
1

A Fast and Compact Method for Unveiling
Significant Patterns in High Speed Networks

Tian Bu∗, Jin Cao∗, Aiyou Chen∗, Patrick P. C. Lee†
∗Bell Laboratories, Alcatel-Lucent, NJ, USA

†Department of Computer Science, Columbia University, New York, NY, USA
{tbu, cao, aychen}@research.bell-labs.com, pclee@cs.columbia.edu

Abstract— Identification of significant patterns in network
traffic, such as IPs or flows that contribute large volume (heavy
hitters) or introduce large changes (heavy changers), has many
applications in accounting and network anomaly detection. As
network speed and the number of flows grow rapidly, tracking
per-IP or per-flow statistics becomes infeasible due to both the
computational overhead and memory requirements. In this paper,
we propose a novel sequential hashing scheme that requires only
O(H log N) both in memory and computational overhead that
are close to being optimal, where N is the the number of all
possible keys (e.g., flows, IPs) and H is the maximum number of
heavy keys. Moreover, the generalized sequential hashing scheme
makes it possible to trade off among memory, update cost, and
detection cost in a large range that can be utilized by different
computer architectures for optimizing the overall performance.
In addition, we also propose statistically efficient algorithms for
estimating the values of heavy hitters and heavy changers. Using
both theoretical analysis and experimental studies of Internet
traces, we demonstrate that our approach can achieve the same
accuracy as the existing methods do but using much less memory
and computational overhead.

I. INTRODUCTION

Monitoring and detecting significant behaviors in a network,
such as the presence of persistent large flows or a sudden
increase in network traffic due to the emergence of new
flows, are essential for network provisioning, management and
security because significant behaviors often imply events of
interests.

In this paper, we focus on the detection of two impor-
tant significant behaviors known as heavy hitters and heavy
changers. A heavy hitter is a key whose traffic exceeds a pre-
defined threshold, whereas a heavy changer is a key whose
change in traffic volume between two monitoring intervals
exceeds a pre-defined threshold1. Here a key represents a
source IP address/port, a destination IP address/port, or their
combinations such as the five-tuple flow. For instance, a flow
that accounts for more than 10% of total traffic, which is a
heavy hitter by flows, may suggest the violation of a service
agreement. On the other hand, a sudden increase of traffic
volume flowing to a destination, which is a heavy changer by
destination, may indicate either a hot spot, the beginning of a
DoS attack, or traffic rerouting due to link failures elsewhere.
The goal of the heavy key detection problem is to identify all

1There are more sophisticated definitions of “change” that account for
traffic forecast models. However, the technique we develop in the paper would
also apply to such definitions with linear forecast models. Using the simple
definition of change allows us to explain the technique more clearly.

heavy keys (i.e., either heavy hitters or heavy changers) and
estimate their associated values with a low error rate while
minimizing both memory usage and computational overhead.

However, as the Internet continues to grow in size and
complexity, the ever-increasing network bandwidth poses great
challenges on monitoring heavy keys in real time due to
computational and storage constraints. To identify any network
flow that causes significant volume change, the system should
scale up to at least 2104 keys2. Some fundamental requirements
for monitoring and detecting significant patterns in real time
for high bandwidth links are discussed below.

• Fast per-packet update. The per-packet update speed has
to be able to catch up with the link bandwidth even in the
worst case when all packets are of the smallest possible
size. Otherwise the real time constraint is violated.

• Fast discovery of significant patterns. The detection delay
of significant patterns should be short such that important
events like network attacks and link failures can be
responded in time before any serious damage is made.

• High accuracy. Both false positive and false negative
rates should be minimized. It is well understood that
having a false negative may miss an important event and
thus delay the necessary reaction. Having a false positive,
on the other hand, may trigger unnecessary responses that
waste resources.

Data monitoring algorithms based on efficient data struc-
tures have been studied for heavy hitter detection (e.g., [7])
or traffic-volume query (e.g., [1]). Estan and Varghese [5] use
parallel hash tables to identify large flows using a memory
that is only a small constant larger than the number of
large flows. However, such schemes only address heavy hitter
detection, but not heavy changer detection. Both [6] and [12]
address heavy changer detection. In particular, [12] proposes a
modularized hashing scheme to narrow down a candidate set
of heavy keys. Our proposed approach improves the scheme in
[12] not only on accuracy but also on computational overhead
and memory usage.

In summary, the main contributions of this paper are:
• We derive a lower bound of memory usage when applying

parallel hash tables for heavy key detection for a given

2This number is calculated based on the number of possible five-tuple flows:
source IP address (32 bits), source port (16 bits), destination IP address (32
bits), destination port (16 bits), and protocol (8 bits). The number may be
significantly smaller for realistic traffic since not all possible combination of
these fields are possible

2

error rate.
• We propose a sequential hashing scheme that uses multi-

level hash arrays for fast and accurate detection of heavy
keys while minimizing computational overhead and mem-
ory usage. Moreover, we demonstrate our scheme can
trade off between computational overhead and memory
usage so as to maximize the overall system performance
when being implemented on different hardware architec-
tures.

• We design efficient yet accurate methods for estimating
the values of heavy keys. We also demonstrate that our
estimation methods can further reduce errors introduced
in the detection stage. With the help of the estimation
step, our detection scheme can be more memory efficient
by allowing a high error rate in the detection stage and
then eliminating the errors in the estimation stage.

• Through extensive simulation using real Internet traces
collected from a high speed link, we show that our
scheme yields more accurate results, yet is more memory
and computationally efficient, than existing work.

The balance of the paper is organized as follows. We derive
a lower bound of memory requirement when using parallel
hash tables for heavy hitter/changer detection in Section II.
Section III focuses on the multi-level hash techniques for
heavy hitter/changer detection. In Section IV, we present
efficient algorithms for estimating the values of heavy hit-
ters/changers. Section V shows the evaluation results using
Internet traces. We conclude the paper in Section VI.

II. LOWER BOUND OF MEMORY REQUIREMENT OF A

HASH ARRAY

We model the set of network traffic within a measurement
interval as a stream of data that arrive sequentially, where
each item (x, vx) consists of a key x ∈ {0, 1, . . . , N −1} and
an associated value vx. The identification of heavy keys (i.e.,
either heavy hitters or heavy changers) is straightforward if all
values of vx are known. However, tracking the exact values
of vx for all x may not be feasible for large N . To overcome
this, as proposed in [5], [12], we introduce here the use of a
single hash array for approximating the heavy keys where a
hash array consists of M hash tables each with K buckets. The
hash functions for each table are chosen independently from
a class of 2-universal hash functions, and so the K buckets
of each table form a random partition of N keys. We define
ym,j as the sum of vx for all x in the jth bucket in the lth
table. Table I summarizes the important notation used in this
paper.

In this section, we derive the lower bound of memory (in
terms of the total number of buckets in a hash array) required
for identifying the heavy keys in network traffic using a single
hash array. We first describe our analysis for the case of heavy
hitter detection. We will then show how the results may also
apply to heavy changer detection.

A. Memory lower bound for heavy hitter detection

Recall a heavy hitter is a key x whose traffic value vx

exceeds a pre-specified threshold t. Suppose there are H heavy
hitters. Call a bucket heavy iff its y value crosses the threshold

TABLE I

NOTATION

x, vx key and the value associated with key x in the stream
N, Ni size of key set
M , Mi number of hash tables in one hash array
U memory size (total number of buckets)
H true number of heavy hitters/changes
K size of a hash table
γ H/K
ε, α expected number of false positives divided by H (Eq. 2)
D number of hash arrays (also the number of words in a key)
C, Ci size of the candidate set of heavy hitters
ym,j , yi,m,j sum of vx for all x mapped to bucket j of table l

(Notation with subscript i denotes the corresponding quantities for the ith
hash array in the sequential hashing scheme presented in Section III.)

t. For any heavy hitter, it is easy to see that the bucket that it
falls into in each of the M tables is a heavy bucket. Therefore,
a superset of heavy hitter keys, say C, can be formed by using
the intersection of M subsets, each of which consists of keys
in the heavy buckets corresponding to one table.

In order to derive the lower bound, we assume that the
traffic distribution is very skewed such that the sum of any set
of non-heavy hitter key values is less than the threshold, i.e.,
the contributions of non-heavy hitters are negligible. expected
size of order H , Assume that H � N . Let Z be the number
of heavy hitters contained in an arbitrary bucket, and let γ =
H/K, i.e, K = γ−1H . The following two lemmas describes
the distribution of Z and the expected size E|C| of set C in
the lower bound case.

Lemma 1: Z ≈ Binomial(1
K ,H). When H is large (say

greater than 100), Z ≈ Poisson(γ).
The proof is straightforward and is omitted. When γ = log 2

(see Theorem 1 below), Lemma 1 indicates that about 50% of
the buckets do not contain any heavy hitters and that among
heavy buckets about 70% of them contain exactly one heavy
hitter.

Lemma 2: E|C| ≈ H + (N −H)(1− (1− 1
K)H)M . When

H is large, then

E|C| ≈ H + (N − H)(1 − e−γ)M . (1)
Proof: Let pe be the probability that a non-heavy hitter

falls into the set C. Notice the probability that a non-heavy
hitter falls into the heavy buckets of the l-th table is pl ≈ 1−
(1− 1

K)H , since each heavy hitter can be treated independently
as an approximation due to H � N . The result follows readily
from pe =

∏M
l=1 pl and E|C| = H + (N − H)pe.

For the set C, let ε be the expected normalized false positives
defined as the expected number of false positives divided by
H3, i.e.,

E|C| = H + εH. (2)

Then by (1), for a given value ε and a large H , the required
number of tables of the hash array is

M = − log(Nε−1H−1)
log(1 − e−γ)

. (3)

Therefore, the required memory, say U ≡ MK, is logarithmic
in N and linear in H . The following theorem states the

3The expected false positive error of the set C, defined by the number of
false positives divided by the size of C, is ε/(1 + ε).

3

minimal memory requirement for achieving a specified false
positive error.

Theorem 1: Given an expected normalized false positives,
ε, the memory size U is minimized when K = H/ log 2 and
M = log2(Nε−1H−1) for a large H (say larger than 100).
The proof is based on minimizing the memory size directly,
but the details are omitted due to space limitation. In fact, this
memory optimization problem is essentially the same memory
optimization problem in the design of Bloom filter [2]. A nice
survey of Bloom filter and its network related applications is
given in [3].

There is a trade-off between the memory requirement and
the hash computations for achieving a fixed false positive error.
Figure 1 shows the trade-off between M and U for the case
where N = 232, H = 1000 in the lower bound case. The
circles represent the optimal pair of (M,U) such that U is
minimized. To achieve the same expected normalized false
positive error (ε = 10−6 or ε = 10−3), we can in fact use just
half of the optimal number of hashing tables with the price of
increasing the memory size by about only 20%. This may be
desirable when hash operations are considered expensive.

10 20 30 40

1.
0

1.
5

2.
0

2.
5

Number of hashing functions (m)

R
at

io
 w

.r
.t.

 r
eq

ui
re

d
m

in
im

al
 m

em
or

y
si

ze

ε = 10−6

ε = 10−3

Fig. 1. Trade-off between the number of hashing table and memory size

B. Memory for heavy changer detection

For the (m, j)th bucket, let y
(1)
m,j , y

(2)
m,j be the bucket values

in interval 1 and 2 respectively, and let ym,j = y
(2)
m,j − y

(1)
m,j

be the change in the bucket value. For the heavy changer
case, a bucket is considered heavy iff |ym,j | crosses a pre-
specified threshold t. When the values of non-heavy changers
are negligible, unlike the heavy hitter case presented in the
above, it is now possible that some positive changers and
negative changers collide in the same bucket such that the
bucket is not heavy (i.e., |ym,j | is less than t). Therefore,
the outcome of the threshold test does not fully reflect the
values of heavy keys, and there will be a false negative error in
addition to the false positive error when using the intersections
of heavy buckets to identify the heavy changers. To control the
false negative error, a notion of misses has been introduced in
[6] and [12] to refer to those non-heavy buckets, so that a key
is included in the candidate set if it falls into at least M − r
heavy buckets, where r is the number of allowed misses. We
refine this criterion by using an additional constraint: for a
miss (i.e., a non-heavy bucket) to be considered legitimate, the
bucket value in either y

(1)
m,j of y

(2)
m,j has to cross the threshold

t. We found the inclusion of this refined criterion very useful
in reducing the false positives. With the allowed r misses,

the false positive rate will increase, and hence the memory
requirement will increase. It is also clear that when the values
of non-heavy hitters or changers become significant, both false
negative and false positive rates will increase using the same
hash array, and so does the memory requirement for a given
false positive rate.

III. SEQUENTIAL HASHING SCHEME FOR IDENTIFYING

HEAVY KEYS

To identify the heavy keys in a total of N keys using a
single hash array, one has to enumerate the entire key space
to see if each key falls into some heavy bucket in each of
the tables in the hash array. Such an approach, however, is
computationally expensive or even infeasible if the key space
is very large.

In this section, we propose a general framework of using a
multi-level hashing scheme for recovering H heavy elements
in N keys when enumerating the entire key space becomes
computationally prohibitive. The multi-level hashing scheme
allows us to divide the original problem into much smaller sub-
problems where the exhaustive search can be applied. We then
focus on a special version of the general multi-level hashing
scheme called sequential hashing, which has a few desirable
properties. Lastly, we present a mathematical analysis of
its complexity in terms of memory and computation, and
discuss the design parameter optimization for memory and
computation cost for a targeted false positive rate.

A. Multi-level hashing

To illustrate the general idea of multi-level hashing, for a
key x with n = log2 N bits, we first focus on identifying a sub-
key of x with b bits that belongs to a heavy key. We assume
b is sufficiently small (say 4, 8) such that enumeration of this
sub-key space for the identification of the heavy sub-keys is
now trivial using a hash array as described in Section II. Next,
we combine the heavy sub-keys that have just been found
with some remaining bits (say 2,4 bits) of the key to form a
larger sub-key with more bits, say b′ bits. Enumeration of this
larger sub-key space (with b′ bits) is now significantly reduced
because the smaller sub-keys (with b bits) for heavy keys are
already known. Therefore, we can again use a new hash array
to identify the larger sub-keys of the heavy keys. Repeating
the process, we can eventually discover the key values of the
heavy keys in the original key space.

For easy enumeration, a similar idea is proposed in [12]
that divides a large key into smaller words that are enumerated
first. However, they choose to directly combine all enumerated
words of the heavy keys in one step without more intermediate
steps. This makes it not only more computationally expensive,
but also less flexible on trading off between computation and
space as will be described later.

B. Sequential Hashing Scheme

We now propose a sequential hashing scheme for identifying
heavy keys which is a special version of the multi-level hash-
ing scheme discussed above. Our sequential hashing scheme
consists of two major steps: (1) update step, which includes the

4

T1,1

Key

... ...

...

T1,2 T1,3 T1,4 T2,1 T2,2 T2,3 TD,1 TD,2 TD,3 TD,4 TD,5

Array 1 Array 2 Array D

K
buckets

fD,5
f1,1

fD,1f2,3

Fig. 2. Relationship between a key and the hash arrays in the sequential
hashing scheme.

value of a key into the associated buckets of the hash arrays,
and (2) detection step, which determines the set of heavy keys.

Figure 2 depicts the relationship between a key and the hash
arrays in the sequential hashing scheme. We partition a key x
into D words w1w2 · · · , wD such that each word wi has bi bits,
where 1 ≤ i ≤ D. We now consider the sub-key w1 · · ·wi,

formed by the first i words of key x. Let Ni = 2
∑i

r=1
br , and

let Ni be the corresponding sub-key space {0, 1, · · · , Ni −1},
which contains all possible values of sub-key w1 · · ·wi. In
each sub-key space Ni, let Hi denote the set of sub-keys of
those heavy keys in the original key space. Note that Hi is
at most of size H . In addition, we construct a set of D hash
arrays, in which the ith hash array corresponds to sub-key
w1 · · ·wi and contains Mi hash tables Ti,1, · · · , Ti,Mi

.

Algorithm 1 Update step
Input: a key x with value v

1: Partition key x into D words as w1w2 · · ·wD , where word wi

has bi bits for 1 ≤ i ≤ D
2: for i = 1 to D do
3: for j = 1 to Mi do
4: Increment the counter of bucket fi,j(w1 · · ·wi) in hash

table Ti,j with value v

To begin with, Algorithm 1 outlines the update step. For
each incoming key x = w1 · · ·wD with value v, we asso-
ciate the sub-key w1 · · ·wi with hash function fi,j to bucket
fi,j(w1 · · ·wi) ∈ {1, · · · ,K} in hash table Ti,j , where 1 ≤
i ≤ D, 1 ≤ j ≤ Mi, and 1 ≤ k ≤ K. We then increment the
counter in the bucket with value v.

Algorithm 2 summarizes the detection step for the case of
heavy hitter detection. The main idea is to decompose the
original problem of finding H heavy keys into a sequence of
D nested sub-problems, each of which determines a candidate
set Ci from subspace Ni as an approximation of Hi. We first
identify C1 by searching for all values in N1 that have all
their associated buckets in T1,1, · · · T1,M1 considered to be
heavy, i.e., the counter of a bucket exceeds a pre-specified
threshold. To determine Ci, where 2 ≤ i ≤ D, we first
concatenate each sub-key x′ ∈ Ci−1 with an arbitrary word
wi ∈ {0, · · · , 2bi − 1} to form x′′. We then include x′′ into Ci

Algorithm 2 Detection step
Inputs: hash tables {Ti,j}1≤i≤D,1≤j≤Mi with heavy buckets
Output: a set of heavy keys

1: Set C0 = {0} and Ci = φ for 1 ≤ i ≤ D
2: for i = 1 to D do
3: for all x′ ∈ Ci−1 do
4: for wi = 0 to 2bi − 1 do
5: x′′ = x′ × 2bi + wi

6: Set flag = TRUE
7: for j = 1 to Mi do
8: if bucket fi,j(x

′′) in Ti,j NOT heavy then
9: Set flag = FALSE

10: Exit the for-loop of lines 7-10
11: if flag == TRUE then
12: Add x′′ to Ci

13: return CD

if all its associated buckets in Ti,1 · · · Ti,Mi
are heavy (i.e., the

variable flag remains TRUE). We continue this process and
finally return the candidate set CD.

Note that Algorithm 2 is illustrated for heavy hitter de-
tection. For heavy changer detection, we include ri allowed
misses for the ith hash array and modify Line 8 as follows,
i.e., we set flag to FALSE if bucket fi,j(x′′) is a non-legitimate
miss, or the number of legitimate misses over the i hash array
exceeds ri (see Section II-B for details).

In the following, we present a mathematical complexity
analysis of our sequential hashing scheme in terms of memory
and computation, and discuss the design choice to achieve the
most savings in both memory and computation for a targeted
false positive rate. We first analyze the situation when the
non-heavy keys have negligible contribution to the counter
values, and then discuss how our result can be extended to the
situation of significant non-heavy keys. We show that with the
right design choice, our scheme can reduce the computation
in the detection step from Ø(N) (by enumerating all N keys)
to O(H log2 N) with very little increase in total memory. We
also conduct complexity comparison between our scheme and
the competing schemes, and show that our scheme is superior
in terms of both memory and computation.

C. Mathematical complexity analysis when non-heavy keys are
negligible

Assume the heavy keys are distributed randomly in the key
space, then it can be shown that the expected size of Hi (i.e.,
the distinct first i words of H heavy keys) is

E|Hi| ≈ Ni

[
1 −

(
1 − 1

Ni

)H
]
≈ H, (4)

where the approximation holds when Ni � H4. When the
non-heavy keys have negligible contribution to the counter
values, the optimal value of K which minimizes the memory
requirement is K = γ−1H with γ = log 2, which is
independent of the size of the key space. Therefore, we can
choose the same number of buckets K for the hash tables in
each hash array.

4In practice, this will be satisfied when Ni ≥ 64H .

5

For the ith sub-problem, where 1 ≤ i ≤ D, suppose that
the expected number of false positives normalized by H is αi

for 1 ≤ i ≤ D − 1 and ε for i = D, i.e.,

E|Ci| = H + αiH, E|C| = E|CD| = H + εH, 1 ≤ i < D.

Therefore the expected number of keys to be enumerated for
each sub-problem is 2b1 for i = 1, and (1 + αi−1)H2bi for
2 ≤ i ≤ D. Since the complexity of each sub-problem is
determined by the size of keys to be enumerated, it is now
natural to let all the sub-problems have the same expected
number of keys to be enumerated. This can be achieved by
letting αi = α, and dividing the whole key into D words such
that

2b1 = (1 + α)H2b, and bi = b, 2 ≤ i ≤ D. (5)

Under this setting, we now consider two main quantities for
the complexity study when the non-heavy keys are negligible:
update memory and recovery cost, and we list the results for
other quantities in Table II. We are interested in how the
complexity grows as a function of H and N .

1) Update Memory: By applying (3) to each sub-problem
i (replacing N with (1 + α)H), 1 ≤ i ≤ D − 1, the required
total number of hash tables with a size K = γ−1H is

M =
D−1∑
i=1

r log2((1 + α)Hα−1H−1) + r log2(Nε−1H−1)

= r log2

N

εH
+ r(D − 1) log2(1 + α−1), (6)

where r = −1/ log2(1−e−γ). Notice that the first quantity in
(6) is the total number of the tables required to recover the H
heavy keys using a single random hash array by enumerating
all the keys in the original space, for the same normalized
false positive number ε. Therefore, the latter quantity in (6)
is the additional number of tables required for the sequential
hashing scheme, which decreases when α increases.

2) Detection Cost: We define the detection cost as the
number of hash operations needed to recover all heavy keys.
Since the number of keys to be enumerated is (1+α)H2b for
each sub-problem under our setting (5), and in the worst case,
for each sub-key, we need to check all Mi tables to include
or exclude it, the total hash computation required is

Computation ≤ (1+α)2bHM = γ−1(1+α)2b×(Memory).
(7)

D. Design choices when non-heavy keys are negligible

Given a normalized false positive number ε, our sequential
hashing scheme has two tuning parameters: α, the intermediate
normalized false positives, and b the number of bits of each
word except the first one. Notice that by (5), the number of
total words D is a function of α, b since

log2(1 + α) + bD = log2(H
−1N). (8)

Now we formulate the design problem as an optimization
problem where we try to minimize both the memory increase
and the computational cost, i.e., following (3) and (7), we want
to

minimize (D − 1) log2(1 + α−1) and (1 + α)2b,

0

100

200

300

400

500

600

700

800

30 35 40 45 50 55 60 65 70

de
te

ct
io

n
co

st
 (

in
 1

0^
3

ha
sh

 o
pe

ra
tio

ns
)

update memory (in M = number of tables)

b=1
b=2
b=4

Fig. 3. Trade-off between update memory and detection cost with N = 232

and H = 500.

given the constraint (8) and (1 + α)2b ≥ 64 so that (4) will
be satisfied. Notice that the computation is exponential in
b, therefore we should let b small. For a fixed small b, if
α = O(log2 N), then the memory increase is bounded by a
constant and the computation is O((log2 N)2). If α is of O(1),
then the memory increase is O(log N) and the computation is
O(log N) as well. For practical values of log2 N (say 32 bits),
we found that there is little difference in the memory increase
when b is between 1 to 5 bits if we set (1 + α)2b ≥ 64 (the
number of tables differ at most 2).

To understand the above results, Figure 3 illustrates how our
sequential hashing scheme trades off between update memory
and detection cost. Here, we evaluate the values of b for the
case when non-heavy keys have negligible contribution to the
counter values, and hence γ = log 2. We assume that N = 232,
H = 500 (and hence K ≈ 722), N1 = 216 (and hence Ni ≥
64H), ε = 0.2%. We then vary α to obtain the corresponding
update memory (in terms of M) and detection cost. As shown
in the figure, when b = 1 or 2, a smaller detection cost is
obtained as compared to b = 4, while the difference between
b=1 and 2 is very small. For example, when b = 2 and α = 9,
we have M ≈ 33 (where M1 = 4, Mi = 2 for 2 ≤ i ≤ D−1,
MD = 15, and D = 9), while the detection cost is about
400K, which is twice the minimum detection cost achieved
by larger update memory. Note that the number of tables in
the lower-bound memory requirement is log2

N
εH = 32, where

the heavy-key detection is done by enumeration of the entire
key space. Thus, with only one extra table, we can recover all
heavy keys with manageable detection cost.

E. Extension in the presence of significant non-heavy keys

In Section II-A, we show that the required memory for de-
tecting H heavy hitters in N keys is at least O(H log(N/εH))
for a given normalized false positive number ε. In the presence
of significant non-heavy keys, [12] introduced the so-called
ε-approximate heavy keys and non-heavy keys (see [6]) and
studied its false negatives and false positives respectively. By
plugging in ε in Theorem 2 of [12], we can in fact show that
the memory requirement can achieve O(H log(N/εH)) for
the normalized false positive and false negative number ε. In
this case, the complexity results in (3) and (7) still hold but
with different values of r in (6). Therefore the design choice
studied in Section III-D also applies here.

6

F. Comparison with other schemes

There are two existing schemes that are mostly related to
this work for heavy change detection, the Deltoids approach
proposed in [4], and the reversible-sketch approach proposed
in [12]. Table II compares complexities of these two schemes
with that of sequential hashing. Suppose that we set εH =
Θ(1), meaning that the number of false positives is controlled
within a constant factor. It should be noted that as compared
to the other two approaches, our sequential hashing scheme
requires less memory in general to achieve a given fixed
false positive rate, since, as shown above, we need only Θ(1)
extra hash tables with respect to the lower-bound memory
requirement. In addition, for the detection step, our scheme
has the same log2 N complexity as Deltoids in terms of both
memory and computation, and is much cheaper than Re-
versible sketch, whose complexity is sub-linear of the original
key space (on the order O(N1/ log log N log log N) in memory
and O(N3/ log log N log log N) in computation). In addition,
both Reversible sketch and Deltoids require a verification step
to reduce the number of false positives, but our scheme is
simpler since the verification step is incorporated into the last
hash array which maps the keys from the original key space.
Later in Section V, we shall demonstrate our advantages using
experimental studies of real traces.

IV. ESTIMATING VALUES OF HEAVY KEYS USING LINEAR

REGRESSION

In this section, we present a maximum likelihood based
method for estimating the heavy key values under a linear
regression model. This estimation can be useful for two
reasons. First, when the number of heavy keys are large, it
is important to provide some guidance so that one can look
at the most important ones first. Second, using the estimated
values, we can reduce the false positive rate by eliminating
those non-heavy elements included in the set. It is important to
realize that in the sequential hashing detection algorithms that
we presented earlier, we did not fully utilize the information
in the counter values and all we did is a threshold test. In the
experimental studies in Section VI, we will show that by using
estimation we can reduce the false positive rate significantly
at the expense of only a small increase in the false negative
rate.

Given a candidate set C of the heavy keys, let V be a vector
of length |C| representing their values, and let Y be a vector of
length L representing the counter values (or change in counter
values for heavy changer), for those buckets that contain at
least one candidate key. Now we can write

Y = AV + δ, (9)

where A is a L×|C| matrix whose columns represent how each
candidate is mapped to the counter buckets that Y represents,
and δ represents the contribution from the remaining non-
heavy keys to Y .

A. Heavy Hitter Estimation

Based on the empirical studies of real traces, for heavy
hitter estimation, we find that the distribution of δ is well

approximated by a Weibull distribution with mean θ and shape
parameter β, i.e., (δ/θ)β ∼ Exp(1), where Exp(1) stands
for the exponential distribution with mean 1. Figure 4 shows
Weibull-QQplot of the observed δ distribution for the detection
of at most 500 heavy hitters in a real trace studied later
in Section V, using a hash array with M = 33 tables and
K = 722 buckets per table. It is easy to see that the Weibull
distribution gives an excellent approximation as a straight line
indicates an exact Weibull distribution.

-4

-3

-2

-1

0

1

2

0.1 1 10 100

Lo
g

ex
po

ne
nt

ia
l q

ua
nt

ile

Log quantile of empirical distribution

Fig. 4. The error distribution of bucket values in a hash array for heavy hitter
detection with K = 722, M = 33, and 500 heavy hitters (see Experiment 1
in Section V). The dotted line indicates the true Weibull distribution.

When the shape parameter is 1, a Weibull reduces to an
exponential distribution. In this case, the maximum likelihood
estimate V̂MLE is equivalent to solving the following linear
programming problem with respect to V

maximize
L∑

l=1

AlV subject to (yl − AlV) ≥ 0, (10)

where yl is the l-th element of Y and Al is the l-th row of A.
A computationally cheaper estimator of V , the countmin

estimator, has been proposed in [4]. The countmin estimator
for the value of a candidate heavy hitter key is essentially the
minimum of all bucket values of y that contain the candidate
key. It is straightforward to show that if all the heavy buckets
contains exactly one heavy hitter, the maximum likelihood
estimator V̂MLE reduces to the countmin estimator V̂min.
However, from Lemma 1, this is not true and only around
70% of the heavy buckets contain exactly one heavy hitter
when γ = ln 2 and the candidate size is close to H . It can be
shown that both V̂min and V̂MLE have some small positive
bias, which is approximately

bias ≈ E

[
min

1≤m≤M
Ỹm

]
,

where Ỹm is a non-heavy bucket in table 1 ≤ m ≤ M .
Because non-heavy buckets are abundant (50% when the
candidate size is close to H with γ = ln 2 by using Lemma
1), the bias can be approximated accurately using a non-
parametric method by obtaining many samples of M non-
heavy buckets and then taking the empirical mean of the
minimum of each sample.

For a general Weibull error model, although it is straight-
forward to express maximum likelihood estimate also as a
solution to a constrained optimization problem, we have not
found an efficient solver for the constrained optimization
problem at the time of the writing. Based on the experimental
results that we will present in Section VI, we have found
that the solution from the linear programming problem in
(10) with bias correction gives very accurate estimates for

7

TABLE II

COMPLEXITY COMPARISON BETWEEN REVERSIBLE SKETCH, DELTOIDS, AND SEQUENTIAL HASHING (THE FIRST TWO ROWS ARE DERIVED FROM [12])

. Update step Detection step
memory memory accesses operations memory operations

Reversible Sketch Θ(
(log N)Θ(1)

log log N
) Θ(

(log N)
log log N

) Θ(log N) Θ(N
1

log log N · log log N) O(HN
3

log log N · log log N)

Deltoids Θ(H log N) Θ(log N) Θ(log N) Θ(H log N) O(H log N)

Sequential Hashing Θ(H log N
εH

) Θ(log N
εH

) Θ(log N
εH

) Θ(H log N
εH

+ αH) Θ(H log N
εH

+ (D − 1)αH2b)

our trace study. In addition to the countmin estimator, a least-
square estimator of the heavy hitters was proposed in [9] for
the linear regression problem in (9), which can be viewed as
the maximum likelihood estimate when the error distribution
follows a normal distribution. In Section VI, we shall compare
with least square method and show that the estimates obtained
from solving the linear programming problem are superior.

B. Heavy Changer Estimation

Based on the empirical studies of real traces, we find the
distribution of δ in the heavy changer case is well approxi-
mated by a double exponential distribution. In such case, the
maximum likelihood estimate V̂MLE for the linear regression
problem in (9) can be obtained from solving the following
L1-regression problem:

V̂MLE minimizes
L∑

l=1

|yl − a − AlV |, (11)

which can be done using standard packages. Interestingly,
when all the heavy buckets contain exactly one heavy hitter,
then V̂MLE corresponds to the median estimator, similar to
that proposed in [8]. The median estimator for the value of
a candidate key is the median of all bucket values of y that
contain the candidate key.

V. EXPERIMENTAL STUDIES

When non-heavy key values are no longer negligible as is
often the case in real traces, some of the non-heavy buckets
will be considered to be heavy, leading to more false positives.
Therefore, we need additional memory to counter this noise
effect. In this section, we use trace-driven simulation to study
various choices of parameters so as to tolerate the presence of
noise.

Using Internet traces captured from various sources, we
evaluate our sequential hashing scheme in identifying heavy
keys (i.e., heavy hitters or heavy changers) whose values
(i.e., data volumes or change of data volumes) exceed a
pre-specified threshold. Any key whose value is below the
threshold is considered to be a non-heavy key and treated as
noise. Our scheme is compared with Deltoids [6] using its
publicized software. In addition, we analyze the improvements
when our scheme is coupled with linear regression presented
in Section IV.

In summary, using a memory-efficient data structure, we
show that our sequential hashing scheme provides much more
accurate heavy hitter and heavy changer detection than does
Deltoids in the presence of noise. With linear regression, the
accuracy of our scheme is further improved. Moreover, we

show that our scheme allows fast detection and supports large
key space.

We cannot compare our scheme directly with Reversible
sketch [12] as its source code is not publicized. However,
in our evaluation, our scheme uses much fewer counters for
evaluation as compared to the evaluation in [12], while still
providing accurate estimates.

Traces: The results presented here are based on an one-hour
uni-directional trace from NLANR [11]. The trace contains
about 50 GB of Internet traffic collected from 10:00pm to
11:00pm on June 1, 2004 at an OC-192 link connecting
between Indianapolis and Kansas city in the United States.
The huge volume of collected traffic allows us to demonstrate
the effectiveness of our sequential hashing scheme in a high-
speed network. We repeat our evaluation using the NLANR
traces collected from the same source but at other times as
well as using private traces collected at an OC-48 link of an
ISP, and similar results are observed.

We divide the one-hour NLANR trace into six 10-minute
intervals. For heavy hitter detection, we identify the source
IPs whose data volume exceeds a threshold in each interval.
We then average the results across all intervals. On the other
hand, for heavy-changer detection, we identify the source IPs
whose absolute change of data volume is above a threshold
in each pair of adjacent intervals. We then average the results
across all pairs of adjacent intervals.

Experiment Setup: Unless otherwise stated, our discussion
focuses on the 32-bit key space based on source IP addresses.
However, we also experiment the 64-bit key space defined by
source-destination IP addresses.

In practice, given a user-specified threshold, one can ap-
proximate the worst-case number H of heavy keys over a data
stream. For example, the number of heavy hitters that exceeds
1% of the traffic is at most 100 (see [10] for a more detailed
account of these descriptions). In our experiments, we assume
H = 500 and vary K and M such that the size of K and M
are sufficient for identifying at most H heavy keys.

For evaluation purpose, we select different thresholds, each
of which corresponds to a true number of heavy keys. We
therefore maintain a baseline structure that keeps track of the
per-key data volume for such threshold selection. The baseline
structure is also used for assessing the accuracy of finding
heavy keys.

Metrics: We are mainly interested in two accuracy metrics:
(1) false positive rate, defined as ratio of the number of non-
heavy keys to the number of keys returned by the sequential
hashing scheme, and (2) false negative rate, defined as the
number of true heavy keys that are not returned by the
sequential hashing scheme.

8

Experiment 1 (Analysis of finding heavy hitters (without
linear regression)): To counter the noise effect, we need
additional memory by increasing K and/or M for successful
heavy key detection. Thus, we study the impact with different
choices of K and M . We begin our analysis by first excluding
linear regression described in Section IV.

As shown in Section IV, when H = 500, then we choose
K = 722 (with 9 hash arrays where K = H

ln 2) and M = 33
(where M1 = 4, M2 = · · · = M8 = 2, and M9 = 15) for our
sequential hashing scheme. Here, we increase the memory by
50% and 100% by using different values of K and M shown
in Table III (where each counter is assumed to be of size 4
bytes).

TABLE III

CONFIGURATIONS OF K AND M .

K M (M1, M2≤i≤8, M9) # of counters (Memory Size)
722 33 (4, 2, 15) 23826 (93 KB)
722 50 (6, 3, 23) 36100 (141 KB)
722 66 (8, 4, 30) 47652 (186 KB)
1083 33 (4, 2, 15) 35739 (140 KB)
1444 33 (4, 2, 15) 47652 (186 KB)

Figure 5 shows the false positive rate of finding heavy
hitters using the sequential hashing scheme (note that since
every bucket that contains heavy hitters must be a heavy
bucket, there is no false negative). With the original noise-
free configuration K = 722 and M = 33, the false positive rate
can be as high as 32%. However, by increasing the number of
counters, we can reduce the false positive rate significantly to
less than 6% by increasing K by 50% (for M = 33 and K =
1083) and further to less than 3% by doubling K (for M =
33 and K = 1444).

In the presence of noise, we note that increasing K is more
advantageous than increasing M . Intuitively, as K increases,
the values of non-heavy keys are distributed across more
buckets. Thus, a bucket that contains only non-heavy keys is
less likely to become a heavy bucket, leading to a reduced false
positive rate. Also, increasing M is less desirable in practice
because it increases the number of hash operations needed to
record keys into the hash arrays.

0

5

10

15

20

25

30

35

50 100 150 200 250 300 350 400 450 500

F
al

se
 p

os
iti

ve
 r

at
e

(in
 %

)

True number of top heavy hitters

K=722, M=33
K=722, M=50
K=722, M=66

K=1083, M=33
K=1444, M=33

Fig. 5. False positive rate of find-
ing heavy hitters using sequential
hashing scheme in Experiment 1.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

C
D

F
 (

in
 %

)

Deviation from the threshold (in %)

K=1083, M=33
K=1444, M=33

Fig. 6. Deviations of false posi-
tives from the threshold for finding
the top 500 heavy hitters in Exper-
iment 1.

To further examine the values of the false positives, Figure 6
depicts the percentage of deviations of these values with
respect to the threshold for the case of finding the top heavy
hitters using the configurations with M = 33 and K = 1083

and 1444. In fact, most of the false positives do not actually
deviate much from the threshold. For instance, the proportion
of false positives that have values within 15% of the threshold
is more than 80% when M = 33 and K = 1083, and achieves
100% when M = 33 and K = 1444. It shows that the heavy
hitter candidates returned from the sequential hashing scheme
can effectively approximate the set of true heavy hitters.

We now compare our scheme with Deltoids using its
publicized software. Here, we set the number of hash tables
and the number of buckets in each hash table to be 4 and
361, respectively. Since each of its buckets is associated with
log2 N + 1 = 33 counters, its total number of counters is no
less than all of our configurations.

Figure 7 shows the accuracy of using Deltoids to identify
heavy hitters. While Deltoids has less than 10% of false
positive rate, its false negative rate is significantly high (up
to 80%) as more heavy hitters need to be identified, meaning
that many true heavy hitters evade detection. This shows that
with the same or even less amount of memory, our sequential
hashing scheme provides a much more accurate heavy hitter
detection than does Deltoids.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 50 100 150 200 250 300 350 400 450 500

F
al

se
 p

os
iti

ve
 r

at
e

(in
 %

)

True number of top heavy hitters

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 150 200 250 300 350 400 450 500

F
al

se
 n

eg
at

iv
e

ra
te

 (
in

 %
)

True number of top heavy hitters

(a) False positive rate (b) False negative rate

Fig. 7. Accuracy of Deltoids in finding heavy hitters in Experiment 1.

Experiment 2 (Analysis of finding heavy hitters (with
linear regression)): Here, we analyze how the heavy hitter
detection benefits from linear regression presented in Sec-
tion IV. As Experiment 1 shows that increasing K outperforms
increasing M , we focus on the configurations with M = 33,
and K = 722, 1083, and 1444.

Figure 8 shows the accuracy of finding heavy hitters when
we couple our sequential hashing scheme with linear regres-
sion. Referring to Figure 5 in Experiment 1, for K = 722
and M = 33, the false positive rate for identifying 500 heavy
hitters is almost 32% without linear regression. However,
linear regression reduces this false positive rate to less than
3%, while introducing a false negative rate 3.1% (i.e., the total
error rate is about 6%). Also, for K = 1083 and M = 33,
the false positive rate for identifying 500 heavy hitters is also
about 6% when no linear regression is used. This shows that
linear regression can reduce the amount of memory required
to achieve the same total error rate.

In terms of the accuracy of estimation, we show that linear
regression provides a better estimate of values of heavy hitters
than does the least-square method proposed in [9]. Here, we
consider the following two error measures:

Err1 = 1
|C|

∑
x∈C |vest

x − vx|,

Err2 =
√

1
|C|

∑
x∈C(vest

x − vx)2,

9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

F
al

se
 p

os
iti

ve
 r

at
e

(in
 %

)

True number of top heavy hitters

K=722, M=33
K=1083, M=33
K=1444, M=33

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

F
al

se
 n

eg
at

iv
e

ra
te

 (
in

 %
)

True number of top heavy hitters

K=722, M=33
K=1083, M=33
K=1444, M=33

(a) False positive rate (b) False negative rate

Fig. 8. Accuracy of finding heavy hitters with linear regression in Experiment
2.

where vx and vest
x are respectively the true value and the

corresponding estimate of key x, and C is the final candidate
set returned from the sequential hashing scheme.

Table IV shows the error measures (in unit MB) of both
linear and least-square regressions in estimating the data
volumes of the top 500 heavy hitters. It shows that linear
regression always outperforms least-square regression in both
error measures. We have also tried other types of error
measures and linear regression still provides better results.

TABLE IV

ACCURACIES OF LINEAR AND LEAST-SQUARE REGRESSIONS.

Configuration Linear Least-square
Err1 Err2 Err1 Err2

K=722, M=33 0.7788 0.9929 2.1593 2.8382
K=1083, M=33 0.3890 0.5357 0.7567 0.9754
K=1444, M=33 0.2145 0.3030 0.3813 0.4971

Experiment 3 (Accuracy of finding heavy changers): We
now compare both our sequential hashing scheme (with linear
regression) and Deltoids in heavy changer detection. Since the
positive and negative changes can cancel each other, some of
the buckets that contain heavy changers will not be identified
as heavy buckets. Therefore, we need even more memory to
mitigate this impact. Here, for our sequential hashing scheme,
we consider the configuration with K = 1444 and M =
33, while for Deltoids, we use the same configuration as in
Experiment 1. Thus, both approaches are allocated with the
same number of counters.

Figure 9 depicts the accuracy of finding heavy changers both
schemes. While Deltoids only has at most 1.2% false positive
rate, its false negative rate can be as high as 70%. On the
other hand, with the same number of counters, our sequential
hashing scheme bounds the false positive and negative rates
within 3%.

Experiment 4 (Analysis of 64-bit key space): We fur-
ther evaluate our sequential hashing scheme using the 64-bit
source-destination IP pair as the key space. Here, we set M
= 66. For the case of finding top 500 heavy hitters, the false
positive and negative rates are 1.6% and 0.6%, respectively.
However, for the case of finding top 500 heavy changers, we
set K = 1800 to further counter the cancellation of positive
and negative changes. The false positive and negative ratios
are 0.6% and 2.9%, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50 100 150 200 250 300 350 400 450 500

F
al

se
 p

os
iti

ve
 r

at
e

(in
 %

)

True number of top heavy changers

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 50 100 150 200 250 300 350 400 450 500

F
al

se
 n

eg
at

iv
e

ra
te

 (
in

 %
)

True number of top heavy changers

(a) False positive rate,
sequential hashing

(b) False negative rate,
sequential hashing

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 50 100 150 200 250 300 350 400 450 500

F
al

se
 p

os
iti

ve
 r

at
e

(in
 %

)

True number of top heavy changers

 0

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300 350 400 450 500

F
al

se
 n

eg
at

iv
e

ra
te

 (
in

 %
)

True number of top heavy changers

(c) False positive rate, Deltoids (d) False negative rate, Deltoids

Fig. 9. Experiment 3: Accuracy of finding heavy changers.

VI. CONCLUSION

In this paper, we consider how to identify the keys (e.g., IPs
or flows) that have large data volume or large volume change
in a high speed network. Given the infeasibility of tracking
all keys, we first derive the lower-bound memory requirement
for recovering heavy keys with respect to a fixed false positive
rate. Next we propose a sequential hashing scheme that can
achieve accurate and fast identification of heavy keys. between
the memory usage and In addition, we propose a linear-
regression-based method to accurately estimate the values of
heavy keys and to further improve the accuracy of heavy-
key identification. Finally, we show via extensive trace-driven
simulation that our scheme is more robust in identifying heavy
keys as compared to the Deltoids approach.

REFERENCES

[1] Abhishek Kumar and Jun Xu and Jia Wang and Oliver Spatschek
and Li Li. Space-Code Bloom Filter for Efficient Per-Flow Traffic
Measurement. In Proc. of IEEE INFOCOM, Mar. 2004.

[2] B. Bloom. Space/time trade-offs in hashing coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[3] A. Broder and M. Mitzenmacher. Network applications of bloom filters:
a survey. Internet Mathematics, 1(4):485:509, 2003.

[4] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding
hierarchical heavy hitters in data streams. In VLDB, 2003.

[5] C. Estan and G. Varghese. New Directions in Traffic Measurement and
Accounting: Focusing on the Elephants, Ignoring the Mice. ACM Trans.
on Computer Systems, 21(3):270–313, Aug 2003.

[6] G. Cormode and S. Muthukrishnan. What’s New: Finding Significant
Differences in Network Data Streams. In Proc. of IEEE INFOCOM,
Mar. 2004.

[7] M. Kodialam, T. Lakshman, and S. Mohanty. Runs bAsed Traffic
Estimator (RATE): A Simple, Memory Efficient Scheme for Per-Flow
Rate Estimation. In Proc. of IEEE INFOCOM, Mar. 2004.

[8] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based
change detection: Methods, evaluation, and applications. In Internet
Measurement Conference, 2003.

[9] G. M. Lee, H. Liu, Y. Yoon, and Y. Zhang. Improving sketch
reconstruction accuracy using linear least squares method. In Internet
Measurement Conference, 2005.

[10] G. Manku and R. Motwani. Approximate Frequency Counts over Data
Streams. In Proc. VLDB, 2002.

[11] NLANR. Abilene-III Trace Data. http://pma.nlanr.net/Special/ipls3.html.
[12] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda,

M. Kao, and G. Memik. Reverse hashing for high-speed network mon-
itoring: algorithms, evaluation, and applications. In IEEE INFOCOM,
Barcelona, Spain, April 2006.

