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The Evolution of the Recovery
Block Concept

BRIAN RANDELL and JIE XU

University of Newcastle upon Tyne, England

ABSTRACT

This chapter reviews the development of the recovery block approach to software fault
tolerance and subsequent work based on this approach. It starts with an account of the
development and implementations of the basic recovery block scheme in the early 1970s
at Newcastle, and then goes on to describe work at Newcastle and elsewhere on extensions
to the basic scheme, recovery in concurrent systems, and linguistic support for recovery
blocks based on the use of object-oriented programming concepts.

1.1 INTRODUCTION

A research project to investigate system reliability was initiated by the first author at the
University of Newcastle upon Tyne in 1971. This was at a time when the problems of soft-
ware reliability had come to the fore, for example through the discussions at the 1968 and
1969 NATO Software Engineering Conferences, concerning what at the time was termed the
“software crisis”. Such discussions were one of the spurs to research efforts, in a number of
places, aimed at finding means of producing error-free programs. However, at Newcastle the
opposite (or more accurately the complementary) problem, namely that of what to do in situ-
ations where, perhaps despite the use of the best available means of achieving error-free code,
the possibility of residual design faults could not be denied, was taken as an interesting and
worthwhile goal.

A preliminary phase of the project involved a study of a representative set of large software
systems, including a major banking system, and an airline reservations system. This provided
interesting statistical data confirming that residual software faults were one of the most impor-
tant causes of system failures and down-time. It was found that in all these systems, a sizable
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proportion of their code and complexity was related to provisions for (mostly hardware) fault
tolerance, such as data consistency checking, and checkpointing schemes. However, these
provisions, though typically rather ad hoc, were often quite effective, and indeed managed to
cope with some of the software errors that were encountered in practice during system op-
eration, even though the fault tolerance provisions had not been specifically designed to do
this.

We were well aware that if we were to develop techniques aimed explicitly at tolerating
software faults we would have to allow for the fact that the principal cause of residual software
design faults is complexity. Therefore the use of appropriate structuring techniques would be
crucial — otherwise the additional software that would be needed might well increase the
system’s complexity to the point of being counter-productive. Aided by what we had found
in our examination of the checkpoint and restart facilities then being employed, we came
to realize that although a variety of even quite disparate error detection mechanisms could
usefully be employed together in a system, it was critical to have a simple, coherent and
general strategy for error recovery. Moreover it was evident that such a strategy ought to be
capable of coping with multiple errors, including ones that were detected during the error
recovery process itself.

The first structuring technique that we developed was in fact the basic “recovery block”
scheme. In what follows we use the structuring concepts that we later developed in our de-
scription of this basic scheme, and of some of the ensuing research on recovery blocks carried
out at Newcastle and elsewhere, before discussing some of the latest ideas that we have been
investigating on the structuring of fault-tolerant software.

1.2 SYSTEM STRUCTURING

Our interest in the problems of structuring systems so as to control their complexity, and in
particular that of their fault tolerance provisions, led us to a style of system design which is
based on what we termidealized fault-tolerant components[And81, Ran84]. Such compo-
nents provide a means of system structuring which makes it easy to identifywhatparts of a
system havewhatresponsibilities for trying to cope withwhichsorts of fault.

We view a system as a set of components interacting under the control of a design (which is
itself a component of the system) [Lee90]. Clearly, the system model is recursive in that each
component can itself be considered as a system in its own right and thus may have an internal
design which can identify further sub-components. Components receive requests for service
and produce responses. When a component cannot satisfy a request for service, it will return
an exception. An idealized fault-tolerant component should in general provide both normal
and abnormal (i.e. exception) responses in the interface between interacting components, in
a framework which minimizes the impact of these provisions on system complexity. Three
classes of exceptional situation (i.e. in which some fault tolerance response is needed) are
identified. Interface exceptions are signaled when interface checks find that an invalid service
request has been made to a component. These exceptions must be treated by the part of the
system which made the invalid request. Local exceptions are raised when a component detects
an error that its own fault tolerance capabilities could or should deal with in the hope that
the component would return to normal operations after exception handling. Lastly, a failure
exception is signaled to notify the component which made the service request that, despite the
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Figure 1.1 Idealized component

use of its own fault tolerance capabilities, it has been unable to provide the service requested
of it (see Figure 1.1).

Our notion of an idealized component is mainly concerned with interactions of a compo-
nent with its environment. It makes minimal assumptions on faults, fault masking and the
fault tolerance scheme adopted, in indicating how exception-handling should be structured.
Exception handling is often considered as being a limited form of software fault tolerance —
for example, by detecting and recovering an error, and either ignoring the operation which
generated it or by providing a pre-defined and heavily degraded response to that operation.
However, such software cannot be regarded as truly fault-tolerant since some perceived de-
parture from specification is likely to occur, although the exception handling approach can
result in software which is robust in the sense that catastrophic failure can often be avoided.

In order also to achieve effective design fault tolerance, capable of completely masking the
effects of many residual software errors, it is necessary to incorporate deliberate redundancy,
i.e. to make use of design diversity, in such systems. The structuring scheme that we have
developed [Ran93] both for describing and comparing the various existing software fault
tolerance schemes, and indeed for guiding their actual implementation, is illustrated in Figure
1.2.

This shows an idealized component which consists of several sub-components, namely an
adjudicator and a set of software variants (modules of differing design aimed at a common
specification). The design of the component, i.e. the algorithm which is responsible for defin-
ing the interactions between the sub-components, and establishing connections between the
component and the system environment, is embodied in the controller. This invokes one or
more of the variants, waits as necessary for such variants to complete their execution and in-
vokes the adjudicator to check on the results produced by the variants. As illustrated in Figure
1.2, each of these sub-components (even the adjudicator), as well as the component (con-
troller) itself, can in principle contain its own provisions for exception handling, and indeed
for full software fault tolerance, so the structuring scheme is fully recursive.
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Obviously, the notion of structuring systems needs to be used in such a way as to achieve an
appropriate structuring of the complex asynchronous activities to which the system can give
rise, in particular those related to fault tolerance. In common with other groups, we make use
of so-calledatomic actionsfor this purpose. The activity of a group of components constitutes
an atomic action if no information flows between that group and the rest of the system for
the duration of the activity [Lee90]. Atomic actions may be planned when the system is
designed, or (less commonly) may be dynamically identified by exploratory techniques after
the detection of an error. Planned atomic actions must be maintained by imposing constraints
on communication within the system. Error recovery can be linked to the notion of an atomic
action, which is said to form a restorable action if all components within the action retain the
ability to perform a mutually consistent state restoration. These issues are discussed further in
Section 1.6.

1.3 RECOVERY BLOCKS

In this section, we discuss recovery blocks in detail, making use of the exception handling
terminology introduced above. The basic recovery block relates to sequential systems. Details
of extensions for use in concurrent systems are discussed in Section 1.6. The recovery block
approach attempts to prevent residual software faults from impacting on the system environ-
ment, and it is aimed at providing fault-tolerant functional components which may be nested
within a sequential program. The usual syntax is as follows:
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ensure acceptance test
by primary alternate
else by alternate 2

.

.
else by alternate n
else error

Here the alternates correspond to the variants of Figure 1.2, and the acceptance test to the
adjudicator, with the text above being in effect an expression of the controller. On entry to a
recovery block the state of the system must be saved to permit backward error recovery, i.e.
establish a checkpoint. The primary alternate is executed and then the acceptance test is evalu-
ated to provide an adjudication on the outcome of this primary alternate. If the acceptance test
is passed then the outcome is regarded as successful and the recovery block can be exited, dis-
carding the information on the state of the system taken on entry (i.e. checkpoint). However, if
the test fails or if any errors are detected by other means during the execution of the alternate,
then an exception is raised and backward error recovery is invoked. This restores the state of
the system to what it was on entry. After such recovery, the next alternate is executed and then
the acceptance test is applied again. This sequence continues until either an acceptance test is
passed or all alternates have failed the acceptance test. If all the alternates either fail the test
or result in an exception (due to an internal error being detected), a failure exception will be
signaled to the environment of the recovery block. Since recovery blocks can be nested, then
the raising of such an exception from an inner recovery block would invoke recovery in the
enclosing block. The operation of the recovery block is further illustrated in Figure 1.3.

Obviously, the linguistic structure for recovery blocks requires a suitable mechanism for
providing automatic backward error recovery. Randell produced the first such ”recovery
cache” scheme, a description of which was included in the first paper on recovery blocks
[Hor74] (although this scheme was later superseded [And76]). This paper also included a dis-
cussion of ”recoverable procedures” — a rather complex mechanism that Lauer and Randell
had proposed as a means of extending the recovery cache scheme to deal with programmer-
defined data types. This part of the paper would undoubtedly have been much clearer if the
ideas had been expressed in object-oriented terms — a point we will develop further in Section
1.7.

The overall success of the recovery block scheme rests to a great extent on the effectiveness
of the error detection mechanisms used — especially (but not solely) the acceptance test. The
acceptance test must be simple otherwise there will be a significant chance that it will itself
contain design faults, and so fail to detect some errors, and/or falsely identify some conditions
as being erroneous. Moreover, the test will introduce a run-time overhead which could be
unacceptable if it is very complex. The development of simple, effective acceptance tests can
thus be a difficult task, depending on the actual specification.

In fact, the acceptance test in a recovery block should be regarded as a last line of detecting
errors, rather than the sole means of error detection. The expectation is that it will be buttressed
by executable assertion statements within the alternates and run-time checks supported by
the hardware. Generally, any such exception raised during the execution of an alternate will
lead to the same recovery action as for acceptance test failure. Should the final alternate fail,
for example by not passing the acceptance test, this will constitute a failure of the entire
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Figure 1.3 Operation of the recovery block

module containing the recovery block, and will invoke recovery at the level of the surrounding
recovery block, should there be one.

In other words, each alternate should itself be an ideal fault-tolerant component. An excep-
tion raised by run-time assertion statements within the alternate or by hardware error-detection
mechanisms may be treated by the alternate’s own fault tolerance capabilities. A failure ex-
ception is raised to notify the system (i.e. the control component in our model) if, despite the
use of its own fault tolerance capabilities, the alternate has been unable to provide the service
requested of it. The control component may invoke then another alternate.

In general, as described in [Mel77], forward error recovery can be further incorporated in
recovery blocks to complement the underlying backward error recovery. (In fact, a forward
error recovery mechanism can support the implementation of backward error recovery by
transforming unexpected errors into default error conditions [Cri82].) If, for example, a real-
time program communicated with its (unrecoverable) environment from within a recovery
block then, if recovery were invoked, the environment would not be able to recover along
with the program and the system would be left in an inconsistent state. In this case, forward
recovery would help return the system to a consistent state by sending the environment a
message informing it to disregard previous output from the program.

In the first paper about recovery blocks [Hor74], Horninget al. list four possible failure
conditions for an alternate: i) failure of the acceptance test, ii) failure to terminate, detected
by a timeout, iii) implicit error detection (for example divide by zero), and iv) failure ex-
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ception of an inner recovery block. Although the mechanism for implementing the time-out
detection measure was not discussed by the authors, the original definition of recovery blocks
does cover this issue. Several implementations of watchdog timers for recovery blocks have
been described [Hec76, Kim89]. Timeout can be provided as a syntactic form in the recovery
block structure [Gre85]. As with theelse error part, thetimeout part allows the pro-
gramming of a ”last ditch” algorithm for the block to achieve its goal, and is really a form of
forward recovery since its effects will not be undone (at least at this level).

Although each of the alternates within a recovery block endeavors to satisfy the same ac-
ceptance test there is no requirement that they all must produce the same results [Lee78]. The
only constraint is that the results must be acceptable — as determined by the test. Thus, while
the primary alternate should attempt to produce the desired outcome, the further alternate may
only attempt to provide a degraded service. This is particularly useful in real-time systems,
since there may be insufficient time available for fully-functional alternates to be executed
when a fault is encountered. An extreme corresponds to a recovery block which contains a
primary module and a null alternate [And83, And85]. Under these conditions, the role of the
recovery block is simply to detect and recover from errors by ignoring the operation where
the fault manifested itself. This is somewhat similar to forward error recovery because the
manifestation of a fault will result in a loss of service to the environment. But the important
difference is that forward recovery can only remove predictable errors from the system state,
whereas such backward recovery can still cope with the unpredictable errors caused by resid-
ual design faults. (The only constraint is that the errors do not impact the actual recovery block
mechanism.)

Most of the time, only the primary alternate of the recovery block is executed. (This keeps
the run-time overhead of the recovery block to a minimum and makes good use of the system
and hardware resources.) However, this could cause a problem: the alternates must not retain
data locally between calls, otherwise these modules could become inconsistent with each other
since not all of them are executed each time when the recovery block is invoked. The problem
becomes more obvious while one attempts to design an alternate as an object. There is no
guarantee that the state of the object is correctly modified unless the object is invoked each
time. Distributed (parallel) execution of recovery blocks [Kim84] could solve this issue. An
alternative solution is to design the alternate modules as memoryless functional components
rather than as objects.

Unlike tolerance to hardware malfunctions, software fault tolerance cannot be made totally
transparent to the application programmer although some operations related to its provision,
such as saving and restoring the state of the system, can be made automatic and transparent.
The programmer who wishes to use software fault tolerance schemes must provide software
variants and adjudicators. Therefore, a set of special linguistic features or conventions is nec-
essary for incorporating software redundancy in programs. The key point here is to attempt
to keep the syntactic extension simple, natural and minimal. This will be further discussed in
the Section 1.7.

1.4 EARLY IMPLEMENTATIONS AND EXPERIMENTS

The first implementation of recovery blocks involved defining and simulating a simple stack-
oriented instruction set, incorporating a recovery cache [And76]. Simple test programs em-
bodying recovery blocks could be run on this machine simulator, and subjected to deliberate
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faults. Test programs were run on one computer — a separate computer was used to provide
data to, and to accept and check the output from, these programs. This second computer also
provided facilities by means of which experimenters could make arbitrary changes to any lo-
cations in the simulated memory. Visitors to the project were typically challenged to use these
facilities to try and cause a demonstration recovery block program to fail — their inability to
do so was a persuasive argument for the potential of the recovery block scheme!

Another experimental system is described in [Shr78a, Shr78b] in which recovery blocks
were incorporated in the language Pascal. The modification was made to the kernel and in-
terpreter of Brinch Hansen’s Pascal system to support the syntax of recovery blocks and the
associated recovery caches needed for state restoration. Based on this extension and on a few
experimental programs, some performance measurements for recovery blocks were reported,
which generally support the belief that recovery blocks do not impose any serious runtime
and recovery data space overheads. For the sample programs, the run-time overhead ranged
between 1 to about 11% of T1 (execution time of a program without any recovery facilities)
when no errors are detected. When a primary fails, the time taken to restore system state was
up to about 30% of T1. This experiment also showed that recovery caches made a substantial
saving in space, compared with complete checkpointing.

The recovery cache mechanism should ideally form an integral part of a given computer;
this not being possible for the existing hardware. The next major work at Newcastle on the
implementation of the basic recovery block scheme involved the design and building of a hard-
ware recovery cache for the PDP-11 family of machines [Lee80]. This device was inserted
into the bus between the CPU and memory modules without requiring hardware alterations.
It intercepted writes to memory, and automatically determined whether the contents of the
memory location that was about to be over-written needed to be saved beforehand. In order
to minimize the overheads imposed on the host, special hardware was designed to enable
concurrent operation of the recovery cache and the host system.

The controversial nature of software fault tolerance spurred extensive efforts aimed at pro-
viding evidence of the scheme’s potential cost-effectiveness in real systems. (The developers
of N -version programming [Avi77] were similarly motivated to undertake extensive exper-
imental evaluations, as discussed in Section 2.4 in Chapter 2.) During 1981-84 therefore, a
major project directed by Tom Anderson applied an extension of recovery blocks in the im-
plementation of a Naval Command and Control system composed of about 8000 lines of
CORAL programming, and made use of the above-mentioned hardware cache [And85]. The
practical development work of the project included the design and implementation of a virtual
machine which supported recovery blocks, together with extensions to the CORAL program-
ming language to allow software fault-tolerance applications to be written in this high-level
language. To maintain realism the system was constructed by experienced programmers in
strict accordance with the official rules for defense-related software projects. Analysis of ex-
perimental runs of this system showed that a failure coverage of over 70% was achieved. The
supplementary cost of developing the fault-tolerant software was put at 60% of the implemen-
tation cost. The system overheads were measured at 33% extra code memory, 35% extra data
memory and 40% additional run time. These led to the conclusion that ”by means of soft-
ware fault tolerance a significant and worthwhile improvement in reliability can be achieved
at acceptable cost” [And85].

Research at the Royal Military College of Science subsequently extended this experiment
to the design of a demonstrator modeled on functions provided at the London Air Traffic
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Control Center, and the results have reinforced confidence in the cost-effectiveness and the
general applicability of the recovery block approach [Mou87].

1.5 EXTENSIONS AND APPLICATIONS OF BASIC RECOVERY BLOCKS

Many applications and varieties of recovery blocks have been explored and developed by
various researchers. Some of typical experiments and extensions are considered below.

1.5.1 Distributed Execution of Recovery Blocks

H. Hecht was the first to propose the application of recovery blocks to flight control systems
[Hec76, Hec86]. His work included an implementation of a watchdog timer that monitors
availability of output within a specified time interval and his model also incorporates a rudi-
mentary system to be used when all alternates of the recovery block scheme are exhausted.
Since then, further researches and experiments have been conducted by Hecht and his col-
leagues. For example, M. Hechtet al. [Hec89] described a distributed fault-tolerant archi-
tecture, called the extended distributed recovery block, for nuclear reactor control and safety
functions. Their architecture relies on commercially available components and thus allows for
continuous and inexpensive system enhancement. The fault injection experiments during the
development process demonstrate that the system could tolerate most single faults and dual
faults.

K. H. Kim and his colleagues in the DREAM Laboratory have extensively explored the
concept of distributed execution of recovery blocks, a combination of both distributed pro-
cessing and recovery blocks, as an approach for uniform treatment of hardware and software
faults [Kim84, Kim89, Kim88b, Wel83]. The details are given in Chapter 8. A useful fea-
ture of their approach is the relatively low run-time overhead it requires so that it is suitable
for incorporation into real-time systems. The basic structure of the distributed recovery block
is straightforward: the entire recovery block, two alternates with an acceptance test, is fully
replicated on the primary and backup hardware nodes. However, the roles of the two alternate
modules are not the same in the two nodes. The primary node uses the first alternate as the
primary initially, whereas the backup node uses the second alternate as the initial primary.
Outside of the distributed recovery block, forward recovery can be achieved in effect; but the
node affected by a fault must invoke backward recovery by executing an alternate for data
consistency with the other nodes. To test the execution efficiency of the approach, two ex-
perimental implementations and measurements have been conducted on distributed computer
networks. The results indicate the feasibility of attaining fault tolerance in a broad range of
real-time applications by means of the distributed recovery blocks.

1.5.2 Consensus Recovery Blocks

The consensus recovery block (CRB) [Sco85] is an attempt to combine the techniques used in
the recovery block andN -version programming [Avi77]. It is claimed that the CRB technique
reduces the importance of the acceptance test used in the recovery block and is able to handle
the case where NVP would not be appropriate since there are multiple correct outputs. The
CRB requires design and implementation ofN variants of the algorithm which are ranked
(as in the recovery block) in the order of service and reliance. On invocation, all variants
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are executed and their results submitted to an adjudicator, i.e. a voter (as used inN -version
programming). The CRB compares pairs of results for compatibility. If two results are the
same then the result is used as the output. If no pair can be found then the results of the
variant with the highest ranking are submitted to an acceptance test. If this fails then the next
variant is selected. This continues until all variants are exhausted or one passes the acceptance
test.

[Sco87] developed reliability models for the recovery block,N -version programming and
the CRB. In comparison, the CRB is shown to be superior to the other two. However, the CRB
is largely based on the assumption that there are no common faults between the variants. (This
of course is not the case, as was shown by such experiments as [Kni85, Sco84].) In particular,
if a matching pair is found, there is no indication that the result is submitted to the acceptance
test, so a correlated failure in two variants could result in an erroneous output and would cause
a catastrophic failure.

1.5.3 Retry Blocks with Data Diversity

A retry block developed by Ammann and Knight [Amm87, Amm88] is a modification of the
recovery block scheme that uses data diversity instead of design diversity. Data diversity is
a strategy that does not change the algorithm of the system (just retry), but does change the
data that the algorithm processes. It is assumed that there are certain data which will cause
the algorithm to fail, and that if the data were re-expressed in a different, equivalent (or near
equivalent) form the algorithm would function correctly. A retry block executes the single
algorithm normally and evaluates the acceptance test. If the test passes, the retry block is
complete. If the test fails, the algorithm executes again after the data has been re-expressed.
The system repeats this process until it violates a deadline or produces a satisfactory output.
The crucial elements in the retry scheme are the acceptance test and the data re-expression
routine.

A description of some experiments with the retry block is presented by the authors. Coor-
dinates to a radar system were altered to lie on the circumference of a small circle centered on
the point, taking advantage of the fact that this application’s data had limited precision. The ra-
dius of the circle and the re-expression algorithm were both changed to generate an indication
of their influence. Although the overall performance of the retry block varied greatly, a large
reduction in failure probability for some of the faults is observed in the study. Compared with
design diversity, data diversity is relatively easy and inexpensive to implement. Although ad-
ditional costs are incurred in the algorithm for data re-expression, data diversity requires only
a single implementation of a specification. Of course, the retry scheme is not generally appli-
cable and the re-expression algorithm must be tailored to the individual problem at hand and
should itself be simple enough to eliminate the chance of design faults.

1.5.4 Self-Configuring Optimal Programming

SCOP (Self-configuring optimal programming) [Bon93, Xu93] is another attempt to combine
some techniques used in RB and NVP in order to enhance efficiency of software fault toler-
ance and to eliminate some inflexibilities and rigidities. This scheme organizes the execution
of software variants in phases, dynamically configuring a currently active variant set, so as
to produce acceptable results with the relatively small effort and to make the efficient use of
available resources. The control can be parameterized with respect to the level of fault toler-
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ance, the amount of available resources and the desired response time. Since highly dynamic
behavior can cause complexity of control and monitoring, a methodology for devising various
instances of SCOP is developed by simplifying the on-line process at the price of the complex
off-line design.

The gain of efficiency would be limited when the supporting system is intended for a spe-
cific application – the hardware resources saved by the SCOP scheme would be merely left
idle. It is perhaps more appropriate if the application environments are complex and highly
variable, such as a large distributed computing system that supports multiple competing ap-
plications.

1.5.5 Other Applications

Sullivan and Masson developed an algorithm-oriented scheme, based on the use of what they
term Certification Trails [Sul90, Sul91]. The central idea of their method is to execute an
algorithm so that it leaves behind a trail of data (certification trail) and, by using this data, to
execute another algorithm for solving the same problem more quickly. The outputs of the two
executions are compared and considered correct only if they agree. An issue with the data trail
is that the first algorithm may propagate an error to the second algorithm, and this could result
in an erroneous output. Nevertheless, the scheme is an interesting alternative to the recovery
block scheme, despite being perhaps of somewhat limited applicability.

Delta-4 was a collaborative project carried out within the framework of the European Strate-
gic Program for Research in Information Technology (ESPRIT) [Pow91]. Its aim was the
definition and design of an open, dependable, distributed computer system architecture. The
Delta-4 approach deals mainly with hardware fault tolerance, but also addresses the issue
of design faults. [Bar93] describes the integration of software fault tolerance mechanisms
into the existing Delta-4 architecture. The authors claimed that the incorporation of recov-
ery blocks and dialogues (structures for supporting inter-process recovery) into the Delta-4
framework is obtained without significant overheads.

1.6 RECOVERY IN CONCURRENT SYSTEMS

Work at Newcastle on this topic dates from 1975, when we began to consider the problems
of providing structuring for error recovery among sets of cooperating processes. (A few re-
searches were also made into error recovery in the particular case of so-called competing pro-
cesses where the processes communicate only for resource sharing [Shr78c, Shr79].) Having
identified the dangers of what we came to term thedomino effect, we came up with the notion
of aconversation[Ran75] — something which we later realized was a special case of a nested
atomic action.

1.6.1 Conversations

When a system of cooperating processes employs recovery blocks, each process will be con-
tinually establishing and discarding checkpoints, and may also need to restore to a previ-
ously established checkpoint. However, if recovery and communication operations are not
performed in a coordinated fashion, then the rollback of a process can result in a cascade of
rollbacks that could push all the processes back to their beginnings — the domino effect. This
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causes the loss of entire computation performed prior to the detection of the error. Figure 1.4
illustrates the domino effect with two communicating processes.

The conversation scheme is in our view one of the fundamental approaches to structured
design of fault-tolerant concurrent programs. It provides a means of coordinating the recovery
blocks of interacting processes to avoid the domino effect. Figure 1.5 shows an example where
three processes communicate within a conversation and the processes P1 and P2 communicate
within a nested conversation. Communication can only take place between processes that are
participating in a conversation together. The operation of a conversation is: (i) on entry to
a conversation a process establishes a checkpoint; (ii) if an error is detected by any process
then all the participating processes must restore their checkpoints; (iii) after restoration all
processes use their next alternates; and (iv) all processes leave the conversation together. The
concept of conversation facilitates failure atomicity and backward recovery in cooperating
process systems in a manner analogous to that of the atomic action mechanism in object-
based systems. In fact, this terminological distinction between the area of communicating
process systems and that of of object-based systems is, we claim, of only surface importance
[Shr93].

Considerable research has been undertaken into the subject of concurrent error recovery,
including improvements on the conversation and different implementations of it. There are
at least two classes of approaches to preventing the domino effect: the coordination-by-
programmer approach and the coordination-by-machine approach. With the first approach,
the application programmer is fully responsible for designing processes so that they establish
checkpoints in a well coordinated manner [Ran75, Rus80, Kim82]. Many authors have added
language constructs to facilitate the definition of restorable actions based on this approach
[Rus79, And83, Gre85, Jal84, Jal86]. In contrast, the coordination-by-machine approach re-
lies on an ”intelligent” underlying processor system which automatically establishes appropri-
ate checkpoints of interacting processes [Kim78, Bar83, Koo87, Kim90]. If restorable actions
are unplanned, so that the recovery mechanism must search for a consistent set of checkpoints,
such actions would be expensive and difficult to implement. However, such exploratory tech-
niques have the advantage that no restrictions are placed on inter-process communication and
that a general mechanism could be applied to many different systems [Mer78, Woo81]. To re-
duce synchronization delays introduced by controlled recovery, some researches have focused
on the improvement of performance, such as the lookahead scheme and the pseudo-recovery
block [Kim76, Kim88a, Ram88, Rus79, Shi84].
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inter-process communication checkpoint

P1

P2

P3

conversation boundary acceptance test

Figure 1.5 Nested conversations

1.6.2 Extensions and Implementations of Conversations

The original description of conversations provided a structuring or design concept without any
suggested syntax. [Rus79] proposed a syntax called the name-linked recovery block for the
concept of conversations. Kim [Kim82] presents three different syntactic forms for conversa-
tions based on the monitor structure. The different implementations deal with the distribution
of the code for the recovery blocks of individual processes. The tradeoff is either to spread
the conversation among the individual processes such that all of the code of each process is in
one location or have all the code for the conversation in one location.

There was no provision for linked forward error recovery in the original conversation
scheme. Campbell and Randell [Cam86] proposed techniques for structuring forward error
recovery measures in asynchronous systems and generalized ideas of atomic actions so as to
support fault-tolerant interactions between processes. A resolution scheme is used to combine
multiple exceptions into a single exception if they are raised at the same time.

Issarny extended their work to concurrent object-oriented systems by defining an exception-
handling mechanism for parallel object-oriented programming [Iss93a]. This mechanism was
then generalized to support both forward and backward error recovery [Iss93b]. Following the
proposal in [Cam86], Jalote and Campbell described a system which contains both forward
and backward error recovery within a conversation structure (also known as an FT-action).
Their system was based on communicating sequential processes (CSP) [Hoa78] with one
extension (theexit ) statement.

Forward error recovery in an FT-action [Jal86] is achieved through linked exception han-
dlers where each process has its own handler for each exception. When an exception is raised
by a process it is propagated to all the participating processes within the FT-action. Each pro-
cess then executes its own handler for that exception. Backward recovery within an FT-action
is obtained by recovery blocks. Every participating process is required to have the same num-
ber of alternates. An FT-action can combine the two schemes so that forward and backward



14 RANDELL and XU

error recovery are used within the same structure. It can also cope with the issue of real-time
applications through a simple timer.

Real-time applications may suffer from the possibility ofdesertersin a conversation — if
a deadline is to be met then a process that fails to enter the conversation or to reach its ac-
ceptance test could cause all the processes in the conversation to miss that deadline [Kim82].
Russell and Tiedeman [Rus79] considered relaxing the requirement for all processes exiting
together so as to enable some protection against deserter processes, but this could lead to the
domino effect. Campbell, Horton and Belford [Cam79] proposed a deadline mechanism for
dealing with timing faults. Anderson and Knight [And83] proposedexchangesas a simplifica-
tion of conversations where the cyclic nature of real-time systems is exploited. (An exchange
is a conversation in which all participating processes enter upon initiation and terminate upon
exit. Error recovery is particularly easy as the recovery data is only that needed upon initiation,
which should only be a small amount of frame dependent data.)

Gregory and Knight [Gre85] identified a set of problems associated with conversations.
They argued that there ought to be two types of acceptance test — one for each process within
a conversation to check its own goal and one for the whole structure of the conversation to
check the global goal. In addition, within a conversation or other structures mentioned above
the set of processes that attempt their primary alternate is the same as the set of processes
which attempt all other alternates, i.e. they all roll back and try again with their further al-
ternates. This is overly restrictive and affects independence of algorithm between alternates.
In an effort to solve these problems, they developed two concepts — acolloquythat contains
manydialogs.

A dialog is a way of enclosing a set of processes in an atomic action. It provides no retry
method and no definition of the action to be taken upon failure. If any failure occurs, the di-
alog restores all checkpoints and fails, signaling the failure to the surrounding colloquy. A
colloquy that contains a set of dialogs controls the execution of dialogs and decides on the
recovery action to be taken if the dialog fails. The colloquy provides a means of constructing
alternates using a potentially different set of processes, thereby permitting true diverse de-
sign. The dialog and colloquy allow time constraints to be specified and are accompanied by
syntactic proposals that are extensions to the Ada language.

However, when attempting the integration of the syntax for the colloquy into Ada, the au-
thors found several new and potentially serious difficulties which arise because of a conflict
between the semantics of modern programming languages and the needs of concurrent back-
ward recovery [Gre89].

1.6.3 Practical Difficulties and Possible Solutions

The practical problems mentioned in [Gre89] fall into the general categories of (i) program
structure, (ii) shared objects, and (iii) process manipulation. All the problems have the poten-
tial to allow the state outside a dialog (or a conversation) to be contaminated by changes inside
the dialog, i.e.information smuggling. For example, a major inconsistency exists between the
preferred structure of concurrent programs (e.g. involving the use of service processes) and
the structure for planned recovery. To avoid information smuggling, the planned backward re-
covery could cause thecapture effectfor service processes — in other words processes outside
the (nested) dialogs cannot use the service processes until the completion of all the dialogs.
Shared objects are another significant source of information smuggling, but no simple ap-
proaches solve the problem. Smuggling can occur with process manipulations (e.g. dynamic
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process creation) also. An initial solution to the problem merely raises several other issues.
Given the complexity and subtlety of these problems, Gregory and Knight concluded that ”the
only workable solution might be that programming language design begin with backward er-
ror recovery as its starting point.” Nevertheless, some preliminary and partial solutions can be
found in [Cle93, Gre87].

The actual programming of a conversation is another major difficulty associated with the
concept. Constructing an application into a sequence of conversations is not a trivial task.
The application programmer has to select a boundary composed of a set of checkpoints, ac-
ceptance tests and the side walls to prevent information smuggling. This boundary should be
integrated well into the structure of processes. [Tyr86] suggested a way of identifying ad-
equate boundaries of conversations based on the specification of the application using Petri
Nets. [Car91] proposed an alternative solution in which the CSP notation [Hoa78] is used to
describe the application and conversation boundaries are identified through a trace evaluation,
but such traces would cause an explosion of states even for simple applications. In practice,
however, it is possible for some special applications to decide on the conversation placement
without full trace evaluation [Tyr92].

1.7 LINGUISTIC SUPPORT FOR SOFTWARE FAULT TOLERANCE

General linguistic supports for software fault tolerance are the concern of much of our latest
work. If the design of software fault-tolerant systems is to become widely used on a routine
basis, one of important problems that has to be solved is how to develop and provide appropri-
ate linguistic notations and the corresponding environments, which should effectively support
the development of fault-tolerant programs without greatly complicating the program’s im-
plementation, readability, and maintenance.

1.7.1 Design Notations and Environments

[Liu92] proposed a design notation for a wide class of fault-tolerant software structures,
mainly offering generality and flexibility in a modular fashion. [Bon92] showed that their
BSM design description language is sufficient for expressing the typical structures of soft-
ware fault tolerance, such as recovery blocks andN -version programming, without requir-
ing semantic extensions. [Anc90] described a mechanism, called theRecovery Metaprogram
(RMP), for the incorporation of fault tolerance functions into application programs, giving
programmers a single environment that lets them use the appropriate fault tolerance scheme.

The architecture proposed in [Anc90] contains three components: the application program,
the RMP and the kernel. The application programmer must define the software variants and
the validation test, and indicate which portions of the application program are involved in
fault tolerance. The RMP implements the controllers and the supporting mechanisms for four
different schemes, inserting a number of breakpoints in the program. When a breakpoint is
reached, the application program is suspended and the kernel activates the RMP which takes
actions to support the fault tolerance scheme chosen. The RMP is then suspended, and the
application program is reactivated until the next breakpoint is reached. The implementation
of the RMP approach may incur an additional cost in the form of intensive context switches
and kernel calls.

However, in contrast to the languages and environments discussed above, our major work
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has been greatly influenced by the now very fashionable topic of object-oriented program-
ming. In particular, we have found it convenient to try to exploit various characteristics of
C++ [Str91], a language that has been used extensively at Newcastle in connection with work
on distributed systems [Shr91].

1.7.2 Implementing Software Fault Tolerance in C++

The recent extension of C++ to include generic classes and functions (“templates”), and ex-
ception handling (“catch” and “throw”) makes it possible to implement both forward and
backward error recovery in C++ in the form of reusable components that separate the function-
ality of the application from its fault tolerance [Rub93]. More generally, such facilities show
prospect of providing a convenient means of achieving high levels of reuse. This would apply
both to general software components implementing various fault tolerance strategies (includ-
ing generalizations and combinations of recovery blocks, andN -version programs, and en-
compassing the use of parallelism) and to application-specific software components [Ran93].
We also provided a set of pre-defined C++ classes to support a general object-oriented frame-
work for software fault tolerance based directly on the abstract model represented by Figure
1.2, and described in Section 1.2 [Xu94]. However, there remain certain strategies and types
of structuring that cannot be implemented entirely (or at any rate elegantly) in a language like
C++ even given such mechanisms as generic functions and inheritance. Instead, the program-
mer who wishes to employ these strategies has to obey certain conventions. For example,
the application programmer who wishes to make use of our C++ classes would have to in-
clude explicit calls in each operation of an object to facilities related to the provision of state
restoration.

Adherence to such conventions can be automated, by embodying them into a somewhat en-
hanced version of C++ and using a pre-processor to generate conventional C++ programs au-
tomatically. Although the pre-processor approach can be quite practical it does have disadvan-
tages. In particular the language provided to application programmers becomes non-standard
since programmers have in some circumstances during program development to work in terms
of the program generated by the pre-processor, rather than of the one that they had written.
The alternative, that of leaving it to the programmer to adhere to the conventions, is of course
a fruitful source of residual program faults. But developing a new language that provides
adequate syntax and runtime support to enable the implementation of various software fault
tolerance could cut the work off from the mainstream of programming language developments
and thus have difficulty in achieving wide acceptance.

1.7.3 Reflection and Reflective Languages

As mentioned in Section 1.3, it has to be the responsibility of the application programmers for
developing software variants, acceptance tests, and even application-specific voters. Special
language features and/or programming conventions therefore cannot be avoided completely.
In consideration of software reliability, the key problem would become how a set of simple
(thus easy to check) programming features can be developed with powerful expressibility to
enable the implementation of software fault tolerance and how the supporting mechanisms
can be provided in a more natural and modular manner rather than by an ad-hoc method such
as system calls. Recent developments in the object-oriented language world, under the term
“ reflection” [Mae87], show considerable promise in this regard.
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A reflective system can reason about, and manipulate, a representation of its own behavior.
This representation is called the system’s meta-level [Agh92]. Reflection improves the effec-
tiveness of the object-level (or base-level) computation by dynamically modifying the internal
organization (actually the meta-level representation) of the system so as to provide powerful
expressibility. Therefore, in a reflective programming language a set of simple, well-defined
language features could be used to define much more complex, dynamically changeable con-
structs and functionalities. In our case, it could enable the dynamic change and extension of
the semantics of those programming features that support software fault tolerance concepts,
whereas the application-level (or object-level) program is kept simple and elegant [Xu94].
Although C++ itself does not provide a metalevel interface, Chiba and Masuda [Chi93] de-
scribes an extension of C++ to provide a limited form of computational reflection, called Open
C++, whose usefulness in expressing software fault tolerance we are now investigating.

However, quite what reflective capabilities are needed for what forms of fault tolerance, and
to what extent these capabilities can be provided in more-or-less conventional programming
languages, and allied to the other structuring techniques outlined in this chapter, remain to
be determined. In particular, the problems of the combined provision of significant software
fault tolerance and hardware fault tolerance, and of evaluating cost-effectiveness, are likely
to require much further effort. When considering support for software fault tolerance in con-
current object-oriented programming, we face a greater challenge because, on the one hand,
mainstream object-oriented languages such as C++ and Eiffel [Mey92] do not at present ad-
dress concurrency and, on the other hand, a large number of different models for concurrent
object-oriented programming have been proposed but none has yet received widespread ac-
ceptance. There exist only a few tentative proposals for treating concurrent error recovery
such as the Arche language [Ben92]. However, the reflection technique seems to be a more
promising approach to the structuring of concurrent object-oriented programs [Yon89].

1.8 CONCLUSIONS

Looking back on the developments that have occurred since the recovery block concept was
first introduced, it is we hope fair to claim that it has proved a very useful abstraction, and
starting point for much subsequent research, elsewhere as well as at Newcastle. That at New-
castle can be characterized as mainly involving over the years:

• a gradual extension of the original very basic scheme to deal with ever more complex
situations, while retaining as much as possible of the essential simplicity of structuring
provided by the basic scheme, and more recently (and perhaps rather belatedly)

• the investigation of appropriate linguistic support for recovery blocks and their generaliza-
tions using object-oriented structuring concepts.

Whilst we now regard recovery blocks, andN -version programming for that matter, simply
as special cases of a more general scheme, there has been a somewhat surprising continued
interest by others — especially those involved with statistical experiments and with mathe-
matical modeling (for example [Arl90, Puc90, Tai93, Tom93]) — in the basic schemes. This
is very flattering, but “real-world” usage of recovery block concepts (see for example [Gil83,
Hau85, Gra91, Sim90, Gop91]) has always had to deal with such complexities as input-output,
parallelism, hardware faults, etc. — so we would urge more concentration on the richer forms



18 RANDELL and XU

of structuring for error recovery and for design diversity which have since been developed,
and which we have attempted to describe in the later sections of this chapter.
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