache3. We randomly pick a pair of sibling cores

and a pair of non-sibling cores, and then evaluate the cases

when both threads are bound to the selected core pairs. Note

that consistent results are observed for different sibling and

non-sibling core pairs.

Our evaluation machine runs Linux 2.6.18. The ring

buffers are written in C++ and compiled using GCC 4.1.2

with the −O2 option.

Evaluation metrics: For each ring buffer being evaluated,

the producer thread inserts 10 M elements, and the consumer

thread extracts the inserted elements in order. We are inter-

ested in two metrics: (i) the throughput (see Evaluations 1 to

3), defined as the number of pairs of insert/extract operations

performed per second, and (ii) the number of L2 cache

misses (see Evaluation 4), which denotes the number of

times that a cache line needs to be reloaded from main

memory. Unless otherwise stated, each data point is obtained

from the average result over 30 trials.

Evaluation 1 (Throughput versus element size). We first

evaluate the throughput versus the element size for Lock-

RingBuffer, BasicRingBuffer and different MCRingBuffer

variants. We fix the capacity of each ring buffer to be 2,000

elements. Figures 8(a) and 8(b) show the results when the

producer and consumer threads reside in sibling cores and

non-sibling cores, respectively.

As expected, LockRingBuffer has the smallest throughput

as compared to other lock-free ring buffers, which allow con-

current thread accesses. The throughput gains of BasicRing-

Buffer are 2.6−3.3× and 1.4−1.6× for sibling and non-

sibling cores, respectively, and the gains of MCRingBuffer

(with batchSize = 50) are 3.6−16.6× and 1.6−4.1× for

sibling and non-sibling cores, respectively 4.

3In Intel Xeon 5300 series, non-sibling cores communicate through a
system bus, although they might reside in the same chip but different
modules. Some quad-core technologies such as AMD Opteron provide an
L3 cache for the four cores on the same chip.

4Ideally, we expect that since lock-free ring buffers allow the concurrent
accesses of both producer and consumer threads, they should achieve
at least a 2× throughput gain over LockRingBuffer, which can only be
accessed by one thread at a time. However, different factors may decrease
the actual throughput gain. For example, the producer (consumer) is blocked
when the buffer is full (empty). We plan to look into the possible factors
in future work.
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Figure 8. Evaluation 1: Throughput vs. element size.

In general, MCRingBuffer provides higher throughput

than BasicRingBuffer. In particular, the throughput gain

of MCRingBuffer is more significant for smaller elements,

since a larger proportion of time is spent on synchronizing

the control variables and the design goal of MCRingBuffer

is to minimize the synchronization overhead.

Let us focus on the case where the element size is

64 bytes. For sibling cores (Figure 8(a)), the through-

put gains of MCRingBuffer with batchSize = 1 and

batchSize = 50 are 2.2× and 4.9× over BasicRing-

Buffer, respectively. Thus, the cache-line protection alone

(batchSize = 1) already improves the throughput over

BasicRingBuffer, and this gain is further amplified with the

batch updates of control variables. On the other hand, the

throughput for non-sibling cores (Figure 8(b)) is less than

that in sibling cores since elements must be sent through

the system bus. Nevertheless, MCRingBuffer can increase

the throughput with batchSize > 1. For example, the

throughput of MCRingBuffer with batchSize = 50 is 2.5×
over BasicRingBuffer.

Evaluation 2 (Throughput versus buffer capacity).

We now evaluate the throughput of LockRingBuffer, Ba-

sicRingBuffer, and different MCRingBuffer variants under

various buffer capacities. We fix the element size to be

128 bytes. Figures 9(a) and 9(b) show the results. As the

buffer capacity is small, the producer thread is likely to be

blocked on insertion, and hence the throughput is smaller.

However, the throughput becomes more or less the same
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Figure 9. Throughput vs. buffer capacity.

when the buffer is large enough. For example, when the

buffer capacity is at least 400 elements, the throughput gains

of MCRingBuffer with batchSize = 50 are about 4.2×
and 2.2× over BasicRingBuffer for sibling and non-sibling

cores, respectively. Again, LockRingBuffer has the smallest

throughput as compared to all lock-free ring buffers.

Evaluation 3 (Comparison with FastForward [2]). We

now include FastForward in our evaluation. Our FastForward

implementation is based on the pseudo-code in [2] (see

Figure 4), in which each element is a variable pointer. Thus,

we only focus on the case where all elements are 64-bit

pointers (i.e., the size of each element is 8 bytes).

Here, we simply have the producer (consumer) insert

(extract) elements as fast as possible. In other words, the pro-

ducer calls the insert operation when an element is available,

and the consumer calls the extract operation when it is ready

to process the next element. This allows us to evaluate the

robustness of all ring buffers toward a straightforward imple-

mentation of the producer and consumer threads. Thus, our

FastForward implementation is a baseline version that does

not specifically schedule the producer and consumer threads

to work on different cache lines. Also, like BasicRingBuffer,

our FastForward implementation does not explicitly enforce

the cache locality of accessing control variables (e.g., no

cache-line protection is used). As shown here and in Evalu-

ation 4, the cache locality of thread synchronization, which

is the key design emphasis of MCRingBuffer, is critical to

the performance gain.
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Here, we focus on evaluating the lock-free ring buffers.

Figure 10 shows the throughput results where the ele-

ment size is 8 bytes and the buffer capacity is 2,000

elements. The throughput of FastForward is similar to that

of BasicRingBuffer for sibling cores, but is 15% higher

for non-sibling cores. On the other hand, MCRingBuffer

(with batchSize = 50) gives 5.3× and 2.9× throughput

improvement over FastForward for sibling cores and non-

sibling cores, respectively.

Evaluation 4 (Impact of L2 cache misses). We now

analyze how cache misses adversely affect the throughput

of a ring buffer. We profile our ring buffers using the Intel

VTune Performance Analyzer [3], which provides a break-

down of performance metrics for the insert and extract

operations. In particular, we are interested in the number of

L2 cache misses5, each of which implies a memory access

operation. In general, it is desirable to have a small number

of L2 cache misses, as memory accesses are significantly

costly.

We focus on using sibling cores, as both of them share

an L2 cache. We use the same configuration as in Evalu-

ation 3, where the element size is 8 bytes and the buffer

capacity is 2,000 elements. For MCRingBuffer, we use

batchSize = 50. We profile each ring buffer over five trials

and obtain the average results.

Figure 11 shows the total number of L2 cache misses ob-

tained from VTune. MCRingBuffer (with batchSize = 50)

incurs 88% and 92% fewer cache misses than BasicRing-

Buffer and FastForward, respectively.

5The corresponding event in VTune is called
MEM LOAD RETIRED.L2 LINE MISS.
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Summary. By organizing the layout of definitions of con-

trol variables carefully and accessing the control variables

in a cache-efficient manner, MCRingBuffer significantly

reduces cache misses and hence improves throughput over

BasicRingBuffer and FastForward. The throughput improve-

ment is seen for various element sizes and buffer capacities,

regardless of whether the producer and consumer threads

reside in sibling or non-sibling cores.

III. PARALLEL TRAFFIC MONITORING

We now motivate the applicability of MCRingBuffer in

parallel traffic monitoring. Our major goal is to speed up

packet processing through minimizing the overhead of inter-

core communication, while maintaining the correctness of

the overall analysis as seen in the single-threaded version.

We validate our goal via trace-driven simulation.

A. Design

Figure 12 illustrates one possible parallel traffic monitor-

ing system that can use MCRingBuffer. The system divides

the traffic monitoring into three stages: dispatch stage, sub-

analysis stage, and main analysis stage, which are composed

of a Dispatcher thread, a number of SubAnalyzer threads,

and a MainAnalyzer thread, respectively. The details of each

stage are described as follows.

1) Dispatch Stage: The dispatch stage consists of the

Dispatcher thread, which decodes raw packets captured from

the monitored network link and splits the decoded packets to

the correct SubAnalyzer. Our current prototype focuses on

the packet-header analysis (e.g., identifying portscan events),

and hence each decoded packet includes its arrival timestamp

and packet header. The decoded packet is then sent across

one of the ring buffers. Note that we can also include packet

payload for more complicated analysis.

We partition packets into SubAnalyzers based on a state-

less approach [14], [19], in which we hash the sum of the

source and destination IP address values of each packet into

the correct SubAnalyzer. This stateless approach mitigates

the processing load on the Dispatcher while ensuring that all

packets of the same address pair go to the same SubAna-

lyzer. If a network is heterogeneous enough to be interleaved

with all possible address pairs, then we expect that the

processing loads of all SubAnalyzers are fairly balanced.

2) Sub-Analysis Stage: The sub-analysis stage is com-

posed of multiple SubAnalyzer threads. Since we always

forward the packets of an address pair to the same SubAna-

lyzer, each SubAnalyzer can individually conduct the local

analysis on this address pair without coordinating with other

SubAnalyzers. For example, each SubAnalyzer can monitor

the statistics of all associated 5-tuple flows or the number

of connections between the pair.

Each SubAnalyzer resides in a unique core. It polls for an

available packet in a busy-waiting loop, and processes any

packet extracted from the associated ring buffer.

3) Main Analysis Stage: The main analysis stage is

composed of the MainAnalyzer thread, which aggregates the

states of all SubAnalyzers and conducts the global analysis.

For example, the MainAnalyzer may count the number of

connections and the amount of data originated from a single

source address.

Each SubAnalyzer collects partial results for the global

analysis, and notifies the collected results to the MainAna-

lyzer in the form of state reports. Note that a state report is

sent only when it leads to a “change” in the global analysis

result. For example, if we monitor the connection counts

of every host, a SubAnalyzer sends state reports only when

a host establishes or releases a connection; if we monitor

the originated traffic of every host, a SubAnalyzer sends

state reports for every M bytes sent by a host, where

M is the scale of the units used in the traffic counts. In

general, we expect that the number of state reports sent from

SubAnalyzers to the MainAnalyzer is significantly less than

the total number of packets being monitored.

The MainAnalyzer checks the ring buffers in a round-

robin manner. It extracts and processes any state report

whenever it is available in a ring buffer. Here, we assume

that the state reports contain frequency counts (e.g., the num-

ber of portscans) so that the MainAnalyzer can aggregate the

counts in the state reports originated from all SubAnalyzers.

4) Discussion: We point out that Figure 12 is only one

possible design that demonstrates the benefits of parallelism

in traffic monitoring. We note that the Dispatcher uses a

stateless approach to dispatch packets, and that the Main-

Analyzer only processes a small number of state reports

summarized by the SubAnalyzers. On the other hand, all

SubAnalyzers need to process all captured raw packets.

Thus, we assume that the Sub-Analysis stage is the major

performance bottleneck of the system. In this case, we

seek to minimize its workload by increasing the number

of SubAnalyzers (see Section III-B).

Also, we run the Dispatcher, a varying number of Sub-

Analyzers, and the MainAnalyzer as separate threads, each

of which is deployed on a different core. Since we seek to

utilize all available cores, it is unavoidable to have shared

data accesses between non-sibling cores (see Section II-D).

For simplicity, we let the kernel decide the core assignment

for the threads.
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B. Trace-driven Simulation

We now evaluate our parallel traffic monitoring system

using trace-driven simulation and demonstrate its capability

of processing high-speed traffic. In particular, we want to

show that the performance gain of our system can be further

enhanced with MCRingBuffer.

1) Evaluation Approach: To validate our parallel system,

we focus on detecting portscans [6], [16]. While there are

many ways of defining a portscan, we consider a portscan

that is defined as a failed connection attempt [6], in which

a source host sends a TCP SYN packet to a distinct

destination IP/port pair and does not receive a SYN-ACK

packet in response. We look into two types of portscans:

vertical portscans and horizontal portscans [16]. In a verti-

cal portscan, a source host scans a number of distinct ports

on a single destination host, while in a horizontal portscan,

a source host scans a number of distinct destination hosts

on a particular port. Our objective is to identify the source

hosts that launch more than a user-defined threshold number

of portscan events. Here, we set the thresholds for both

portscans to be 20.

Based on the above definitions of portscans, we can

monitor vertical portscans in the sub-analysis stage, in which

each SubAnalyzer monitors the number of failed connection

attempts for each address pair. On the other hand, we

monitor horizontal portscans in the main analysis stage. If

each SubAnalyzer sees a source host send a SYN packet to,

or receive a SYN-ACK packet from, a distinct destination

IP/port pair, then it sends a state report to the MainAnalyzer,

which can then count the number of failed connection

attempts for the source host.

By monitoring both vertical and horizontal portscans, we

validate the correctness of the local and global analyses in

our system, respectively. Here, by correctness, we mean that

our parallel system returns the same set of portscan events

as in the single-threaded version where we run our packet

collection and processing within the same thread. Therefore,

improving the accuracy of our detection algorithm (i.e.,

minimizing the false positive and negative rates of portscans)

is not our main emphasis. Instead, we are interested in the

performance gain of our parallel system.

Our evaluation is based on a one-hour packet header trace

file collected from an operational wireless data network. The

trace contains about 82 M packets that account for a total

of 8.1 GB. The trace provides us reference distributions of

data traffic and address pairs in a real network setting. To

analyze the performance of our system at the peak traffic

rate, we load the entire trace file into memory, and have

our system process the packet headers as fast as possible.

Loading the trace file into memory enables us to eliminate

the overhead due to disk read, and hence the performance

bottleneck should lie within our system. We then measure

the time required by our system to process all packet headers
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Figure 13. Packet processing rate of our parallel traffic monitoring system.
We set aside one core to handle background kernel jobs. Hence, we test up
to five SubAnalyzers, and use a total of up to seven cores for our system.

within the trace.

In essence, our evaluation is a stress test, since our system

monitors a condensed version of one-hour traffic in a short

time window. The number of portscans being identified is

expected to be higher than in practice.

We evaluate our system on the Intel Xeon machine

used in Section II-D. We consider BasicRingBuffer and

MCRingBuffer, both of which have buffer capacity set to

2,000 elements. Specifically, for MCRingBuffer, we set

batchSize = 50 for the ring buffers between the Dispatcher

and each SubAnalyzer. In high-speed networks, we expect

that the volume of monitored packets is large enough to

drive the increments of the shared control variables read

and write (see Section II-B). On the other hand, we set

batchSize = 1 for the MCRingBuffer between each Sub-

Analyzer and the MainAnalyzer, since state reports arrive

less frequently and we want to process them immediately.

Also, we implement a single-threaded version, which

decodes packets and performs both local and global analyses

in a single core without using any ring buffer. We validate

that both the single-thread version and our parallel system

generate the same set of portscans.

2) Evaluation Results: Figure 13 shows the throughput

(i.e., packet processing rate) versus the number of SubAna-

lyzers, where each data point is averaged over 10 trials.

The case of using one SubAnalyzer can be viewed

as pipelining the processing of each packet into the dis-

patch, sub-analysis, and main analysis stages. However, this

pipelined version, when using BasicRingBuffer, has smaller

throughput than the single-threaded version by 10%, mainly

due to the inter-core communication overhead. On the other

hand, the pipelined version with MCRingBuffer mitigates

this overhead and improves the throughput over the single-

threaded version by 23%.

In general, our parallel system (either with BasicRing-

Buffer or MCRingBuffer) outperforms the single-threaded

version with an increasing number of SubAnalyzers since

we parallelize traffic monitoring. Using MCRingBuffer, our

system with MCRingBuffer achieves a maximum of 5.2×
throughput gain over the single-threaded version. Further-
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more, if we fix the number of SubAnalyzers being used,

using MCRingBuffer has higher throughput than using Ba-

sicRingBuffer by 30−90%.
The throughput of our parallel system increases with the

number of SubAnalyzers until a certain number (e.g., five)

is reached. One possible reason is that when the Dispatcher

and MainAnalyzer threads each access more ring buffers,

they need to access more control variables that contend for

the finite cache space, and hence more cache misses could

be expected. Thus, parallelizing the packet processing with

too many threads may degrade the overall performance. A

similar observation is also found in [19].

In our evaluation, our system with MCRingBuffer can

process the entire one-hour trace in less than 15 seconds

(when the number of SubAnalyzers is between 3 and 5).

Certainly, in practical environments, the throughput of our

parallel system greatly depends on the complexity of the traf-

fic analysis. Our goal here is to demonstrate how MCRing-

Buffer exploits the full potential of multi-core architectures

in achieving line-rate traffic monitoring.

IV. RELATED WORK

In Section II-A2, we review different lock-free ring

buffers proposed in the literature. Here, we focus on review-

ing existing parallel network traffic monitoring schemes.

Kruegel et al. [7] propose a parallel, stateful intrusion

detection architecture that partitions and processes traffic on

different PCs (called sensors). Foschini et al. [1] extend [7]

with a parallel matching algorithm for stateful signatures.

Weaver and Sommer [19] propose an intrusion detection

system using a cluster of end hosts. Paxson et al. [12]

sketch a network monitoring system tailored for multi-core

architectures, and their main focus is on how to dispatch

packets to the analysis threads on different cores. Wang et

al. [18] apply the variant of FastForward [2] and show that

multi-core-based processing can boost the packet processing

speed to Gigabit levels. Similar work of multi-core-based

traffic monitoring is also found in [13], [20], whose major

focus is on the algorithmic design, such as flow classification

[13] and load balancing [20]. In contrast, our work on

MCRingBuffer mainly addresses a shared data structure that

minimizes the cost of inter-core (or inter-thread) commu-

nication and applies to general multi-threaded, multi-core

network traffic monitoring systems.

V. CONCLUSIONS AND FUTURE WORK

We propose a basic primitive that enables line-rate net-

work traffic monitoring. We present MCRingBuffer, a lock-

free, cache-efficient ring buffer that achieves efficient thread

synchronization in multi-core architectures. MCRingBuffer

improves the cache locality of thread synchronization via:

(i) cache-line protection and (ii) batch updates of control

variables. Also, MCRingBuffer is a software-based data

structure that supports generic data types of elements, and

threads do not need to schedule their insert and extract

operations to adapt themselves to MCRingBuffer. We prove

the correctness of MCRingBuffer. We also show via simu-

lation and code profiling that MCRingBuffer increases the

throughput of inter-core data accesses over conventional

lock-free ring buffers.

We then develop a parallel traffic monitoring prototype

that embodies MCRingBuffer. Using trace-driven simula-

tion, we show that MCRingBuffer boosts the speed of packet

monitoring. This justifies how multi-core architectures can

benefit from MCRingBuffer in achieving line-rate traffic

monitoring.

In addition to network traffic monitoring, MCRingBuffer

can be used by general multi-threaded applications that

involve shared data accesses. In future work, we plan to

explore more possible applications that can be built upon

MCRingBuffer.
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