
Degraded-First Scheduling for MapReduce in Erasure-Coded Storage Clusters

Runhui Li, Patrick P. C. Lee, Yuchong Hu

Department of Computer Science and Engineering, The Chinese University of Hong Kong

{rhli, pclee}@cse.cuhk.edu.hk, yuchonghu@gmail.com

Abstract—We have witnessed an increasing adoption of
erasure coding in modern clustered storage systems to reduce
the storage overhead of traditional 3-way replication. However,
it remains an open issue of how to customize the data analytics
paradigm for erasure-coded storage, especially when the stor-
age system operates in failure mode. We propose degraded-
first scheduling, a new MapReduce scheduling scheme that
improves MapReduce performance in erasure-coded clustered
storage systems in failure mode. Its main idea is to launch
degraded tasks earlier so as to leverage the unused network
resources. We conduct mathematical analysis and discrete event
simulation to show the performance gain of degraded-first
scheduling over Hadoop’s default locality-first scheduling. We
further implement degraded-first scheduling on Hadoop and
conduct testbed experiments in a 13-node cluster. We show that
degraded-first scheduling reduces the MapReduce runtime of
locality-first scheduling.

I. INTRODUCTION

Clustered storage systems, such as GFS [16], HDFS [30],

Azure [4], have been widely deployed in enterprises to

provide a scalable and reliable storage platform for big data

analytics based on MapReduce [9] or Dryad [21]. They

stripe data across thousands of nodes (or servers) connected

over a network, on which parallel data computations can

be performed. As a storage system scales, node failures

are commonplace [16], and temporary data unavailability

becomes prevalent due to frequent transient failures [13] and

system upgrades [24]. To ensure data availability at any time,

traditional designs of GFS, HDFS, and Azure replicate each

data block into three copies to provide double-fault tolerance

[4, 16, 30]. However, as the volume of global data surges

to the zettabyte scale [15], the 200% redundancy overhead

of 3-way replication becomes a scalability bottleneck.

Erasure coding provides an alternative to ensuring data

availability. It operates by encoding data blocks into parity

blocks, such that a subset of data and parity blocks can

sufficiently recover the original data blocks. It is known that

erasure coding costs less storage overhead than replication

under the same fault tolerance [32]. For example, it can

reduce the redundancy overhead of 3-way replication from

200% to 33%, while still achieving higher availability [20].

Extensive efforts (e.g., [13, 20, 29]) have studied the use

of erasure coding in clustered storage systems (e.g., GFS,

HDFS, Azure) that provide data analytics services. Although

erasure coding generally has higher performance overhead

than replication, recent results show that the overhead of

erasure coding can be mitigated through efficient coding

constructions [27], read parallelization [11], and hardware-

assisted computations [26]. In particular, when data is un-

available due to node failures, reads are degraded in erasure-

coded storage as they need to download data from surviving

nodes to reconstruct the missing data. In view of this, several

studies [20, 22, 29] propose to optimize degraded reads in

erasure-coded clustered storage systems, by reducing the

amount of downloaded data for reconstruction.

Despite the extensive studies on erasure-coded clustered

storage systems, it remains an open issue of how to cus-

tomize the data analytics paradigm, such as MapReduce [9],

for such systems, especially when they operate in failure

mode and need to perform degraded reads. In this work,

we explore Hadoop’s version of MapReduce on HDFS-

RAID [18], a middleware layer that extends HDFS to

support erasure coding. Traditional MapReduce scheduling

emphasizes locality, and implements locality-first scheduling

by first scheduling local tasks that run on the nodes holding

the input data for the tasks. MapReduce is designed with

replication-based storage in mind. In the presence of node

failures, it re-schedules tasks to run on other nodes that

hold the replicas. However, the scenario becomes different

for erasure-coded storage, where MapReduce tasks must

issue degraded reads to download data from other surviving

nodes. Such degraded tasks are typically scheduled to launch

after all local tasks are completed, and when they launch,

they compete for network resources to download data from

surviving nodes. This can significantly increase the overall

runtime of a MapReduce job. Thus, a key motivation of this

work is to customize MapReduce scheduling for erasure-

coded storage in failure mode.

Our observation is that while local tasks are running,

the MapReduce job does not fully utilize the available

network resources. Thus, this paper proposes degraded-first

scheduling, whose main idea is to schedule some degraded

tasks at earlier stages of a MapReduce job and allow them

to download data first using the unused network resources.

To this end, this paper makes three contributions:

• We propose degraded-first scheduling, a new MapRe-

duce scheduling scheme that improves MapReduce

performance in erasure-coded clustered storage sys-

tems operating in failure mode. We conduct simple

mathematical analysis to demonstrate that degraded-

first scheduling improves Hadoop’s default locality-first

scheduling. Our numerical results show that degraded-

first scheduling reduces the MapReduce runtime by

Node 1 Node 2 Node 3 Node 4

Top-of-rack
 Switch

 Core
Switch

Top-of-rack
 Switch

Rack

Figure 1. Example cluster with four nodes grouped into two racks.

15% to 43%. We also propose two heuristics that

achieve locality preservation and rack awareness, so as

to improve the robustness of degraded-first scheduling

in general configurations.

• We implement a discrete event simulator for MapRe-

duce to explore the performance gain of degraded-

first scheduling in a large-scale cluster. We show

that degraded-first scheduling reduces the runtime of

locality-first scheduling by up to 39.6% when the clus-

ter runs a single MapReduce job, and by up to 48.6%

when multiple MapReduce jobs run simultaneously.

• We implement degraded-first scheduling on Hadoop,

and compare the performance of locality-first schedul-

ing and degraded-first scheduling in a 13-node Hadoop

cluster. Degraded-first scheduling reduces the MapRe-

duce runtime of locality-first scheduling by up to 27.0%

and 28.4% for single-job and multi-job scenarios, re-

spectively.

The rest of the paper proceeds as follows. Section II first

presents background details of Hadoop and erasure codes.

Section III motivates via an example the issue of Hadoop’s

default locality-first scheduling. Section IV presents the

design of degraded-first scheduling. Section V describes our

discrete event MapReduce simulator and presents simula-

tion results. Section VI describes our implementation of

degraded-first scheduling on Hadoop and present testbed

experimental results. Section VII reviews related work, and

Section VIII concludes the paper.

II. BACKGROUND

A. Hadoop

We consider a Hadoop cluster composed of multiple nodes

(or servers) that are grouped into different racks. Typical

clusters connect all nodes via a hierarchy of switches.

Without loss of generality, we consider a simplified two-

level case where nodes within each rack are connected via

a top-of-rack switch, and all the racks are connected via a

core switch. Figure 1 illustrates an example.

Hadoop runs on a distributed file system HDFS [30] for

reliable storage. HDFS divides a file into fixed-size blocks,

which form the basic units for read and write operations.

Since node failures are common [16], HDFS uses replication

to maintain data availability, such that each block is repli-

cated into multiple (by default, three) copies and distributed

across different nodes.

Hadoop implements MapReduce [9] for data-intensive

computations on HDFS data. We first define the termi-

nologies as follows. A MapReduce program (called job) is

split into multiple tasks of two types: a map task processes

an input block and generates intermediate results, and a

reduce task collects the intermediate results through a shuffle

step, processes them, and outputs the final results to HDFS.

MapReduce uses a single master node to coordinate multiple

slave nodes to run the tasks. Each slave has a fixed number

of map and reduce slots, and each map (reduce) slot is

used for running one map (reduce) task. If a slave has free

slots available, it requests the master for map or reduce

tasks through periodic heartbeat messages. The master then

performs task scheduling and decides which task to run first.

In typical deployment environments of MapReduce, net-

work bandwidth is scarce [9]. Thus, MapReduce emphasizes

data locality by trying to schedule a map task to run on a

(slave) node that stores a replica of the data block, or a

node that is located near the data block. This saves the time

of downloading blocks from other nodes over the network.

Note that reduce tasks cannot exploit locality because they

need to download intermediate outputs from multiple slaves.

Here, a map task can be classified into three types: (i) node-

local, in which the task processes a block stored in the

same node, (ii) rack-local, in which the task downloads and

processes a block stored in another node of the same rack,

and (iii) remote, in which the task downloads and processes

a block stored in another node of a different rack. In this

paper, we collectively call the first two types local, since

rack-local tasks can run as fast as node-local tasks if the

network speed within the same rack is sufficiently high. The

default task scheduling scheme in Hadoop first assigns map

slots to local tasks, followed by remote tasks. We call this

approach locality-first scheduling.

B. Erasure Coding

To reduce the redundancy overhead due to replication,

erasure coding can be used. An erasure code is defined by

parameters (n, k), such that k original blocks (termed native

blocks) are encoded to form n− k parity blocks, and any k

out of the n blocks can recover the original k native blocks.

We call the collection of the n blocks a stripe. Examples

of erasure codes include Reed-Solomon codes [28] and

Cauchy Reed-Solomon codes [3]. Hadoop’s authors propose

a middleware layer called HDFS-RAID [18], which operates

on HDFS and transforms block replicas into erasure-coded

blocks. HDFS-RAID divides a stream of native blocks into

groups of k blocks, and encodes each group independently

into a stripe according to the parameters (n, k).
In the presence of node failures, native blocks stored in the

failed nodes are unavailable (we call them the lost blocks).

In replication, a read to a lost block can be re-directed to

Algorithm 1 Locality-First Scheduling on HDFS-RAID

1: while a heartbeat comes from slave s do
2: for each running job j in the job list do
3: for each free map slot on slave s do
4: if j has an unassigned local task then
5: assign the local task to s

6: else if j has an unassigned remote task then
7: assign the remote task to s

8: else if j has an unassigned degraded task then
9: assign the degraded task to s

10: end if
11: end for
12: end for
13: end while

another block replica. However, in erasure coding, reading

a lost block requires a degraded read, which reads the

blocks from any k surviving nodes of the same stripe and

reconstructs the lost blocks1. Although erasure codes are

designed to tolerate multiple node failures, it is known that

single-node failures are the most common failure recovery

scenario in practice [20, 22]. Thus, our discussion focuses

on the failure mode where the cluster has only one failed

node while a MapReduce job is running, and we address

multi-node failures using simulations (see Section V).

MapReduce is compatible with HDFS-RAID and also

follows locality-first scheduling. The main difference from

traditional replication is that HDFS-RAID reconstructs the

lost block via a degraded read. We define a new type of

map tasks called degraded tasks, which first read data from

other surviving nodes to reconstruct the lost block and then

process the reconstructed block. Degraded tasks are given

the lowest priority in the default locality-first scheduling, and

they are scheduled after local and remote tasks. Algorithm 1

summarizes the pseudo-code of the default locality-first

scheduling on HDFS-RAID.

III. MOTIVATING EXAMPLE

In this section, we elaborate via a motivating example

why the default locality-first scheduling hurts MapReduce

performance in failure mode. We then provide intuitions how

we can improve MapReduce performance.

We first review the default block placement policy of

HDFS, and later extend the policy for HDFS-RAID. By

default, HDFS uses 3-way replication and places the three

replicas using the following rule: the first replica is placed in

a random node, and the second and third replicas are placed

in two different random nodes that are located in a different

rack from the first replica. This placement policy can tolerate

(1) an arbitrary double-node failure; and (2) an arbitrary

single-rack failure. Correspondingly, for HDFS-RAID, we

1We consider the conventional degraded read approach, which always
reads from any k surviving nodes. Some special erasure code constructions
have been proposed (e.g., [20, 22, 29]) to reduce the number of blocks
read. Our work also applies to such erasure code constructions.

Node 1 Node 2 Node 3 Node 4

Switch

Node 5

B0,0 B0,1 P0,0 P0,1

B1,0 B1,1 P1,0 P1,1

B2,0 B2,1 P2,0P2,1

B3,0 B3,1P3,0 P3,1

B4,0 B4,1 P4,0 P4,1

B5,0 B5,1P5,0 P5,1

Switch

Switch

Figure 2. A five-node cluster with 12 native blocks and 12 parity blocks,
assuming a (4,2) coding scheme is used for fault-tolerance. We assume that
Node 1 fails while MapReduce is running.

consider an erasure code satisfying that (1) n− k ≥ 2; and

(2) at most n − k out of n blocks of any stripe are placed

on the same rack.

We design an example shown in Figure 2 that realizes

the above two conditions. The figure has a two-rack cluster,

in which the first rack has three nodes and the second

one has two nodes. The racks are connected by 100Mbps

Ethernet switches. Let the block size be 128MB. If we ignore

transmission overhead, then transmitting a block from one

node to another node takes around 10s. Suppose now that

the cluster stores a 12-block file, and we use a (4, 2) erasure

code to encode a file into six stripes. In the i-th stripe, where

0 ≤ i ≤ 5, let Bi,0 and Bi,1 be the two native blocks, and

Pi,0 and Pi,1 be the two parity blocks. We assume that each

node has two map slots, meaning that it can run at most

two map tasks simultaneously. According to [35], half of

map tasks take 1s to 19s to complete. Thus, we assume that

the time for processing a map task is also 10s.

We now explain why locality-first scheduling hurts

MapReduce performance in failure mode. We consider the

duration of the map phase. Suppose that a MapReduce

job is processing the stored data while Node 1 is failed,

so degraded tasks are triggered to process the lost blocks

B0,0, B1,0, B2,0, and B3,0. Figure 3(a) shows the map-

slot activities with locality-first scheduling. According to

Algorithm 1, each surviving node is first assigned local tasks

to process its stored blocks. After all the local tasks are

completed, the degraded tasks are launched. Suppose we

assign the degraded tasks for the lost blocks B0,0, B1,0,

B2,0, and B3,0 to Nodes 2, 3, 4, and 5, respectively, such

that a node just needs to download the first parity block

P0,0, P1,0, P2,0, P3,0, respectively, from another node to

reconstruct the lost block for processing. Node 4 downloads

P2,0 from Node 3 (in a different rack) and Node 5 downloads

P3,0 from Node 4 (in the same rack). However, Nodes 2

and 3, located in the same rack, need to compete for the

download link of the rack so as to download P0,0 and P1,0

from another rack, respectively. This doubles the download

time, from 10s to 20s. The entire map phase lasts for 40s.

Patrick Lee
Cross-Out

Patrick Lee
Sticky Note
Node 4 downloads P_{2,0} from Node 5 (in the same rack) and Node 5 downloads P_{3,0} from Node 3 (in a different rack). Note that nodes 4 and 5 don't compete for the download link. The analysis remains correct.

Map Slot

Slot 1

Slot 2

Slot 1

Slot 2

Slot 1

Slot 2

Slot 1

Slot 2

Node 2

Node 3

Node 4

Node 5

Proc B0,1

Proc B4,0

Proc B1,1

Proc B4,1

Proc B2,1

Proc B5,0

Proc B3,1

Proc B5,1

Get P0,0

Get P1,0

Get P2,0

Get P3,0

Proc B0,0

Proc B1,0

Proc B2,0

Proc B3,0

Local tasks finish Map phase finishes

Time(s)

10 20 30 400

(a) locality-first scheduling

Map Slot

Slot 1

Slot 2

Slot 1

Slot 2

Slot 1

Slot 2

Slot 1

Slot 2

Node 2

Node 3

Node 4

Node 5

Proc B0,1

Proc B1,1

Proc B4,1

Proc B2,1

Proc B3,1

Proc B5,1

Get P0,0

Get P1,0

Get P2,0

Get P3,0

Proc B0,0

Proc B1,0

Proc B2,0

Proc B3,0

10 20 30

Map phase finishes

Time(s)

Proc B4,0

Proc B5,0

0 40

(b) degraded-first scheduling

Figure 3. Map-slot activities in the entire map phase.

The major issue of locality-first scheduling in erasure-

coded storage in failure mode is that degraded tasks start

degraded reads together and compete for the network re-

sources to download blocks from other racks. Obviously,

the competition significantly increases the overall duration

of degraded tasks.

From the example, we observe that at the earlier stage

of the map phase, while local tasks are being processed,

network resources are not fully utilized. Thus, it is natural

to move the launch of some degraded tasks ahead to take

advantage of the unused network resources, so as to relieve

the competition for network resources among degraded tasks

later. Let us revisit the example, and suppose that we move

ahead two degraded tasks for processing B0,0 and B2,0 to

the beginning of the map phase. Figure 3(b) shows the new

map-slot activities for the revised task scheduling scheme,

which we call degraded-first scheduling. This eliminates the

competition for network resources, and reduces the duration

of the map phase from 40s to 30s, i.e., a 25% saving.

IV. DESIGN OF DEGRADED-FIRST SCHEDULING

We present the design of degraded-first scheduling, whose

main idea is to move part of degraded tasks to the earlier

stage of the map phase. The advantages are two-fold. First,

the degraded tasks can take advantage of the unused network

resources while the local tasks are running. Second, we avoid

the network resource competition among degraded tasks at

the end of the map phase. In this section, we first present

the basic version of degraded-first scheduling. We then

conduct mathematical analysis to show the improvement

of degraded-first scheduling over the default locality-first

scheduling in Hadoop. Finally, we present the enhanced

version of degraded-first scheduling that takes into account

the topological configuration of the cluster.

A. Basic Design

Our primary design goal is to evenly spread the launch

of degraded tasks among the whole map phase. This design

goal follows two intuitions.

• Finish running all degraded tasks before all local tasks.

If some degraded tasks are not yet finished after all

local tasks are finished, they will be launched together

and compete for network resources for degraded reads.

• Keep degraded tasks separate. If two or more degraded

tasks run almost at the same time, they may compete

for network resources for degraded reads.

The key challenge here is how to determine the right

timing for launching degraded tasks, so that they are evenly

spread among the whole map phase. One possible solution is

to predict the overall running time of the whole map phase

and launch degraded tasks evenly within the predicted time

interval. However, this approach is difficult to realize for two

reasons. First, different MapReduce jobs may have highly

varying processing time of a map task. Thus, it is difficult

to accurately predict how long the whole map phase would

be. Second, even if we can make accurate predictions, it is

possible that no free map slots are available when a degraded

task is ready to launch. Thus, the launch of some degraded

tasks may be delayed, defeating the original purpose of

evenly spreading the degraded tasks.

Therefore, we propose a heuristic design that arranges

the launch of degraded tasks with respect to the propor-

tion of map tasks that have been launched. Algorithm 2

shows the pseudo-code of the basic version of degraded-first

scheduling, which extends the default Algorithm 1. Given a

MapReduce job, we first determine the total number of all

map tasks to be launched (denoted by M) and the total

number of degraded tasks to be launched (denoted by Md).

We also monitor the number of all map tasks that have been

launched and that of degraded tasks that have been launched,

denoted by m and md, respectively. Algorithm 2 launches

a degraded task with a higher priority than a local task if

the proportion of degraded tasks that have been launched

is no more than the proportion of all map tasks that have

been launched. In this way, we control the pace of launching

degraded tasks and have them launched evenly in the whole

map phase. It is worth noting that we assign at most one

degraded task for every heartbeat (see the if-condition in

Line 4), since launching more than one degraded task at the

same node will lead to competition for network resources

among these degraded tasks.

Algorithm 2 Basic Degraded-First Scheduling

1: while a heartbeat comes from slave s do
2: isDegradedTaskAssigned = false
3: for each running job j in the job list do
4: if isDegradedTaskAssigned == false and

s has a free map slot then
5: if j has an unassigned degraded task then
6: if m

M
≥

md

Md

then

7: assign a degraded task to s

8: isDegradedTaskAssigned = true
9: end if

10: end if
11: end if
12: for each free map slot on slave s do
13: if j has an unassigned local task then
14: assign the local task to s

15: else if j has an unassigned remote task then
16: assign the remote task to s

17: end if
18: end for
19: end for
20: end while

We elaborate via an example how Algorithm 2 works.

Figure 4(a) illustrates a cluster that contains four slaves and

provides fault tolerance via a (4,2) erasure code. The pro-

cessed file has a total of 12 native blocks, with three native

blocks stored in each node. We fix both the downloading

and processing times to be 10s as in Section III. To better

describe the main idea, we configure each node with one

map slot only. Suppose now Node 1 fails. Thus, there are

a total of 12 map tasks, and three of them are degraded

tasks for processing the lost blocks B0,0, B1,0 and B2,0.

We assume that the master assigns map tasks in the order

Nodes 2, 3, and 4. Figure 4(b) shows the execution flow of

the whole map phase. According to Algorithm 2, the three

degraded tasks are assigned as the 1st, 5th, and 9th map

tasks, and the three degraded tasks are launched at 0s, 10s,

and 30s, respectively. We see that all the degraded tasks

do not compete for network resources for downloading the

parity blocks during degraded reads.

It is important to note that in normal mode (i.e., without

any node failure), there is no degraded task, and hence

degraded-first scheduling operates the same way as locality-

first scheduling (see Lines 12-18 of Algorithm 2).

To summarize, Algorithm 2 launches a degraded task with

a higher priority if appropriate. This is why we call the

algorithm “degraded-first scheduling”.

B. Analysis

We conduct simple mathematical analysis to compare the

default locality-first scheduling and our basic degraded-first

scheduling in terms of the runtime of a MapReduce job.

Our goal is to provide preliminary insights into the potential

improvement of degraded-first scheduling in failure mode.

Analysis setting. We first describe the setting of our analy-

Node 1 Node 2 Node 3 Node 4

Switch Switch

Switch

B0,0 B0,1 P0,0 P0,1

B1,0 B1,1P1,0 P1,1

B2,0 B2,1P2,0 P2,1

B3,0 B3,1P3,0 P3,1

B4,0 B4,1

P5,0 P5,1

P4,0 P4,1

B5,0 B5,1

(a) Example setup.

Node

Node 2

Node 3

Node 4

Proc B3,0

Proc B1,1

Proc B4,1Proc B2,1

Get P0,0

Get P1,0

Get P2,0

Proc B0,0

Proc B1,0

Proc B2,0

Map phase finishes

Time(s)

Proc B4,0

Proc B5,0

Proc B0,1

Proc B3,1

Proc B5,1

10 20 30 40 50

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

0

(b) Map slot activities of surviving nodes.

Figure 4. Example of the execution flow of the map phase based on the
basic version of degraded-first scheduling (Algorithm 2). Each number in
the brackets represents the order of the blocks being assigned a map slot.

sis. We consider a cluster with N homogeneous nodes that

are evenly grouped into R racks (with N
R

nodes each). Let

L be the number of map slots allocated for each node (i.e.,

it can run at most L map tasks simultaneously). Let T be

the processing time of a map task. Let S be the input block

size. Let W be the download bandwidth of each rack. For

fault tolerance, we use an (n, k) erasure code to encode k

native blocks to generate n− k parity blocks. We distribute

the stripes of n native and parity blocks evenly among the

N nodes (as in parity declustering [19]). Let F be the total

number of native blocks to be processed by MapReduce (i.e.,

the number of blocks in the each node is F
N

).

Suppose that we only focus on the map-only MapReduce

job, and neglect the shuffle overhead and the time for reduce

tasks. Then in normal mode (without any node failure), the

runtime of a MapReduce job is FT
NL

.

We now consider the MapReduce performance in failure

mode. We focus on the case where a single node fails (see

our justification in Section II). This implies that there are a

total of F map tasks, among which F
N

are degraded tasks.

We assume that the degraded tasks are evenly distributed

among all racks, such that each rack contains F
NR

degraded

tasks (assuming F
NR

is an integer). When a degraded task

issues a degraded read to a lost block, it downloads k

out of the n − 1 surviving blocks of the same stripe. We

assume that the degraded read is bottlenecked by inter-rack

traffic. If the stripes are evenly distributed across all racks

and each degraded task randomly picks k out of n − 1
blocks to download, then the expected time needed for

downloading blocks from other racks for each lost block

being reconstructed is
(R−1)kS

RW
.

Locality-first scheduling. We first consider the default

locality-first scheduling. In failure mode, all degraded tasks

are launched after the completion of processing all local

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

(8,6) (12,9) (16,12) (20,15)

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

(n,k)

locality-first
degraded-first

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

720 1440 2160 2880

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

Number of blocks

locality-first
degraded-first

 1

 2

 3

 4

 5

 6

100 200 500 1000

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e

Switch bandwidth (Mbps)

locality-first
degraded-first

(a) Erasure coding scheme (b) Numbers of native blocks (c) Rack download bandwidth

Figure 5. Numerical analysis results of locality-first scheduling and degraded-first scheduling.

tasks (which takes time FT
NL

). Each rack is assumed to

have F
NR

degraded tasks, so the total time required for all

degraded reads is F
NR

· (R−1)kS
RW

. We further assume that the
F
N

blocks of the degraded tasks can be processed in parallel

by all available map slots in the cluster in a single map-slot

duration T . Thus, by summing up the times for local tasks

and degraded tasks, the MapReduce runtime under locality-

first scheduling is:

FT

NL
+

F

NR
·
(R− 1)kS

RW
+ T.

Degraded-first scheduling. We next consider degraded-first

scheduling, which spreads the launch of degraded tasks over

the whole map phase. Here, we assume that the map tasks

are launched in a lock-step manner, such that the map phase

is divided into rounds, each of which launches the same

number of map tasks given all available slots. Since there

are a total of F map tasks and (N−1)L available map slots

in failure mode, there are approximately F
(N−1)L rounds of

launching the map tasks.

We need to address two cases in our analysis: (1) the

degraded tasks can finish degraded reads in one round and

(2) the degraded tasks need to finish degraded reads in more

than one round. In the first case, it implies that all degraded

reads can be finished within F
(N−1)L rounds, each of which

spans a slot duration T . Assuming that all degraded tasks

are further processed in parallel within a map-slot duration

T (as in above), the upper bound of the runtime is FT
(N−1)L+

T . In the second case, the bottleneck is the inter-rack data

transmission of degraded reads. Since each rack has F
NR

degraded tasks, it needs to spend the download time F
NR

×
(R−1)kS

RW
. An additional time T is needed to process the

degraded tasks. While the racks are downloading data during

degraded reads, the local map tasks can be processed in

parallel. Thus, the runtime of the second case should be
F
NR

· (R−1)kS
RW

+ T . Combining both cases, the MapReduce

runtime under degraded-first scheduling is:

max

(

FT

(N − 1)L
+ T,

F

NR
·
(R− 1)kS

RW
+ T

)

.

Numerical results. Based on our analysis, we now present

the MapReduce runtime results under different parameter

settings. The default cluster configurations are fixed as: N =
40, R = 4, L = 4, S = 128MB, W = 1Gbps, T = 20s,

F = 1440, and (n, k) = (16, 12). We then vary one of

the parameters and compare the MapReduce runtimes under

locality-first scheduling and degraded-first scheduling. The

runtimes are normalized over that in normal mode (without

node failures).

Figure 5(a) shows the runtime results for different era-

sure coding schemes (8,6), (12,9), (16,12), and (20,15).

Degraded-first scheduling always requires less runtime than

locality-first scheduling, with the runtime reduction ranging

from 15% to 32%. The runtime of degraded-first scheduling

stays the same since all degraded tasks can finish their

degraded reads in one round in our parameter settings.

On the other hand, the runtime of locality-first scheduling

increases with k, since more data needs to be transmitted

for degraded reads after all local tasks are completed.

Figure 5(b) shows the runtime results versus the number

of blocks F , varied from 720 to 2880. The normalized run-

times of both scheduling algorithms decrease with F , since

the processing time of local tasks becomes more dominant.

Nevertheless, the runtime of degraded-first scheduling is less

than that of locality-first scheduling by 25% to 28%.

Finally, Figure 5(c) shows the runtime results versus the

download bandwidth W , varied from 100Mbps to 1Gbps.

As the download bandwidth increases, both scheduling algo-

rithms see reduced runtime as degraded reads takes less time

to finish. It is worth noting that degraded-first scheduling

has the same runtime for W = 500Mbps and W = 1Gbps,

since the degraded tasks now can finish degraded reads in

one round. Overall, degraded-first scheduling reduces the

runtime of locality-first scheduling by 18% to 43%.

To summarize, in all cases, degraded-first scheduling can

reduce the MapReduce runtime of the default locality-first

scheduling in failure mode. Note that our analysis builds on

simplified settings. We resort to simulations for more general

scenarios (see Section V).

C. Enhanced Design

We describe two heuristics that further enhance the per-

formance of our basic degraded-first scheduling implemen-

tation in Algorithm 2. Both heuristics take into account the

topology of the cluster when we schedule a set of map tasks

across the slaves.

Locality preservation. The default locality-first scheduling

achieves high locality by first launching local tasks whenever

they are available. On the other hand, Algorithm 2 may

break the locality. Specifically, if we first assign degraded

tasks to a node, then the node may not have enough map

slots to process its local tasks. The master may instead

assign some of the local tasks of the node to other nodes

of different racks, and these tasks become remote tasks.

Having additional remote tasks is clearly undesirable as they

compete for network resources as degraded tasks do.

We implement locality preservation by restricting the

launch of degraded tasks, such that we prevent the local map

tasks from being unexpectedly assigned to other nodes. We

provide a function ASSIGNTOSLAVE to determine whether

to launch a degraded task to a specific slave. Specifically,

given a set of unassigned map tasks to be scheduled, we

estimate the processing time for the local map tasks of each

slave s (denoted by ts), and the expected processing time

E[ts] for the local map tasks across all slaves. If ts > E[ts],
it means that slave s does not have spare resources to process

a degraded task, so we do not assign a degraded task to it.

We point out that our implementation also works for

heterogeneous settings, where some slaves may have better

processing power than others in the same cluster. If we

estimate the processing time for the local map tasks based

on not only the number of local map tasks, but also the

computing power of the slave node, then we allow the more

powerful slaves to process a degraded task while processing

more local map tasks.

Rack awareness. In failure mode, launching multiple de-

graded tasks in the same rack may result in competition for

network resources, since the degraded tasks download data

through the same top-of-rack switch. However, Algorithm 2

is oblivious to where a degraded task is launched.

To realize rack awareness, we provide a function AS-

SIGNTORACK to ensure that multiple degraded tasks are

not assigned to the same rack at nearly the same time.

Specifically, we keep track of the duration since the last

degraded task is assigned to each rack r (denoted by tr),

and the expected duration E[tr] across all racks. We avoid

assigning a degraded task to a slave in rack r if r satisfies

both of the following conditions: (1) if tr < E[tr], and (2)

if tr is less than some threshold. For the latter condition,

we choose the threshold as
(R−1)kS

RW
, which is the expected

time for a degraded read (see Section IV-B). Satisfying both

conditions imply that rack r has just recently launched a

degraded task that is still performing a degraded read. If

Algorithm 3 Enhanced Degraded-First Scheduling

1: function ASSIGNTOSLAVE(slave s)
2: if ts < E[ts] then
3: return false
4: end if
5: return true
6: end function

7: function ASSIGNTORACK(rack r)
8: if tr < min(E[tr], threshold) then
9: return false

10: end if
11: return true
12: end function

13: procedure MAIN ALGORITHM

14: while a heartbeat comes from slave s do
15: isDegradedTaskAssigned = false
16: Compute ts, E[ts], tr , E[tr]
17: for each running job j in the job list do
18: if isDegradedTaskAssigned = false and

s has a free map slot then
19: if j has an unassigned degraded task then
20: if m

M
≥

md

Md

and

ASSIGNTOSLAVE(s) == true and
ASSIGNTORACK(rackID(s)) == true then

21: assign a degraded task to s

22: isDegradedTaskAssigned = true
23: end if
24: end if
25: end if
26: for each free map slot on slave s do
27: if j has an unassigned local task then
28: assign the local task to s

29: else if j has an unassigned remote task then
30: assign the remote task to s

31: end if
32: end for
33: end for
34: end while
35: end procedure

we launch another degraded task to rack r, it will lead to

unnecessary competition for network resources.

Putting it all together. Algorithm 3 shows the enhanced

version of degraded-first scheduling, which includes local-

ity preservation and rack awareness through the functions

ASSIGNTOSLAVE and ASSIGNTORACK, respectively.

V. SIMULATION

We present simulation results and examine the perfor-

mance improvement of degraded-first scheduling in general

scenarios. We implement a discrete event simulator for

MapReduce (see Section V-A). We first compare enhanced

degraded-first scheduling (EDF), which incorporates locality

preservation and rack awareness, with the default locality-

first scheduling (LF) (see Section V-B). We then compare

the basic and enhanced versions of degraded-first scheduling

(BDF and EDF, respectively), and show how locality preser-

Master process Slave process
Request tasks

Assign tasks

Map slot process Reduce slot process

Execute tasks

NodeTree

Job

Map task queue,
Reduce task queue,
etc.

Control Flow

Data Flow

...

Job Queue

Figure 6. The simulator architecture.

vation and rack awareness improve MapReduce performance

in both general and extreme cases (see Section V-C).

A. Simulator Overview

Our MapReduce simulator is a C++-based discrete event

simulator built on CSIM20 [8]. Figure 6 illustrates the

simulator architecture. We deploy processes to simulate

different components of a MapReduce system. There are

two types of processes: (1) node processes, which include

both master and slave processes, and (2) slot processes, each

of which manages either a map or reduce slot. We also

implement a NodeTree structure, which simulates a storage

cluster with two levels of switches (see Figure 2) and handles

all intra-rack and inter-rack transmission requests.

The flow of the simulator is as follows. Each slave process

periodically sends heartbeats to the master process (every 3s)

and indicates in each heartbeat if it has any free slots. When

a MapReduce job is submitted, the master process initializes

the job by splitting the job into map and reduce tasks, and

enqueues the initialized job into a job queue. The map and

reduce tasks will later be assigned to slave processes via the

responses to their periodical heartbeats. If a process needs

to transmit blocks across racks (e.g., due to shuffle-and-sort

and degraded reads), then it notifies the NodeTree structure

to hold the communication link for a duration needed for

the data transmission.

We can configure our simulator with different parameters,

such as the number of nodes, number of racks, number of

map/reduce slots per node, erasure coding scheme, schedul-

ing scheme, etc. We can also set a heterogeneous cluster

in which nodes have different processing capabilities. We

can also simulate multiple MapReduce jobs with different

numbers of map/reduce tasks and amounts of data being

shuffled between map and reduce tasks. The master main-

tains a job queue for all jobs in first-in-first-out (FIFO)

order, as the default MapReduce implementation in Hadoop

(version 0.22.0).

B. Locality-First vs. Degraded-First Scheduling

We start with considering a homogeneous cluster with the

following default configurations. It contains 40 nodes evenly

grouped into four racks (with 10 nodes each). The rack

download bandwidth is 1Gbps. The block size is 128MB.

We use (20,15) erasure codes. In contrast with the map-

only MapReduce job considered in Section IV-B, we here

consider a MapReduce job with both map and reduce tasks,

whose processing times follow normal distributions with

mean 20s and standard deviation 1s, and mean 30s and

standard deviation 2s, respectively. We allocate each node

with four map slots and one reduce slot. We create 1440

blocks in total, and randomly place them in the nodes based

on the requirements in Section III. The total number of map

tasks is equal to the total number of blocks (i.e., 1440), while

the number of reduce tasks is fixed at 30. We assume that

each map task shuffles intermediate data of size 1% of the

block size to the reduce tasks. We simulate the single-node

failure mode by randomly disabling one of the nodes.

In each simulation experiment, we vary one of the config-

uration parameters and evaluate the impact on MapReduce

performance. For each set of parameters, we generate 30

cluster configurations with different random seeds. In each

configuration, we measure the MapReduce runtime of each

of LF and EDF in failure mode, and also measure the

MapReduce runtime in normal mode without node failures

for reference. We compute the normalized runtime of each of

LF and EDF over that of normal mode. We plot a boxplot to

show the minimum, lower quartile, median, upper quartile,

and maximum of the 30 results and any outlier. Figure 7

shows the results, which we elaborate below.

Figures 7(a)-(c) show the normalized runtime results

versus the erasure coding parameters (n, k), the number of

native blocks to be processed, and the download bandwidth,

respectively. The results conform to our analysis findings in

Section IV-B. We briefly summarize the results here. First,

from Figure 7(a), if we use an erasure coding scheme with

larger (n, k), EDF reduces the normalized runtime of LF by

a larger margin, ranging from 17.4% for (8,6) to 32.9% for

(20,15). Second, from Figure 7(b), as the number of native

blocks to be processed increases, the reduction of EDF over

LF drops, but EDF still reduces the normalized runtime by

34.8% to 39.6%. Finally, from Figure 7(c), the normalized

runtimes of both EDF and LF increase, while EDF reduces

the normalized runtime of LF by up to 35.1% on average

when the rack download bandwidth is 500Mbps.

We consider additional scenarios. Figure 7(d) shows the

normalized runtime results under different failure patterns,

including a single-node failure, a double-node failure, and a

rack failure. As more nodes fail, the normalized runtimes of

both scheduling schemes increase. EDF reduces the normal-

ized runtime of LF by 33.2%, 22.3%, and 5.9% on average

for a single-node failure, a double-node failure, and a rack

failure, respectively.

Figure 7(e) shows the normalized runtime results versus

the amount of intermediate data shuffled by map tasks. The

amount of intermediate data is configured as 1% to 30%

of that of the data processed by the map tasks. LF remains

unaffected in general since the degraded tasks run at the end

1.0

1.2

1.4

1.6

1.8

(8,6) (12,9) (16,12) (20,15)

Coding Scheme

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

LF EDF

1.00

1.25

1.50

1.75

2.00

2.25

720 1440 2160 2880

Number of Blocks

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

LF EDF

1

2

3

4

5

6

7

100 200 500 1000

Bandwidth (Mbps)

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

LF EDF

(a) Erasure coding scheme (b) Number of native blocks (c) Rack download bandwidth

1

2

3

4

5

6

7

1−node 2−node 1−rack

Failure Pattern

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

LF EDF

1.00

1.25

1.50

1.75

2.00

1% 10% 20% 30%

Intermediate data

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

LF EDF

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

Job ID

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

LF EDF

(d) Failure pattern (e) Amount of intermediate data (f) Multi-job scenario

Figure 7. Comparisons of normalized runtimes of LF and EDF versus different parameters.

of the map phase and they only compete with the shuffled

data generated by themselves, while EDF has increasing

normalized runtime as its degraded tasks compete with the

shuffled data generated by the currently running local map

tasks. Nevertheless, EDF still reduces the normalized runtime

of LF by 20.0% to 33.2%.

We thus far focus on a single MapReduce jobs, and we

now evaluate LF and EDF when multiple MapReduce jobs

are simultaneously running. We generate 10 jobs, whose

inter-arrival times follow an exponential distribution with

mean 120s. The jobs are scheduled based on the default

first-in-first-out (FIFO) scheduling to allocate map/reduce

slots among different jobs. Figure 7(f) shows the normalized

runtime of each of the 10 jobs. We see that EDF remains

effective even in the multiple-job scenario, as it reduces the

normalized runtime of LF by 28.6% to 48.6%.

C. Basic vs. Enhanced Degraded-First Scheduling

We now compare BDF and EDF under various settings. We

consider both homogeneous and heterogeneous clusters. In

addition, we consider an extreme case where EDF signifi-

cantly outperforms BDF.

We describe our simulation setup. The homogeneous

cluster has the same default configuration as in Section V-B,

while the heterogeneous cluster follows the same configura-

tion as the homogeneous one except that half of the nodes

have worse processing power with the mean processing

times of the map and reduce tasks set to 40s and 60s,

respectively. We compute different metrics of BDF and EDF,

including the number of remote tasks launched, degraded

read time (i.e., the time from issuing a degraded read request

until k blocks are downloaded from surviving nodes), and

MapReduce runtime, and compare the results with that of

LF in failure mode (with a single node failure). We present

boxplots of 30 samples for each setting.

Figure 8(a) first compares the percentage increase in the

number of remote tasks of BDF and EDF compared to LF.

BDF has more remote tasks than LF, by 35.4% and 25.4%

on average for homogeneous and heterogeneous clusters,

respectively. The reason is that BDF assigns degraded tasks

earlier and has fewer slots for the originally local tasks in LF,

some of which now become remote tasks. On the other hand,

EDF has fewer remote tasks than LF by 10.7% and 6.7%

on average for homogeneous and heterogeneous clusters,

respectively. EDF assigns degraded tasks to the nodes that

have low processing time for local tasks, and hence prevents

these nodes from stealing local tasks from other nodes. Thus,

the overall number of remote tasks drops.

Figure 8(b) shows the reduction of degraded read time

of BDF and EDF compared to LF. BDF reduces the degraded

read time by 80.5% and 83.1% on average for homogeneous

and heterogeneous clusters, respectively, while EDF achieves

the average reduction by 85.4% and 85.5%, respectively.

EDF further reduces the degraded read time since it assigns

−100

0

100

200

homogeneous heterogeneous

Cluster Type

In
c
re

a
s
e
 i
n
 n

u
m

b
e
r

o
f

 r
e
m

o
te

 t
a
s
k
s
 (

%
)

Algorithm BDF EDF

75

80

85

90

homogeneous heterogeneous

Cluster Type

R
e
d
u
c
ti
o
n
 i
n

 d
e
g
ra

d
e
d
 r

e
a
d
 t
im

e
 (

%
)

Algorithm BDF EDF

15

20

25

30

35

40

homogeneous heterogeneous

Cluster Type

R
e
d
u
c
ti
o
n
 i
n

M
a
p
R

e
d
u
c
e
 r

u
n
ti
m

e
 (

%
)

Algorithm BDF EDF

−60

−30

0

30

60

Extreme case

R
e
d
u
c
ti
o
n
 i
n

M
a
p
R

e
d
u
c
e
 r

u
n
ti
m

e
 (

%
)

Algorithm BDF EDF

(a) Increase in number of re-
mote tasks

(b) Reduction in degraded
read time

(c) Reduction in MapReduce
runtime

(d) Reduction in MapReduce
runtime (extreme case)

Figure 8. Comparisons of BDF and EDF in homogeneous and heterogeneous clusters and in an extreme case.

degraded tasks to different racks to prevent them from

competing for network resources.

Figure 8(c) shows the reduction of MapReduce runtime

of BDF and EDF over LF. BDF achieves 32.3% and 24.4% of

runtime saving in homogeneous and heterogeneous clusters,

respectively, while the savings of EDF are 34.0% and 27.9%,

respectively.

Although EDF does not significantly reduce MapReduce

runtime compared to BDF, we find that the EDF remains

robust even in an extreme case. We consider a cluster

configuration that is the same as the homogeneous one

except that five of the nodes are bad and have much worse

processing power, such that the processing times of a local

map task are 3s for regular nodes and 30s for the bad nodes.

We run a map-only job over a file with 150 blocks stored

in the cluster. We then compare BDF and EDF in failure

mode, where one of the normal nodes fails. Figure 8(d)

shows reduction of MapReduce runtime of BDF and EDF

compared to LF over 30 runs in the extreme case. BDF only

reduces the MapReduce runtime by 11.7% on average, while

EDF can make an average reduction of 32.6%. We note that

EDF has 36.1% fewer of remote tasks and 34.6% less of

degraded read time on average than BDF (not shown in the

figure). This shows the importance of locality preservation

and rack awareness to make degraded-first scheduling robust

in general and even extreme scenarios.

VI. EXPERIMENTS

We implement degraded-first scheduling by modifying

the source code of Hadoop 0.22.0. We run MapReduce on

HDFS-RAID [18], which extends HDFS to support erasure-

coded storage. We conduct testbed experiments and compare

enhanced degraded-first scheduling (EDF) with Hadoop’s

default locality-first scheduling (LF).

We run experiments on a small-scale Hadoop cluster

testbed composed of a single master node and 12 slave

nodes. The 12 slaves are grouped into three racks with four

slaves each. The slaves in the same rack are connected via

a 1Gbps top-of-rack switch, and the top-of-rack switches

are connected via a 1Gbps core switch. Each of the master

and slave nodes runs Ubuntu 12.04 on an Intel Core i5-

3570 3.40GHz quad-core CPU, 8GB RAM, and a Seagate

ST1000DM003 7200RPM 1TB SATA disk.

Our experiments consider three I/O-heavy MapReduce

jobs, all of which run over a collection of text files.

• WordCount: It counts the occurrences of each word.

The map tasks tokenize the words in text files and emit

each word and its local count to the reduce tasks, which

sum up the local counts for each word and write the

results to HDFS.

• Grep: It searches for lines containing a given word. The

map tasks scan through the text files and emit the lines

containing the given word to the reduce tasks, which

aggregate and write the lines to HDFS.

• LineCount: It counts the occurrences of each line. It

works like WordCount, and shuffles more lines than

Grep from the map tasks to the reduce tasks.

We configure the HDFS block size as 64MB and use

a (12,10) erasure code to provide failure-tolerance. The

blocks are placed in the slaves in a round-robin manner

for load balancing. Each slave has four map slots and one

reduce slot. We set the number of reduce tasks to eight for

each MapReduce job. We then generate 15GB of plain text

data from the Gutenberg website [17]. The data is divided

into 240 blocks and written to HDFS. Then HDFS-RAID

transforms the replicated data of HDFS into erasure-coded

data. Then the 240 native blocks are evenly placed in the 12

slaves, each containing 20 blocks. We consider a single-node

failure, which we simulate by erasing data in one randomly

picked node and killing the slave daemon there.

We evaluate the MapReduce runtime, defined as the

time interval between the launch of first map task and the

completion of the last reduce task. The results are averaged

over five runs.

We first consider a single-job scenario, in which we run

each of the three jobs over the input data. Figure 9(a)

shows the runtime of each job in a single job scenario. EDF

reduces the MapReduce runtime of LF by 27.0%, 26.1% and

24.8% for WordCount, Grep, and LineCount, respectively.

We observe that LF has a larger runtime variance than

EDF, mainly because it does not consider rack-awareness.

This causes the number of degraded tasks assigned to

 0

 50

 100

 150

 200

 250

 300

 350

wordcount grep linecount

M
a
p
R

e
d
u
c
e

ru
n
ti
m

e
 (

s
)

LF EDF

(a) Single-job scenario

 0

 50

 100

 150

 200

 250

 300

 350

wordcount grep linecount

M
a
p
R

e
d
u
c
e

ru
n
ti
m

e
 (

s
)

LF EDF

(b) Multi-job scenario

Figure 9. Comparisons of MapReduce runtime in single-job and multi-
job scenarios. The minimum and maximum runtimes are also plotted as the
endpoints of the vertical line in each bar.

different racks to become unbalanced, and hence increases

the runtime variance.

We also consider a multi-job scenario, in which we submit

the three MapReduce jobs in the order of WordCount, Grep,

and LineCount in a short time so that the three jobs are

scheduled by Hadoop in a first-in-first-out order. Figure 9(b)

shows the runtime results. EDF can reduce the MapReduce

runtime by 16.6%, 28.4%, and 22.6% for WordCount, Grep,

and LineCount, respectively. We note that WordCount has

the least runtime reduction. The reason is that EDF launches

the degraded tasks of a job while the reduce tasks of the

previous job are still downloading the intermediate data

generated by the map tasks. This leads to competition for

network resources and delays the completion of the previous

job. Nevertheless, our results demonstrate the improvements

of EDF over LF in both single-job and multi-job scenarios.

Table I provides a breakdown analysis of task runtime

of different jobs in the single-job scenario. We compare

the average runtime of normal map tasks (local and remote

tasks), degraded tasks and reduce tasks. The runtime of a

task is defined as the time interval between its launch and

completion. It includes data transmission time (for remote

and degraded tasks) as well as the data processing time.

We see that EDF reduces the average runtime of degraded

tasks compared to LF, by 43.0%, 34.6%, and 47.7% for

WordCount, Grep, and LineCount, respectively. Since EDF

reduces the average runtime of the overall map phase, the

average runtime of reduce tasks is also reduced, by around

26%. The normal tasks have a similar average runtime in

both LF and EDF, so EDF does not affect the processing of

normal tasks.

VII. RELATED WORK

There have been extensive empirical studies on examining

the practical use of erasure coding in clustered storage

systems (e.g., [1, 5, 10, 12, 13, 20, 22, 23, 25, 29, 33, 37]).

DiskReduce [12] extends HDFS to encode replicated data

with erasure coding offline. Zhang et al. [37] further imple-

ment an online encoding framework for HDFS and study

various MapReduce workloads on erasure-coded HDFS. In

addition, several studies focus on enhancing the degraded

read performance in erasure-coded clustered storage systems

under failure mode. Khan et al. [22] present an algorithm

that minimizes disk I/Os for single failure recovery for

arbitrary erasure codes. New erasure code constructions

are proposed and evaluated on Azure [20] and HDFS

[10, 23, 25, 29]. Our work complements them by designing a

proper task scheduling algorithm to improve the MapReduce

performance in failure mode.

Our work aims to enhance the baseline Hadoop MapRe-

duce design, and this objective is also shared by previous

work. For example, authors of [2, 14, 36] propose new task

scheduling algorithms for heterogeneous clusters so as to

prevent a MapReduce job from being delayed by stragglers.

Authors of [31, 34, 35] propose fair task scheduling algo-

rithms for MapReduce on multi-user clusters, and mitigate

the resource starvation of small jobs in the presence of

large jobs. Besides scheduling, some studies propose to

modify the default block placement policy of HDFS, so as

to improve data availability [7] and write performance [6].

Such HDFS/MapReduce enhancements focus on replication-

based storage, while ours target erasure-coded storage.

VIII. CONCLUSIONS

This paper explores the feasibility of running data analyt-

ics in erasure-coded clustered storage systems. We present

degraded-first scheduling, a new MapReduce scheduling

scheme designed for improving MapReduce performance in

erasure-coded clustered storage systems that run in failure

mode. We show that the default locality-first scheduling

launches degraded tasks at the end, thereby making them

compete for network resources. Degraded-first scheduling

launches degraded tasks earlier to take advantage of the

unused network resources. We also propose heuristics that

leverage topological information of the storage system to

improve the robustness of degraded-first scheduling. We

conduct simple mathematical analysis and discrete event

simulation to show the performance gains of degraded-first

scheduling. We further conduct testbed experiments in a

Hadoop cluster, and show that degraded-first scheduling can

reduce the MapReduce runtime of locality-first scheduling

Table I
AVERAGE RUNTIME (IN SECONDS) OF DIFFERENT TYPES OF TASKS IN THE SINGLE-JOB SCENARIO.

Number WordCount Grep LineCount

of tasks LF EDF LF EDF LF EDF

Normal map 220 30.94 29.12 11.69 10.43 35.91 33.25

Degraded map 20 84.97 48.42 77.97 50.96 91.48 47.88

Reduce 8 247.90 182.05 161.08 122.60 273.70 199.35

by 27.0% for a single-job scenario and 28.4% for a multi-

job scenario. The source code of degraded-first scheduling is

available at http://ansrlab.cse.cuhk.edu.hk/software/dfs.

ACKNOWLEDGMENTS

This work was supported in part by grants AoE/E-02/08

and ECS CUHK419212 from the University Grants Com-

mittee of Hong Kong.

REFERENCES

[1] M. Abd-El-Malek, W. Courtright II, C. Cranor, G. Ganger, J. Hen-
dricks, A. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. Sam-
basivan, et al. Ursa Minor: Versatile Cluster-based Storage. In Proc.

of USENIX FAST, Dec 2005.
[2] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris. Reining in the Outliers in Map-Reduce
Clusters using Mantri. In Proc. of USENIX OSDI, page 14, 2010.

[3] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman. An XOR-Based Erasure-Resilient Coding Scheme.
Technical Report TR-95-048, International Computer Science Insti-
tute, UC Berkeley, Aug 1995.

[4] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-
elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al. Windows Azure
Storage: A Highly Available Cloud Storage Service with Strong
Consistency. In Proc. of ACM SOSP, Oct 2011.

[5] J. C. W. Chan, Q. Ding, P. P. C. Lee, and H. H. W. Chan. Parity Log-
ging with Reserved Space: Towards Efficient Updates and Recovery
in Erasure-coded Clustered Storage. In Prof. of USENIX FAST, 2014.

[6] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging Endpoint
Flexibility in Data-Intensive Clusters. In Proc. of ACM SIGCOMM,
2013.

[7] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum. Copysets: Reducing the Frequency of Data Loss in
Cloud Storage. In Proc. of USENIX ATC, 2013.

[8] CSIM. http://www.mesquite.com/products/csim20.htm.
[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. In Proc. of USENIX OSDI, Dec 2004.
[10] K. S. Esmaili, L. Pamies-Juarez, and A. Datta. CORE: Cross-Object

Redundancy for Efcient Data Repair in Storage Systems. In Proc. of

IEEE BigData, 2013.
[11] B. Fan, W. Tantisiriroj, and G. Gibson. Diskreduce: Replication as

a prelude to erasure coding in data-intensive scalable computing. In
Carnegie Mellon Univsersity, Parallel Data Laboratory, Tech. Rep.

Technical Report CMU-PDL-11-112, 2011.
[12] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. DiskReduce: RAID

for Data-Intensive Scalable Computing. In Proc. of Annual Workshop

on Petascale Data Storage (PDSW), Nov 2009.
[13] D. Ford, F. Labelle, F. I. Popovici, M. Stokel, V.-A. Truong, L. Bar-

roso, C. Grimes, and S. Quinlan. Availability in Globally Distributed
Storage Systems. In Proc. of USENIX OSDI, Oct 2010.

[14] R. Gandhi, D. Xie, and Y. C. Hu. PIKACHU: How to Rebalance Load
in Optimizing MapReduce On Heterogeneous Clusters. In Proc. of

USENIX ATC, 2013.
[15] J. Gantz and D. Reinsel. Extracting Value from Chaos. http://www.

emc.com/digital universe, Jun 2011.
[16] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System.

In Proc. of ACM SOSP, Dec 2003.
[17] Gutenberg. http://www.gutenberg.org.

[18] HDFS-RAID. http://wiki.apache.org/hadoop/HDFS-RAID.
[19] M. Holland, G. A. Gibson, and D. P. Siewiorek. Architectures

and algorithms for on-line failure recovery in redundant disk arrays.
Distrib. Parallel Databases, 2(3):295–335, July 1994.

[20] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure Coding in Windows Azure Storage. In
Proc. of USENIX ATC, Jun 2012.

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building Blocks.
In Proc. of ACM EuroSys, Jun 2007.

[22] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang. Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads. In Proc. of USENIX FAST, Feb 2012.

[23] R. Li, J. Lin, and P. P. C. Lee. CORE: Augmenting Regenerating-
Coding-Based Recovery for Single and Concurrent Failures in Dis-
tributed Storage Systems. In Proc. of IEEE MSST, May 2013.

[24] D. T. Meyer, M. Shamma, J. Wires, Q. Zhang, N. C. Hutchinson, and
A. Warfield. Fast and Cautious Evolution of Cloud Storage. In Proc.

of USENIX HotStorage, Jun 2010.
[25] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, and J. Li. Simple

Regenerating Codes: Network Coding for Cloud Storage. In Proc. of

IEEE INFOCOM, Mar 2012.
[26] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois

Field arithmetic using Intel SIMD instructions. In Proc. of USENIX

FAST, Feb 2013.
[27] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. OHearn. A per-

formance evaluation and examination of open-source erasure coding
libraries for storage. In Proc. of USENIX FAST, 2009.

[28] I. Reed and G. Solomon. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, 1960.

[29] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring Elephants: Novel
Erasure Codes for Big Data. In Proc. of VLDB Endowment, pages
325–336, 2013.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proc. of IEEE MSST, May 2010.

[31] J. Tan, X. Meng, and L. Zhang. Delay Tails in MapReduce Schedul-
ing. In Proc. of ACM SIGMETRICS, Jun 2012.

[32] H. Weatherspoon and J. D. Kubiatowicz. Erasure Coding Vs.
Replication: A Quantitative Comparison. In Proc. of IPTPS, Mar
2002.

[33] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou. Scalable Performance of the Panasas Parallel
File System. In Proc. of USENIX FAST, Feb 2008.

[34] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh,
K.-L. Wu, and A. Balmin. FLEX: A Slot Allocation Scheduling
Optimizer for MapReduce Workloads. In Middleware 2010, pages
1–20. Springer, 2010.

[35] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica. Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling. In Proc. of ACM

EuroSys, pages 265–278, 2010.
[36] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.

Improving MapReduce Performance in Heterogeneous Environments.
In Proc. of USENIX OSDI, 2008.

[37] Z. Zhang, A. Deshpande, X. Ma, E. Thereska, and D. Narayanan.
Does Erasure Coding Have a Role to Play in my Data Center?
Technical Report MSR-TR-2010-52, Microsoft Research, May 2010.

