Chapter

Orthogonal Defect Classification

Ram Chillarege
IBM Watson Research

9.1 Introduction

One of the perpetual challenges for measurement in the software devel-
opment process is to provide fast and effective feedback to developers.
Traditional techniques, although they provide good report cards, seldom
have the fine insight into the process or product to truly guide decision
making. Thus it is not uncommon to witness decisions guided more by
intuition than by true measurement, analysis, and engineering.

Orthogonal defect classification (ODC) makes a fundamental im-
provement in the level of technology available to assist software engi-
neering decisions via measurement and analysis. This is achieved by
exploiting software defects that occur all the way through development
and field use, capturing a significant amount of information. ODC
extracts the information from defects cleverly, converting what is
semantically very rich into a few vital measurements on the product
and the process. These measurements provide a firm footing upon
which sophisticated analysis and methodologies are developed. Thus it
1s possible to emulate some of the detail and expansiveness of qualita-
tive analysis with the low cost and mathematical tractability of quan-
titative methods.

At IBM Watson Research we began a program to place ODC in the
real world of software development. Over the past few years, it has
been deployed at a dozen IBM locations, worldwide, in over 50 projects.
It has also been extended to apply at different parts of the development
cycle and different layers of decision making. Over time there have
been analytical methods, tools, methodologies, feedback techniques,
diagnosis procedures, and support processes developed to fit different
needs. When applied to reduce the cost of classical root-cause analysis,
1t achieves cost reductions by a factor of 10. An organization that fully

359

360 Practices and Experiences

employed ODC, coupled with the Butterfly model [Bass93], has seen a
cycle-time reduction by a factor of 3, and achieved a defect reduction by
a factor of 80 in 5 years.

This chapter is designed to provide an overview of ODC, complete
with examples illustrating its real-world application. It begins with an
overview of the domain of defects in software development, followed by
examples which motivate the ODC concept. Since the concepts are
fairly new, we have chosen to describe two attributes—the defect type
and trigger—in detail, which provide measurement instruments on the
development process and the verification process. The latter part of the
trigger section illustrates how the two together provide measures of
effectiveness. These sections are complete with definitions so that it is
possible to start some sample prototypes. ODC is primarily a multidi-
mensional measurement system, which allows for very creative analy-
sis. The end of this chapter hints at this and briefly sketches the
current implementation at IBM, which includes two additional attri-
butes: source and impact. We have, of course, assumed that classical
measures such as severity and process-phase identifiers exist, since
most defect-tracking systems provide them. The key in all such endeav-
ors is to set up a measurement system (not merely a classification tax-
onomy) that is clean, expandable, and broadly applicable. We believe
ODC makes a significant stride in accomplishing that.

9.2 Measurement and Software

Software, as most of us know, is a very difficult area in which to develop
crisp in-process measurements and analysis techniques. Nevertheless,
the need to get a grasp on the software development processes is vital
to manage it as a business. This need becomes ever more critical as the
software industry grows, reaching almost $100 billion in 1995,* and
becomes more competitive. The task has enchanted software engineer-
ing for decades, but the solutions available were much too primitive to
significantly impact the level of technology in practice. The best prac-
tices in the software industry have therefore remained largely human-
intensive processes, which are qualitative, suffer poor repeatability,
and have difficult introduction barriers.

The software development process is amorphous by nature—be it
waterfall, iterative development, or an undefined chaotic process. The
definitions of activities within a process and transitions between them
are dependent largely on human behavior as opposed to being enforced
by physical restrictions or conceptual roadblocks. The few crisp separa-

* Business Week summary of the computer industry, 1995.

Orthogonal Defect Classification 361

tions between activities are primarily due to the rigidity of tools and
their limitations. Thus, measurement in the software development envi-
ronment is a tough challenge until tools exist to automatically extract
them. As technology evolves and new tools are invented, they directly
compete with some of the activities defined within a process. A technol-
ogy might render an existing process-based activity ineffective or even
unnecessary. Thus, processes have to be flexible and sensitive to accom-
modate such advances. At the same time, the measurement system
needs to make the corresponding compensations. For instance, code
inspection used to include a large number of checks to guard against
errors due to the operational semantics of languages. As syntactic check-
ers and tools such as Lint became more powerful, they rendered some of
these checks unnecessary. However, when the code inspection process
and related measurements did not quickly adapt to these advances,
some development communities reacted by doing away with code inspec-
tions altogether. In this particular case, the resultant loss was signifi-
cant, since inspections addressed a much broader set of issues.

Measures related to software defects have survived the evolution of
software development processes and are still widely used despite large
variability in processes. The popular belief is that this is because defect
counts provide a measure of product quality and, indirectly, productiv-
ity. However, the real reason, we believe, is far more subtle. A software
defect signifies stoppage in the product development process. By the
time the defect is resolved several activities and pieces of work occur.
Thus, the defect has the potential to capture a variety of information on
the product and the process—thereby providing an excellent measure-
ment opportunity. Thus, defect-related information is actively used for
a variety of purposes ranging from work completion to resource man-
agement to schedule estimation to risk analysis, and even continuous
improvement.

This chapter is an exposition on the use of defects to measure, man-
age, and understand the software development process. Although the
use of defect data has existed for years, its exploitation has been lim-
ited due to the lack of some fundamental insights. Orthogonal defect
classification provides this insight and a framework to achieve the next
order of technology.

9.2.1 Software defects

The word defect tends to include in its meaning more than a mathe-
matician would like to attribute to it. From the perspective of strict
definition it often captures the fault, sometimes the error, and often
the failure. Given the wide range of meanings that could be
attributed to a defect we need to clarify how defect data are used,
what aspect is being used, and for what purpose. Before we delve fur-

362 Practices and Experiences

ther we must first understand the kind of defects that appear in soft-
ware development, and arrive at a reasonably unambiguous defini-
tion for the word defect.

Software defects occur all the way through the life cycle of software
development—from conception of product to end of life. The vernacular
of development organizations tends to name and treat defects as dif-
ferent objects depending on when or where they are found. Some of the
more common names are bug, error, comment, program trouble memo-
randa, problem, and authorized program analysis report (APAR). For
starters, let us describe a couple situations where defects are identi-
fied, and then develop a more unifying definition.

When design documents and requirements are written, they are usu-
ally captured in plain text. Although there is increasing emphasis on
documenting them in design tools, that is yet an evolving technology.
When these documents are reviewed among peers, they can result in
comments that question or critique the design. These comments may
eventually result in changes. The concept of failure here is broader than
its strict definition. A potential failure is identified by the human rec-
ognizing a departure, exception, or a gaping hole in the design. The cor-
rective action results in changes that fix a likely fault. The comments
and the resultant changes are essentially defects. Unfortunately, from a
measurement perspective, quite often these defects are not formally
captured by an organization and can be lost in desk drawers.

When a customer calls with a problem experienced with a product, it
might be due to a software failure caused by a fault. On the other hand,
not all problems experienced are due to the classical software pro-
gramming bug causing a failure. More often than not (sometimes 80 to
90 percent), a customer calls experiencing difficulties due to poor pro-
cedures, unclear documentation, poor user interfaces, etc. The product
may actually be working as designed, but poorly and much to the dis-
satisfaction of the customer. In some of these cases, the vendor may
admit to the poor workings of the product and open a defect against it.
This could eventually result in a fix being developed and distributed.

One of the primary difficulties with the notion of failure in software
is that it is more amorphous than in hardware. The scientific definition
accepted for failure is “deviation of the delivered service from compli-
ance with the specification” [Lapr92a]. However, there is rarely a well-
documented specification for most software in the industry. It is
common practice to recognize a failure when a piece of software does
not meet customer expectations. The corresponding fault can be
equally obscure to identify, particularly in areas such as usability. The
terms fault, error, and failure provide a good conceptualization model
that we can draw from. However, for the practicality of implementa-
tion, ease of understanding, and a tangible connection to the real

o .y oo

Orthogonal Defect Classification 363

world, we develop the concept of a defect: simply put, it is a necessary
change to the software.

There is a subtlety in saying that the necessary change is the defect.
This is because it could be the case that a change was necessary but
was not executed. It may have been forgotten, or remembered but with-
out the resources to fix it. It is still a defect, since it was deemed a nec-
essary change. Treating the necessary change as a defect ties the
metaphysical concept of a fault, error, and sometimes failure to a phys-
ical action on the product that is more traceable. No matter what the
development environment, the activity is specific and can become the
anchor point from which other measurements can follow,

A software product usually begins with some set of requirements,
either explicitly stated by a customer or identified through a vision of
the market. Between the requirements and the availability of the prod-
uct, there is design, code development, and test. The words design,
code, and test do not automatically imply a pure waterfall process. On
the other hand, it is hard to imagine a successful product developed
without requirements, or code written without a design, or tests con-
ducted without code. A pure waterfall process tends to have these
phases well identified and separated with documents that capture the
essence of these phases, providing well-defined handoffs between
them. In more recent times, the small team with iterative development
is popular, where the reliance on documentation and distinct handoffs
are less emphasized. However, having some record of completion and
milestones within a process is not only useful for project management
but necessary for internal communication.

No matter what the implementation of a software development pro-
cess, there are artifacts that are developed and storage mediums where
the artifacts are recorded. Depending on the tools and methods, these
artifacts may be on paper, images on tape, code in libraries, meeting
minutes, discussions yielding decisions, etc. Furthermore, there is a
time after which a work item is considered committed. It may not yet be
completed, but being committed implies a clear record of intent. Any
further necessary changes to the work item that becomes a product is
considered a defect. Depending on the tools used in a development pro-
cess, the identification and tracking of defects may be easy or difficult.

A process usually has several checks interspersed to ensure that the
product being developed meets the record of intent. These checks could
be reviews, inspections, informal tests, formal functional tests, stress
tests, etc. Each of these verification efforts can identify deviations to
the intent, which warrant change. Anything that requires change is a
defect. Thus, there are defects that arise from requirements inspection,
design inspection (usually, a high level and a low level), a code inspec-
tion (of which there might be one or two), a unit test, a functional veri-

364 Practices and Experiences

fication test, and a system test. All these verification efforts can yield
defects. Depending on what is included in a count, we find the number
of defects per thousand lines of code varies, from as low as 10 to as high
as 120.

9.2.2 The spectrum of defect analysis

Analysis of software defects has existed for a long time in the industry.
One of the more common forms is bean counting for purposes such as
estimating completion time and warranty cost. Another popular form
of defect analysis is qualitative—to recognize the types of errors com-
mitted and guide defect prevention. Stepping back from the variety of
methods of defect analysis, we can recognize a broad spectrum in its
usage. The two extremes of this spectrum are distinctly defined, and
Fig. 9.1 captures some of its elements. The left-hand extreme signifies
purely quantitative methods such as mathematical and statistical
methods. The right-hand extreme signifies purely qualitative analyses
such as those employed in quality circles and defect prevention pro-
grams. There is a large white space between these extremes, which is
the subject of this chapter. Before we delve into this white space, let us
examine the extremes first.

An example of the left-hand extreme is statistical models of defect
discovery. One of the well-known examples is the Raleigh model. This
is an abstraction that is simple and intuitive, and has found extensive
use. Another example is the software reliability models, several of
which are discussed in this handbook (see Chaps. 3, 4, 6, and 7). As use-
ful as these are, one has to recognize that they are the mathematicians’
approximation of the defect process. Defect counts measure just one of
the many effects of the complex human process of software develop-
ment. In and of itself it represents a small part of the information from

Statistical Root
Defect “~ 00000000000 0000 » Cause
Models Analysis
» abstract » down to earth
» quantitative = qualitative
» distant from the programmer = programmer's perspective
» low cost » high cost
« capabie of automation » human intensive
« restricted to a few domains + wide range of domains

ODC bridges these extremes by
developing a measurement
system based on semantics

Figure 9.1 The spectrum of process measurement and analysis.

Orthogonal Defect Classification 365

the software development process. We do not understate its implication
or use, but recognize up front the overall scope and opportunity that is
exploited or left unexploited.

A good example of the right-hand extreme is the classical approach
toward defect prevention using causal analysis of defects. The origins
are traceable to Demming and Juran and a more recent implementa-
tion of the process described in [Mays90, Hump89]. The methods
employed are detailed qualitative analysis of defects, often conducted
by a small team of people. The goal is to identify practices or oversights
that could be prevented by implementing corrective or educational
actions in the development organization. This is not a quick process,
either for the analysis or the implementation of the program. For
example, a team of four people discussing defects could reasonably
work through three or four in an hour, yielding a cost of one person-
hour per defect for the analysis phase. This is usually followed by
action teams that execute the plans and directions developed from
such analysis. It is not uncommon to see organizations that have devel-
oped ambitious action lists without the resources or commitment to
execute them. The challenge is mostly one of prioritization and know-
ing the cost/benefit of such actions. This fact does not detract from the
success of defect prevention. There have been significant improve-
ments in quality and productivity reported. The challenge is how to do
it cleverly. The traditional methods of laborious qualitative analysis
followed by poor prioritization do not make it attractive in a world of
short cycle time and reduced budgets.

Between the two extremes of the spectrum (quantitative statistical
defect models and qualitative causal analysis) is a wide gap. This gap
is characterized by a lack of good measurement methods that are
meaningful to the developer and that exploit good engineering meth-
ods. At one extreme, the traditional mathematical modeling efforts
tend to step back from the details of the process and to approximate
defect detection by a statistical process [Litt73, Ohba84]. When cali-
brated, some of these methods are shown to be quite repeatable. How-
ever, they do not provide timely feedback to the developer in terms of
available process controls. At the other extreme, the causal analysis
mechanism is qualitative and labor-intensive; it can provide feedback
on each individual defect. However, in a large development effort it is
akin to studying the ocean floor with a microscope. It does not natu-
rally evolve into abstractions and aggregations that can feed into engi-
neering mechanisms to be used for overall process control.

It is not as though there has been no work done between these
extremes. There is a myriad of reported research and industry attempts
to quantify the parameters of the software development process with
“metrics” [[EEE90a, IEEE90b]. Some efforts have been more successful

366 Practices and Experiences

than others. For example, the relationship between the defects that
occur during software development and the complexity of a software
product has been discussed in [Basi84a]. Such information, when com-
piled over the history of an organization [Basi88], will be useful for
planners and designers. On the other hand, the focus of empirical stud-
ies has largely been to validate hypotheses that could be turned into a
set of general guidelines. Unfortunately, the variability in productivity,
skill, and process makes such findings difficult to establish. Each devel-
olpment effort appears unique, making the task of treating them as
repeatable experiments hard. Over the years, this has led to disillu-
sionment of software measurement and in some extremes a distaste for
the effort, particularly when developers are both skeptical about pro-
cess change and resistant to the extra burden. Yet, it remains one of the
most important technological areas in which to make progress, given
where the software industry is headed.

As we shall see, this cause is not without hope. Only recently have
there been studies to examine the feasibility of serious analytical soft-
ware engineering. The work explored the capability of taking the
semantically rich information from the defect stream and turning it
into measurements. At the same time it tried to establish the existence
of information that could predict the behavior of a software develop-
ment effort via such measurements. The successes illustrated that a
new class of methods can be developed that rely on semantic extrac-
tion of information linking the qualitative aspects from the right
extreme of the spectrum to measurable computable aspects from the
left extreme. The semantic extraction is done via classification. The
link with the right extreme occurs when the classification has proper-
ties that make it a measurement. It should not be confused with a
mere taxonomy of defects such as [IEEE87b], which serves a descrip-
tive purpose. ODC makes the classification into a measurement that
helps bridge the gap.

In summary, although measurements had been extensively used in
software engineering, it still remained a challenge to turn software
development into a measurable and controllable process. Why is this
so? Primarily because no process can be modeled as an observable and
controllable system unless explicit input-output or cause-and-effect
relationships are established. Furthermore, such causes and effects
should be easily measurable. It is inadequate to propose that a collec-
tion of measures be used to track a process, with the hope that some
subset of these measures will actually explain the process. There
should at least be a small subset that is carefully designed based on a
good understanding of the mechanisms within the process.

Looking at the history of software modeling, it is evident that little
heed has been paid to the actual cause-effect mechanism, let alone

Orthogonal Defect Classification 367

investigations to establish them. At the other extreme, when cause
and effect was recognized, though qualitatively, it was not abstracted
to a level from which it could graduate to engineering models. To the
best of our knowledge, in the world of in-process measurements, until
recently there has been no systematic study to establish the existence
of measurable cause-and-effect relationships in a software develop-
ment process. Without that insight and a rational basis, it is difficult
to argue that any one measurement scheme or model is better than
another.

9.3 Principles of ODC

Orthogonal defect classification (ODC) is a technique that can bridge
the gap between quantitative methods and qualitative analysis. It does
so by bringing in scientific methods by defining a measurement system
in an area that has been historically ad hoc. This naturally provides a
firm footing upon which sophisticated and detailed analysis can be
developed. Fundamentally, we extract semantic information in defects
via classification. ODC properties ensure that the classified data
become measurements. As these measurements are related to the pro-
cess and environment they provide the instrumentation for very
detailed and precise feedback. Thus defects which are rich in informa-
tion can be scientifically exploited to assist the decision-making pro-
cess in software engineering.

9.3.1 The intuition

ODC is best described with an example that captures some of the moti-
vations and provides an intuitive understanding of the concept. The
detailed technical description can then be built on this base. We do so
by illustrating, in Example 9.1, a situation from the real world. The
objective is to contrast the classical methods of growth modeling with
what can be achieved via semantics extraction from defects.

Example 9.1 The example is from the development of a component of 80,000 to
100,000 lines of code in an operating systems product. During the last few drivers
(and months) of system test it became evident that there was a crisis in stability
and completion. The top part of Fig. 9.2 shows the cumulative number of defects
over time. Ideally, it should plateau, signifying a decreasing number of defects
being detected and promising fewer defects in the field. Although the figure shows
a slight plateau, it is artificial since these data did not include defects found in the
field. It is the steep increase in the defect rate during period 3 leading to the near
doubling of development defects, which identifies the criticality of the situation.
Classical growth curve modeling techniques would recognize this trend and iden-
tify the problem. The issue is that by the time growth modeling can identify the
problem, it is too late to take all but some desperate reactive measures.

368 Practices and Experiences

Cumulative
defects 800 ‘
Period: 0 '
600 e e e e o oo
400
200
0 0 200 400 600 800 1,000 1,200
Days
50
Percent of
function 40
defectsin 4
each
period ¥
10|

Period Period Period Period
0 1 2 3

Figure9.2 Total defects and proportion of function-type defects.

We attempt to do better than raw counts of defects by using the semantic infor-
mation in them. To do so, we categorized defects into these classes: assignment,
checking, function, interface, and timing. In the paradigm of programming, there
are only certain ways to fix a programming problem. These categories capture
the essence of what was fixed, thereby identifying the nature of work necessary
to fix the defect. This we call the defect type. Samples of defects from the three
periods are categorized into this defect type attribute. We then examine how the
distributicn contributed by defects changes as a function of time. For the pur-
poses of illustration, the lower part of Fig. 9.2 shows just the proportion of defects
that have the type function during each period.

The early periods of development are characterized by larger amounts of design,
whereas the latter parts are characterized by greater amounts of system test and
less of tunction test. Thus, the expectation would be that the proportion of defects
of type function would be larger initially and smaller later. However, the data
show exactly the opposite trend. Pericd 3, which was largely system test, shows
close to 50 percent of the defects being of type function. The fact that the propor-
tion of functional defects kept rising is discernible even in period 2. This identi-
fies the crises that occurred by using semantic information almost six months
earlier than by using raw defect counts, Furthermore, it also points to the poten-
tial cause of the problem and motivates corrective measures. In this case, it will

Orthogonal Defect Classification 369

require the appropriate skills (possibly design) to start examining the code and
design. Reactive measures such as redoubling the test effort are unlikely to be as
effective.

Example 9.1 illustrates the use of qualitative information in defects
converted to a quantitative measure to make earlier predictions than
more traditional quantitative methods. In addition, it provides clues to
the reasons, which are translatable to recommendations for action. In
Example 9.1, a causal analysis team could be directed to focus on a few
of the function defects to provide further guidance to the development
team. This approach avoids “boiling the ocean” to determine causality,
since the problem and scope are better understood.

We need to extend this idea further toward a general case. Figure
9.3 shows a hypothetical distribution of defect types across the phases
of design, unit test, integration, and system test. For the purposes of
illustration we show just four defect types: function, assignment,
interface, and timing. The fact that the process phases are shown in
sequence does not imply a strict waterfall development process. As
long as these activities exist (in any order or repeatedly), defects from
these activities are used to construct the four defect-type distribu-
tions. The concept is that we examine the normalized distribution of
all defects found during a phase against what the process should
achieve. The bar representing function defects is steadily decreasing
from design all the way to system test. This would make sense given
that the intent of a design phase is to deal with functional issues and
the expectation is that fewer of them have to be dealt with at system
test. It is reasonable to anticipate that the proportion of timing defects
would increase quite the opposite way to functional defects. System
test occurs when the product is on the real hardware and is more
likely to be stressed by timing conditions. The assignment and check-
ing kinds of defects are likely to peak during unit test and fall either
before or after that phase, whereas interfaces defects would possibly
peak during the integration test and fall off on either side of those pro-
cess stages. By defining a distribution that changes with the process
activity we have created a very powerful instrument. This instrument
will allow us to measure the progress of a product through the process.
Changes in the distribution are easy to measure and are invariant to
the total number of defects injected by a development community.
A departure from the expected distribution or a change from the
expected trend identifies problems and recommends possible correc-
tive action. For instance, had the defect-type distribution at system
test looked like that of unit test, we could argue that although the
product met physical schedule dates it probably hadn’t progressed log-
ically. The offending defect type would be in a large number of function

370 Practices and Experiences

Percent within activity
50

40

30

20

10

st System

Functio

Design Code rev

H Function B Assignment B Interface Ed Timing

Figure 9.3 Change in the defect-type distribution with phase.

and assignment defects relative to the expected numbers, requiring
that the corrective actions address those departures.

9.3.2 The design of orthogonal
defect classification

The preceding was a hypothetical discussion of defect-type categories
and what that could mean in the process space. In actuality, we use
more than four defect types, which we illustrate with some real-life
examples. It is useful at this point to conceptualize what it is that we
are doing differently and why it works for us. Notice that we carefully
extract semantics of defects using a classification scheme. The classifi-
cation scheme is able to extract information that tells us how well the
product is progressing on a scale that is defined within the process.
The categories themselves have been carefully chosen. Otherwise, we
would not have the kind of effects that we would desire from such mea-
surement. So, clearly, there is an issue of defining the value set into
which an attribute is categorized. The value set should provide an ade-
quate range to provide the differentiation and resolution desired
within the process space. These requirements boil down to a set of nec-
essary and sufficient conditions that make it orthogonal defect classifi-
cation. The orthogonality here is in the value set associated with the
particular attributes such as defect type. When these values are inde-
pendent of each other (at least reasonably, since it is a semantic trans-
lation) it provides for easy categorization.

ODC essentially means that we categorize a defect into classes that
collectively point to the part of the process that needs attention, much
like characterizing a point in a cartesian system of orthogonal axes by

Orthogonal Defect Classification 371

its x, y, and z coordinates. In the software development process,
although activities are broadly divided into design, code, test, and
service, each organization can have its variations. These process
stages often overlap, with consecutive releases being developed in
parallel. With a large product these process stages can be carried out
by different organizations, while for small products people may be
shared across products. Therefore, for ODC to become a measurement
system that allows for the analysis of such complexity, it should be
invariant to these boundaries. The classification should be consistent
across process stages; otherwise it is almost impossible to study
trends across them. Ideally, the classification should also be quite
independent of the specifics of a product or organization. If the clas-
sification is both consistent across phases and independent of the
product, it tends to be fairly process-invariant and can eventually
yield relationships and models that are very useful. Thus, a good
measurement system that allows learning from experience and pro-
vides a means of communicating experiences between projects has at
least three requirements:

s Orthogonality
m Consistency across phases

® Uniformity across products

One of the pitfalls in classifying defects is that it is a human process
and subject to the usual problems of human error, confusion, and a gen-
eral distaste if the use of the data is not well understood. However,
each of these concerns is resolved if the classification process is simple,
with little room for confusion or possibility of mistakes, and if the data
can be easily interpreted. If the number of classes is small, there is a
greater chance that the human mind can accurately resolve them
[Mill190]. Having a small set to choose from makes classification easier
and less error-prone. When orthogonal, the choices should also be
uniquely identified and easily classified.

9.3.3 Necessary condition

There exists a semantic classification of defects such that its distribu-
tion, as a function of process activities, changes as the product advances
through the process.

The earlier examples help explain this necessary condition, since
they discussed not only what it means, but how it could be used. There
are, however, a few subtleties and details that merit discussion. It also
helps to compare ODC with more traditional approaches to clarify this
scheme and illustrate the differentiation.

372 Practices and Experiences

Fundamental to the use of the change in distribution of defects to
meter the advancement of a product in a process is the existence of
such changes. All these years, while there has been significant research
in closely related areas such as metrics, software reliability, taxonomy
for defect classification, and root-cause analysis, etc., there were almost
no studies that tried to quantify the existence of properties that
allowed us to extract semantics and turn them into measurements.
Thus, while studies reported statistics on causes of defects and the pro-
portion of escapes from various stages of development, they stopped
short of developing a comprehensive measurement methodology. This
was not a simple oversight. It is a difficult problem, which requires the
demonstration of properties that make a connection between seman-
tics and measurement possible. A breakthrough study that attempted
to uncover the existence of such properties relating the semantics in
defect content to the overall response from a development effort is dis-
cussed in [Chil91]. This became the stepping-stone to help formulate
the concepts in ODC.

However, it is easy to confuse semantic classification of defects with
direct process-based measurement. This difference is subtle but impor-
tant. Take, for example, the defect type attribute. It is primarily
defined on the paradigm of programming as opposed to the process of
how to do it. So the value set is about the meaning of what is done as
opposed to how it is done. This has the advantage that even though the
underlying process may change or be undefinable, the measurements
are possible. Thus, they allow the process to be changed when mea-
surements from the very process are used for the analysis that moti-
vates the change. This would not be possible if the measurements are
directly tied to the process, since then the very first adjustment to the
process destroys the measurement system.

This point is best illustrated with an example that is commonplace
in the industry. A popular classification of defects is the value set of
where it is believed to have been inserted. So, for instance, the values
would comprise the process activities such as design, coding, unit test,
function test, and system test. This can be used to estimate escapes
from the various stages of development, yielding a causality measure
that can be quite useful. The distribution of this value set may also
change as a function of activity (especially since the value sets them-
selves are the activities). Unfortunately, as simple and straightforward
as this may seem, it is plagued with several problems. First, practi-
tioners are quick to point out that the answer to the above question
tends to be error-prone. Programmers, while fixing a defect, are too
closely focused on the product to step back and reflect on the process.
Thus the most common answers to “where the defect is injected” are
“the earlier stage” or “requirements,” which do not help much. Second,

Orthogonal Defect Classification 373

a causality mapped directly on the existing process has limited
longevity. If the process is changed or altered (which is sometimes the
goal of the exercise), then the measurements so far are subsequently
invalid. Third, use of these data, inferences, and learning are limited to
this project or to processes that are identical to this one. Finally, it can-
not work where the process is not well defined or the process is being
changed dynamically to suit the pressures of changing requirements.
Such direct classification schemes, by the nature of their assumptions,
qualify as good opinion surveys but do not constitute a measurement
on the process.

Semantic classification that is based on the meaning of what is done
is more likely to be accurate, since it is tied to the work just completed.
It is akin to measurements of events in the process, as opposed to opin-
ions of the process. There is an important advantage in the semantic
classification of a defect, such as defect type, over an opinion-based clas-
sification, such as where injected. This semantic classification is invari-
ant to process and product, but requires a mapping to process stages.
This mapping, such as associating function and algorithm defects to a
process activity (e.g., design or low-level design), provides the flexibil-
ity to keep the measurement system stable. Furthermore, this neutral-
ity with products, processes, and even implementation methodologies
offers the opportunity that these measurements could be benchmarked
across the industry.

9.3.4 Sufficient conditions

The set of all values of defect attributes must form a spanning set over
the process subspace.

The sufficient conditions are based on the set of elements that make
up an attribute, such as defect type. Based on the necessary conditions,
the elements need to be orthogonal and associated with the process on
which measurements are inferred. The sufficient conditions ensure
that the number of classes is adequate to make the necessary infer-
ence. Ideally, the classes should span the space of all possibilities that
they describe. The classes would then form a spanning set, with the
capability that everything in that space can be described by these
classes. If they do not form a spanning set then there is some part of
the space on which we want to make inferences that cannot be
described with the existing data. Making sure that we have the suffi-
clency condition satisfied implies that we know and can accurately
describe the space into which we want to project the data.

Given the experimental nature of the work, it is hard to a priori
guarantee that sufficiency is met with any one classification. Given
that we are trying to observe the world of the development process and

374 Practices and Experiences

make inferences about it from the defects coming out, there are the
tasks of (1) coming up with the right measurement, (2) validating the
inferences from the measurements with reference to the experiences
shared, and (3) improving the measurement system as we learn more
from the pilot experiences. However, this is the nature of the experimen-
tal method [Chil90]. For example, in the first pilot [Chil91], the following
defect types evolved after few classification attempts: function, initial-
ization, checking, assignment, and documentation. This set, as indicated
earlier in this section, provided adequate resolution to explain why the
development process had trouble and what could be done about it. How-
ever, in subsequent discussions [IBM90] and pilots it was refined to the
current eight. Given the orthogonality, in spite of these changes several
classes such as function and assignment and the dimension they
spanned (associations) remained unchanged.

9.4 The Defect-Type Attribute

A programmer making the changes for a defect is best suited to pick
the defect type. The selection of defect type captures the nature of the
change. These types are simple in that they should be cbvious to a pro-
grammer without much room for confusion. In each case a distinction
is made between something missing or something incorrect.

Function. A function defect is one that affects significant capability,
end-user features, product application programming interface (APD),
interface with hardware architecture, or global structure(s). It would
require a formal design change.

Assignment. Conversely, an assignment defect indicates a few lines
of code, such as the initialization of control blocks or data structure.

Interface. Corresponds to errors in interacting with other compo-
nents, modules, device drivers via macros, call statements, control
blocks, or parameter lists.

Checking. Addresses program logic that has failed to properly vali-
date data and values before they are used, loop conditions, etc.

Timing/serialization. Timing/serialization errors are those that
are corrected by improved management of shared and real-time
resources.

Build/package/merge. These terms describe errors that occur due
to mistakes in library systems, management of changes, or version
control.

Documentation. Errors can affect both publications and mainte-
nance notes.

Orthogonal Defect Classification 375

Algorithm. Errors include efficiency or correctness problems that
affect the task and can be fixed by (re)implementing an algorithm or
local data structure without the need for requesting a design change.

The defect types are chosen so as to be general enough to apply to
any software development, independent of a specific product. Their
granularity is such that the classifications apply to a defect found in
any phase of the development process, yet can be associated with a few
specific activities in a particular process. The defect types should also
span the space of these phases to satisfy the sufficient condition. For
instance, a typical association that occurs is to tie the functional defect
to the design aspects of the process. Thus, no matter where the defect
is found, if the distribution peaks with function dominating the distri-
bution, it is indicative of activity that escaped the design phases. It is
not as though function defects may only be found at a design review;
they probably will be found throughout the development process. The
issue is how many, and whether they dominate the overall mix of work
that needs to take place during an activity. Similarly, an assignment
and checking defect may be primarily associated with the coding phase
and expected to be weeded out with code review and unit-test-type
activity. These could peak repeatedly in the case of iterative develop-
ment in those phases. However, when the function tests tend to be dom-
inated by those types of defects, it is reflective of escapes from earlier
verification phases, and impacts the overall productivity of the func-
tion test activity. The choice of the defect types are different enough so
that they span the development process through all its activities. This
allows us to use the distributions to provide feedback on the process,
especially in the language that programmers can relate to.

Example 9.2 Figure 9.4 shows you the defect-type distribution of a product mov-
ing through the stages of high-level design, low-level design, code, and unit test.
These data reflect a real product version of the hypothetical picture that we
described earlier. We have chosen to show the total number of defects within each
of these activities, as opposed to the normalized distribution, to also reflect a
sense of volume that occurs in these phases. Notice that the bar corresponding to
function defects has been steadily decreasing from high-level design all the way
to unit test and is also decreasing in the rank order among the bars within each
of these activities. At the same time notice that the assignment and checking
types of defects are increasing both in volume and rank order among the other
defect types as the product moves from high-level design into code review. Simi-
larly, the algorithm types of defects tend to be peaking at low-level design and
then trailing off into code review. This change in defect-type distribution is reflec-
tive of all the various discussions that we have had so far regarding the seman-
tic extraction and explanation of how ODC works.

Example 9.3 There is another presentation of a defect-type distribution in Fig.
9.5. These curves provide a graphical display for a categorical data series so that
an ordinate through the curves has intercepts that add up to 100 percent. Thus,

376 Practices and Experiences

Number of Defects

80
7] Assignment
] EE Checking
680 B Timing
& Algorithm
l Function
40 # Interface
[] Documents
Bld/Pkg/Mrg
20| |
A

O (1
High-Level Design Code Review
Low-Level Design Unit Test

Figure 9.4 The defect type and process associations.

these curves show an instantaneous change in the distribution of defect data as
a continuous curve created by smoothing the distribution over a moving window.
The curve is a combination of a simple moving average and a cosine arch mov-
ing average applied to the binary representation of each category [Biya95]. The
figure shows four groups of defect types: (1) assignment and checking, (2) func-
tion and algorithm, (3) timing and interface, and (4) the rest of them. The idea
being that we would like to examine how the distribution of these groups of
defect types changes as the product advances through development. These
curves represent the instantaneous change in its distribution. Note that the
early part of development has a higher fraction of functional defects, which
decreases through time, while the timing component, which was criginally low,
is increasing. The assignment and checking type of defects change as the process
phases change. This representation is intuitive, providing a concise representa-
tion of the overall data.

9.5 Relative Risk Assessment
Using Defect Types

ODC data provide a foundation of good measurements that can be
exploited for a variety of new analysis methods. One of the natural
extensions is illustrated by using the defect-type data to significantly
enhance the methodology of growth models. This section illustrates the
development of such an extension to yield relative risk assessments,
which are useful during the shutdown of a product release.

Chapter 3 provided a detailed discussion on growth models. Our
experience in the practical use of these methods is that they are usu-
ally more successful with data from late system test or early field test.
Their application to function/component test is limited in their current
form. This criticism is what troubles the development manager who
finds that current growth-curve-based analysis works only too late in
the development cycle to make a difference.

Orthogonal Defect Classification 377

Total count=302

Assign/chk (118)
------------- Func/alg (88)
------- Other (28)

35 18)

P

Percent Contribution (Moving Average windows

o I‘\T“““"’l‘1\f",ll\\",li

50 0 15 200 250
Observation number

93 93 93 g4 94 94 94 94 94 94

12 12 12 01 02 03 03 05 07 09

01 01 08 31 17 09 24 19 18 23

Figure 9.5 A doubly smoothed presentation of defect-type distribution.

We combine ODC with growth modeling to provide far greater
insight than is commonly available with the typical growth models.
There are two elements to this insight: one contributed directly from
ODC and the other from assessing the relative growth of different
groups of defects. Examining them against a common abscissa is what
provides the additional insight to help make key qualitative inferences
that drive decisions. To illustrate these ideas, we first need to step back
and reflect on the qualitative aspects of a typical growth curve. Next
we factor in ODC.

9.5.1 Subjective aspects of growth curves

Figure 9.6 shows a typical reliability growth curve with the cumulative
number of defects on the ordinate and calendar time on the abscissa.
This is one of the fairly standard representations that we use for this
discussion. There are, however, several variations of these. The ordi-
nate may represent failure rate or failure density. The abscissa may
represent calendar time, execution time, test cases run, percent of test
cases, etc. For this illustration, we restrict our attention to growth

378 Practices and Experiences

Cumulative
Defects

100% —

90%

A B n C Time
Figure 9.6 Typical growth curve.

curves with the cumulative number of defects on the ordinate and cal-
endar time on the abscissa. The ideas that are proposed may map into
other representations as well.

The growth curve in Fig. 9.6 is meant to show the span of develop-
ment periods beginning with function/component test, continued into
system test and possibly the early part of field life. For this discussion,
we 1dentify a few key points on the growth curve that are projected
down on the time line. These are annotated as A, B, C, and 1. Point A is
when the test effort is ramped up, which is often visible when test takes
awhile to be ramped up. Point B is computable when there is an inflec-
tion in the growth curve. In our experience, its existence is a good indi-
cator to the modeler that the subsequent predictions become more
stable. Between points A and B the curve can be accelerated depending
on which fraction of function test is executable. Often there is parallel
development of code and execution of test until a large part of the prod-
uct can be integrated. Point C, commonly called the knee of the curve, is
a classic indication of the begining of the end of the test effort. An ideal
time to release a product is after the knee in the curve is observed,
which reduces the exposure of defects found in the field. In practice, sev-
eral variances occur: products are not shipped after the knee, or the
knee can occur in the field. There are cases where two knees occur: one
before shipping and another a few months out into the field.

It is not necessary that these three points be identifiable on each
growth curve—for instance, some of them do not have an inflection point

Orthogonal Defect Ciassification 379

at all. When they are identifiable, they provide important points on the
time line to identify progress of the development effort. Another impor-
tant point that we find useful, from practice, is to identify the point at
which 90 percent of the predicted total number of defects are found. In
Fig. 9.6 this is projected to the time line and annotated as n. It will
be referred to as the n point. These points are sometimes visible and
identifiable in a growth curve and sometimes not. This is dependent
on the data and the nature of the growth curve. The n point provides a
milestone in the development cycle from which to make comparative
assessments.

9.5.2 Combining ODC
and growth modeling

Separate growth curves can be generated for each of the defect-type
categories, demonstrating their relative growth. Since several of these
categories could be sparse (such as build/package/merge) it is more
meaningful to collapse categories to reflect broader aspects of the de-
velopment process. Function and algorithm defects capture the high-
level-design and low-level-design aspects of the product. Similarly,
assignment and checking tend to be related to coding quality. Thus a
reasonable collapsing of the categories provides useful subdivisions of
the data, making the relative comparison far more comprehensible.

To illustrate the ideas, Fig. 9.7 shows an exaggerated version of pos-
sible growth curves with collapsed categories. The curve on top shows
the overall growth curve, and at time T it is hard to predict the end of
development. However, when split by three groups of defect types
(shown in the lower graph), there is greater insight on the dynamics of
the development. It is obvious that function and algorithm defects have
stabilized, given that the growth curve has reached its knee, implying
that the design aspects of the product are possibly stable. On the other
hand, the code quality represented by assignment and checking defects
has not stabilized anywhere close to the degree that function defects
did. Yet, the growth curve has well passed the inflection point, and the
knee of the curve is predictable within reason. Between the growth
curves of function+algorithm and assignment+checking it appears that
the code parts of the product will stabilize shortly after T, Thus if the
testing efforts are continued at the current rate and pace, the product
should stabilize as far as these elements. On the other hand, this is not
the case with the third growth curve, which represents user interface
and messages defects. This curve is clearly rising very rapidly and the
prediction of when it will stabilize is much further out. Since these
defects are driving the volume, a separate decision has to be made
regarding the risk due to these defects.

380 Practices and Experiences

N
Overall B
growth curve |
1
|
1
:
: = Time
' T
|
N ! Other
i '.'
R - Assignment & checking
Wl o
Growth ;
curve o
[
by clustered e Function and algorithm
defect type T
1
| .
: - - Time
n, TN,

Figure 9.7 ODC for risk assessment (illustrating relative growth using

ODOC).

Looking at the relative growth curves, a development manager ¢ould
respond to what is occurring in the product by carefully choosing the
right skill mix and staffing levels during the later parts of testing. It is
evident that the lead developers with the design skills are not critical
at time T and could be working on the next release. Defects of type
assignment+checking, representing coding issues, will continue being
opened at current rates, which will need the appropriate staffing to
handle the volume. However, the volume is dominated by defects of
type miscellaneous that contain messages, panels, and interfaces.
There is a major exposure here, since the end is not in sight, and the
management has to deal with stabilizing this aspect of the product.
Since the type of problems are known, management has the opportu-
nity to respond to it by process changes and by bringing the right type
of skills and experience to bear. Also, the severity of the defects can be
examined to understand the risk of shipment without complete closure
of the open problems.

Example 9.4 Data for this example are taken from a large project with several
tens of thousands of lines of code (see ODC1.DAT on the Data Disk). The time
frame includes function test and systems test, and the current date of the analy-
sis is around two months from the desired ship date. Figure 9.8 shows the trend
of the cumulative number of defects, which appears to be steadily growing, and
stabilization of the product is not in sight. The developers’ perception was that
the product is not yet stable, and the growth model reaffirms that belief. The
defect discovery rate is high, and the volume is not likely to be handled despite

Cumulative Number of Defects

Orthogonal Defect Classification 381

All defects

2.

ol

©on

ol :

oL .

N T f

ol ' :
3

ol

[N =3

<+ 1.

0 50 100 150 7 200 250
Days

Figure 9.8 Overall cumulative defects.

increased staffing. The question of why and what to do to meet schedule while
reducing the risk in the field is not evident from this level of analysis.

To gain more insight into the data, we use the ODC defect type to split the defects
into three categories: function defects, assignment+checking, and all others
termed miscellaneous. The last category predominantly consists of documenta-
tion and panel+message defects. Figure 9.9 shows the separate growth curves for
the three categories superimposed on each other. Observe that the defect growth
for function and assignment+checking defects is slowing down, and both of these
categories are expected to stabilize soon. The growth of defects in the miscella-
neous category, however, shows no signs of stabilization.

We decided to predict the future course of the growth curve using the inflection
S-shaped model (Sec. 3.3.6),

1-e%

Nty = nm

where N(¢) is the cumulative number of defects found by time ¢, n is the total
number of defects originally present, and ¢ and y are model parameters related
to the defect detection rate and the ratio of masked/detectable defects. We were
able to fit the inflection S-curve to each of the first two categories (function and
assignment/checking). The growth curve for the miscellaneous category, however,
had not yet reached its knee, and it was not far enough advanced to fit an S-curve
to it in the normal manner. We were, however, able to fit an S-curve by assigning
a fixed value for one of the parameters vy, using a guess, based on fitting the
model to the entire data. Figures 9.10, 9.11, and 9.12 show the growth curves for

382 Practices and Experiences

Cumulative Number of Defects

Cefect growth by type

o . e
Sr e Function /,’
—_— A;sngnment/Checkmg e
.. e Miscellaneous s
~
~
//
sl
(<] s/

400

200

Test Days

Figure 9.9 Cumulative defects by defect type.

the function defects, the assignment and checking defects, and the miscellaneous
defects, respectively. In each of these curves, there is a horizontal line corre-
sponding to 90 percent of the estimated number of defects in this category and
the projection to the abscissa showing the n point. Note that the n point for func-
tion defects is around day 125, whereas that for the assignment and checking is
at day 100, and the 1 point for the miscellaneous defects doesn’t intercept the
projection until all the way past day 250.

We are near day 100, and need to make decisions regarding the actions to follow
in the next 60 days to meet the desired release date. From the curves it is evident
that the code quality, represented by assignment+checking defects, is likely to
stabilize, since we are already at the n point. On the other hand, the function
defects would stabilize in the next month or so given that the 1 point is predicted
to occur in 25 days. On the other hand, the miscellaneous defects are unlikely to
stabilize given the current testing and development activity. As a result of the
relative growth comparison we could say that a slight exposure exists regarding
design, and the critical issue may be the miscellaneous defects. Therefore, main-
taining the current test and development team will probably address the code
quality aspects, but would need additional skills and resources on the other two
issues. As we found out, in this project some key design skills were removed from
the development team to work on the next release several weeks ago. Given this
analysis and inference these skills were redirected back into this release,
whereas the miscellaneous defects were a larger problem given their volume. A
further analysis of those defects showed a large number of severity 3 and 4 (as
opposed to 1 and 2, the higher-severity defects). Thus, releasing with several of
them open was not deemed a major exposure. As it worked out, this product had

383

Orthogonal Defect Classification

Function defects

$}2849(Q 4O JOQUINN SAI}D|NLINY

Doys

Figure 9.10 Cumulative defects: function.

Assignment/Checking defects

$399)8(O J8QUINN BARDINWND

Days

Cumulative defects: assignment/checking.

1
-
(2]
[+4]
B
=
=)
18

384 Practices and Experiences

Miscellaneous defects

1600

1200

Cumulative Number of Defects
800

400

f 50 100 150 - 200 250
Days

Figure 8.12 Cumulative defects: miscellaneous.

one of the higher quality ratings in the field and these decisions made during the
shutdown helped not only to reduce risk but also to meet schedule and assure
good field reliability.

9.6 The Defect Trigger Attribute

The concept of the software trigger is relatively new to the area of
defect classification as opposed to defect type, which has parallels in
earlier literature (although they may not have provided the measure-
ment capability defined by ODC). The defect trigger is a new idea and
therefore needs to be carefully understood.

9.6.1 The Trigger Concept

The trigger, as the name suggests, is what facilitated the fault to sur-
face and result in a failure. It is therefore used to provide a measure-
ment on the verification aspects of the development process. Just as
the defect type provides an instrument on the progress of development,
the trigger will provide a corresponding instrument on verification of
testing.

We need to tear apart this activation process of faults in greater
detail to appreciate the nuances of the triggering process. Before we do

Orthogonal Defect Classification 385

that, let us reflect on the nature of software faults for a moment. Soft-
ware faults are dormant by nature. They can lie undetected for a long
period of time—commonly, the entire development cycle—and then be
detected when a product is introduced in the field. The various verifi-
cation and testing activities provide mechanisms to detect these faults.
Often they verify what should work. Sometimes they are designed to
create conditions that would emulate customer usage and thereby
identify the faults that escaped the earlier test stages. The question to
ask is: what activates the otherwise dormant faults, resulting in fail-
ures? This catalyst is what we call the trigger.

There are really three different classes of software triggers. These
come about by the three substantially different activities of verification
that are commonly employed in software—review, unit/function test,
and system test. The distinction arises from how they attempt to detect
faults. Review is a passive process, since there is nothing to execute.
The unit/function test actively checks the implementation by execution
of the code, driven by triggers that are structural and compositional.
System test emulates usage under customer environmental conditions.

The review process (which includes inspection) is geared to identify
pitfalls in a product using the design documents and code. The trigger-
ing mechanisms appear when someone thinks about the product,
examines a design, discusses an implementation, etc. These are human
triggers that result in the identification of faults by thinking about fac-
tors such as design conformance, compatibility with other releases,
rare situations, and operational semantics. When a product is being
tested, either unit test or function test faults are identified because a
test failed or did not complete. The trigger really underlies the test
case. That is the reason why a test case was written in the first place—
to check for coverage, functional completeness, etc. In another sense, it
is the thought behind the design of a test that is the trigger. In the case
of systems test, the product is usually stressed and taken through the
scenarios to which most customers would subject it. The mechanisms
that identify faults are those that would also identify faults in the field,
such as stress, workload, and software configurations. Contrasted with
the unit/function test triggers, these are the set of things that happen
to the product as opposed to what is done to it.

To put triggers in perspective, let us for a moment digress and dis-
cuss the more commonly known attributes of failures. This will help
differentiate what triggers are and clarify any potential confusion.
Some of the more commonly discussed attributes of failures are their
failure modes and characteristics such as symptom, impact, and sever-
ity. The symptom, a visible attribute, is the characteristic displayed as
a result of the failure and the net effect on the customer. For instance,
the symptom attributes reported in the IBM service process have a

386 Practices and Experiences

value set such as hang, wait, loop, incorrect output, message, and
abnormal termination (abend). Fault injection experiments also use a
similar attribute (often called failure or failure mode) with a value set
such as no error, checksum, program exit, timeout, crash, reboot, and
hang [Kana95, Kao93, Huda93]. The impact is an attribute that char-
acterizes the magnitude of outage caused (severity) such as timing,
crash, omission, abort fail, lucky, and pass [Siew93]. At first glance, it is
not uncommon to confuse the symptom with the trigger. However, they
are very different and orthogonal to each other. In simple terms, the
trigger is a condition that activated a fault to precipitate a reaction, or
series of reactions, resulting in a failure. The symptom is a sign or indi-
cation that something has occurred. In other words, the trigger refers
to the environment or condition that helps force a fault to surface as a
failure. A symptom describes the indicators that show a failure has
occurred, such as a message, an abend, or a “softwait.” Thus, a single
trigger could precipitate a failure with any of the above symptoms or
severities, and, conversely, a symptom or severity could be associated
with a variety of trigger mechanisms.

The intent of capturing the triggers is to provide a measurement of the
verification aspects of software development. Essentially, triggers need
to conform to the same rules of ODC as did the defect types. Then they
would provide a measurement on the verification process. To briefly
summarize, it requires that the distribution of an attribute (such as trig-
ger) changes as a function of the activity (process phase or time) to char-
acterize the process. In addition, the set of triggers should form a
spanning set over the process space for completeness. Changes in the
distribution as a function of activity then become the instrument, yield-
ing signatures, which characterizes the product through the process.
This is the point at which the trigger value set is elevated from a mere
classification system to a measurement of the process and qualifies as an
ODC. The value set has to be experimentally verified to satisfy the
stated necessary and sufficient conditions. Unfortunately, there is no
shortcut to determine the right value set. It takes several years of sys-
tematic data collection, experimentation, and experience with test pilots
to establish them. However, once established and calibrated, they are
easy to roll out and “productionize.” We have the benefit of having exe-
cuted ODC in around 50 projects across IBM, providing the base to
understand and establish these patterns. We would have liked to have
one set of triggers that apply across the entire life cycle of development.
Realistically, given the nature of the verification technology today, there
are at least three distinctly different activities that need to be captured.
Thus the triggers are in three sets, each of which span the process on
which they are defined. In the following subsections we will define the
triggers and illustrate their use with data from real examples.

e

Orthogonal Defect Classification 387

9.6.2 System test triggers

System test usually implies the testing that is done when all the code
in a release is mostly available, and workload similar to what a user
might generate is used to test the product. These triggers characterize
that which regular use of the product in the field would generate. They
therefore apply to system test in the field.

Recovery/exception handling. KException handling or recovery of
the code is initiated due to conditions in the workload. The defect
would not have surfaced had the exception handling process or the
recovery process not been called.

System start-up and restart. This has to do with a product being
initialized or being shut down from regular operation. These proce-
dures can become significantly involved in applications such as data-
base. Although this would be considered normal use of the product, it
reflects the operations that are more akin to maintenance rather
than regular operations.

Workload volume/stress. 'This indicates that the product has been
stressed by reaching some of the resource limits or capability limits.
The types of stresses will change depending on the product, but this
is meant to capture the actions of pushing the product beyond its
natural limits.

Hardware configuration and software configuration. These trig-
gers are those that are caused by changes in the environment of
either hardware or software. It also includes the kinds of problems
that occur due to various interactions between different levels of
software precipitating problems that otherwise would not be found.

Normal mode. This category is meant to capture those triggers
where nothing unusual has necessarily occurred. The product fails
when it was supposed to work normally. This implies that it is well
within resource limits or standard environmental conditions. It is
worthwhile noting that whenever normal mode triggers occur in the
field it is very likely that there is an additional trigger attributable
to either review or function test that became active. This additional
level of classification by a function test or review trigger is recom-
mended for field defects.

9.6.3 Review and inspection triggers

When a design document or code is being reviewed, the triggers that
help find defects are mostly human triggers. These triggers are easily
mapped to the skills that an individual has, providing an additional
level of insight.

388 Practices and Experiences

Backward compatibility. This has to do with understanding how
the current version of the product would work with earlier versions
or maintain n to n + 1 (subsequent release) compatability. This usu-
ally requires skill beyond just the existing release of the product.

Lateral compatability. As the name suggests, this trigger has to do
with how this product would work with the other products within the
same software configuration. The experience required by the indi-
vidual should span the subsystems of the product and also the appli-
cation program interface of the product with which it interacts.

Design conformance. These faults are largely related to the com-
pleteness of the product being designed with respect to the require-
ments and overall goals set forth for the product. The skills required
for finding these kinds of triggers has more to do with an under-
standing of the overall design than with the kinds of skills required
to ensure compatibility with other products.

Concurrency. This has to do with understanding the serialization
and timing issues related to the implementation of the product. Spe-
cific examples are locking mechanisms, shared regions, and critical
sections.

Operational semantics. This has to do largely with understanding
the logic flow within the implementation of a design. It is a trigger
that can be found by people who are reasonably new but well trained
in software development and the language being used.

Document consistency/completeness. This has to do with the over-
all completeness of a design and ensures that there is consistency
between the different parts of the proposed design or implemen-
tation. The skill is clearly one that requires good training and
implementation skills, but may not require significant in-depth
understanding of the products, dependencies, etc.

Rare situation. These triggers require extensive experience of
product knowledge on the part of the inspector or reviewer. This cat-
egory also recognizes the fact that there are conditions peculiar to a
product that the casual observer would not immediately recognize.
These may have to do with unusual implementations, idiosyncrasies,
or domain specific information that is not commonplace.

9.6.4 Function test triggers

One of the primary differences between function test and the other set
of triggers is that the meaning of the trigger needs to be more complex.
Since the defining question for the trigger “why did the fault surface?”
would result in the answer “test case,” the definition of trigger involves
a finer refinement.

Orthogonal Defect Classification 389

The question becomes “why did you write the test case?” Thus the
triggers that are identified reflect the different motivations that drive
the test case generation. Therefore, it is feasible to actually identify the
triggers for each test case as it is written. It is not necessary that the
triggers be classified only after a fault is found. Each test case would
then have a trigger associated with it. The trigger distribution is then
reflective of the different methods and coverages intended through the
test plan. These test cases should also be mapped into the white box
and black box of testing.

Test coverage. This refers to exercising a function through the vari-
ous inputs to maximize the coverage that is possible of the parame-
ter space. This would be classified as a black-box test trigger.

Test sequencing. These are test cases that attempt to sequence mul-
tiple bodies of code with different sequences. It is a fairly common
method of examining dependencies which exist that should not exist.
This is also a black-box test.

Test interaction. These are tests that explore more complicated
interactions between multiple bodies of code usually not covered by
simple sequences.

Test variation. This is a straightforward attempt to exercise a sin-
gle function using multiple inputs.

Simple path coverage. A white-box test that attempts to execute
the different code paths, increasing statement coverage.

Combination path coverage. Another white-box test that pursues a
more complete signal of code paths, exercising branches and differ-
ent sequences.

9.6.5 The Use of Triggers

Once we understand what the trigger data capture we can begin to
appreciate the different potential uses of the trigger concept. Triggers
can be used on their own to measure the effectiveness of the verifica-
tion phase, and they can also be used in conjunction with the other cat-
egories in ODC to provide further insight into the cause of a process
situation. In the following we will illustrate the use of triggers by show-
ing examples from pilot studies conducted at IBM. Some of these exam-
ples will use the trigger category in conjunction with the defect type to
illustrate the dynamics occurring in a particular process phase. The
type of trigger that is used will change depending on which process
phase we are looking at. Triggers can also be used with field data to
recognize the different environmental stresses that are placed on a
product.

390 Practices and Experiences

The concept of the trigger provides insight not on the development
process directly, but on the verification process. Discussing a few
examples that use triggers gives us a much better understanding of
how this works. We will do so by examining a few specific situations
and illustrating the kind of inferences that can be drawn from the
trigger data. We begin by first examining a project in the high-level-
design phase in Example 9.5 and then follow it up with triggers in the
field in Example 9.6.

Example 9.5 This example is from the high-level design inspection of a middle-
ware software component (see ODC2.DAT on the Data Disk). The component’s
API was intended for use with several other products and vendor applications.
The example uses the idea of triggers combined with the defect type to illustrate
measuring the effectiveness of the inspection. Figures 9.13 and 9.14 show the
distribution of defect types and triggers subgrouped by defect types. Let us factor
into these distributions our expectations and critique the situation. Studying the
defect-type distribution, we notice that it is typical of what a high-level inspec-
tion should produce: the number of function defects is fairly large—the mode
being documents, which is understandable given that it was a document review.
The trigger distribution shows that the largest number of defects were found by
the operational semantics trigger. This again is explainable given that complete-
ness and correctness are major issues considered in a high-level-design inspec-
tion. Given that this is a middleware component that will be used by several
other products, interfaces are key. Furthermore, lateral compatibility is impor-
tant since it is middleware. What is surprising is that there are a small number
of interface defects found using the lateral compatibility trigger. Defects found
using the lateral compatibility trigger are mostly function defects. Given the
nature of this component, this raises serious questions regarding the skills of the
inspection team, particularly from a cross-product perspective. A check of the
team’s membership found few people with that particular skill.

In this case, an additional review was requested to fill the gaps, and two experts
(including an IBM fellow) found the defects shown in Figs. 9.15 and 9.16. It was

Defect type

Assignment| | |
Checking | 1
Timing/Serialize | Il
Algorithm
Interface
Function
Bld/Pkg/Merge
Documentation

I

10 20 30 40 50 60
Number of faults

[en]

Missing -Incorrrect

Figure 9.13 Defect-type distributions at first high-level design.

Orthogonal Defect Classification 391

Trigger

Design Conformance
Rare Situation i
Concurrency
Operational Semantics [
Backward Compatibility |
Lateral Compatibility
Document Consistency

0 20 40 60 80 100
Number of faults

U] Assignment [Checking B Timing B Algorithm
M Interface M Function [Bld/Pkg/Merge I Documentation

Figure 9.14 Defect-trigger distributions at first high-level design.

possible to advise these experts to focus their efforts along the dimension that
we suspected was weak rather than redo the entire inspection. The second
defect-type distribution, like the former, is characteristic of a high-level design
inspection—namely, large numbers of document and function defects. From the
trigger distribution in Fig. 9.16, it is clear that a substantial number of lateral
compatibility triggers were being used to identify defects. In addition, the lat-
eral compatibility trigger found many different defect types, indicating a more
detailed review. In this case, 102 defects were found due to the additional
review—in precisely the areas where deficiencies were suspected. The savings
due to this early detection exceeds more than $1 million in development and ser-
vice costs.

Note that this is identified using the cross product of the defect type and the trig-
ger. The feedback was available right after the inspection—extremely fast and

Defect type

Assignment
Checking ; ‘ |

Timing/Serialize | i | !
Algorithm i !
Interface ‘
! i

Bld/Pkg/Merge 1 \ ‘

Documentation §

0 10 20 30 40 50 60 70
Number of faults

Missing . Incorrrect

Figure 9.15 Defect-type distributions at second high-level design.

392 Practices and Experiences

Trigger

Design Conformance
Rare Situation
Concurrency
Operational Semantics
Backward Compatibility
Lateral Compatibility
Document Consistency

Number of faults

(] Assignment E Checking H Timing H Algorithm
M Interface W Function FJ Bld/Pkg/Merge Kl Documentation

Figure 9.16 Defect-trigger distributions at second high-level design.

actionable feedback quite unusual for the software industry. Traditional methods
rely on the volume of defects being found compared with earlier statistics, which
only make broad inferences. Given the wide variances of defect injection rates,
the credibility of such inferences is often questioned. Classical root-cause analy-
sis, after considerable expense, would reveal the nature of defects found, but
could not react to the omissions. Furthermore, two-dimensional cross products
are hard to correlate mentally in qualitative analysis.

Example 9.6 This example shows trigger distribution of defects found in the
field. The data are from a two-year period of a product in the field. Two years is
a reasonable length of time, since the bulk of the defects are usually found dur-
ing this period. There are several inferences to be drawn from Fig. 9.17. First,
the trigger distribution changes as a function of time for the different triggers.
Recall the ODC necessary and sufficient conditions, which need to be empiri-
cally established. The change in distribution as a function of time signifies
meeting the necessary condition. Second, the trigger distribution indicates to
us when a particular product is likely to have the maximum defects from a par-
ticular trigger. This information is vital to develop testing and service strate-
gies, For instance, the fact that hardware configuration and stress-based
triggers tend to peak in later years would allow for a testing strategy that
focuses on weeding out the triggers that peak earlier. This could be exploited if
there is an opportunity to refresh the release in the field with a better-tested
upgrade within the next year or so. Third, knowing the trigger profiles allows
us to project the number of defects that appear in the field better. There are
several techniques that could be developed in the future. However, for a simple
intuitive understanding, consider comparing trigger distributions of the past
release’s field to this release’s system test. A better coverage in system test of
areas that the customer hits hard would result in a smaller field fallout. This
assessment, combined with the detection profile in the field, allows us to make
more accurate projections of the number of defects to be found in the first, sec-
ond, and third quarters following a release. Having a better projection based on
triggers allows us to do service planning and staff the functions better by skill

group.

Orthogonal Defect Classification 393

System Test Triggers

Number of faults by quarter

Startup
Recovery

Software
Configuration
Stress

1/:

Hardware
80 configuration

Quarters after product release

Figure 9.17 Triggers of defects found in the field. Subsets of system test
triggers showing number of faults by quarter.

Although this section does not show data on trigger distribution
through function tests, the discussion on the review triggers and the
system test triggers should provide good initial understanding of how
triggers work. For a further discussion of triggers there are several
articles that are recommended. The ODC paper provides an overview
of the concept of the trigger and illustrates some data on both the
review and test process [Chil92]. A more detailed discussion on the test
process exists in [Chaa93], where the trigger concept is expounded and
examples from several pilots are included. For an understanding of
how the trigger concept can be levered to guide fault injection and
characterize the field performance of the system, [Chil95] provides a
lot of information.

9.7 Multidimensional Analysis

This chapter has so far primarily focused on two attributes: namely,
the defect type and the trigger. Each of these attributes has a specific
purpose from a measurement perspective. The defect type is a measure
related to the development process, and the trigger to the verification
process. Both attributes are of a causal nature: the defect type is “what
is the meaning of the fix,” and the trigger is “what was the catalyst to
find the defect.” The fact that the value set conformed to the properties
of ODC is what made these classifications into measurements.

e A

394 Practices and Experiences

ODC does not imply only these two classification attributes. In fact,
any classification can be considered ODC if the attribute-value set con-
formed to the necessary and sufficient conditions. However, to build a
measurement system with a firm footing, a substantial amount of pilot-
ing and experimentation needs to be conducted to verify the properties.
In theory, there could be any number of attribute-value sets, each of
which meets ODC requirements—providing a large space of measure-
ments. The attribute-value sets could address different issues about the
product or the process. Each attribute does not have to be independent
of the other, but the values within an attribute need to be. However,
having attributes that are highly dependent on each other, with highly
correlated value mappings, does not make for useful measurement.

Having multiple attribute-value sets that conform to ODC properties
provides a rich measurement opportunity. It allows for the analysis
using multiple attributes to be easily interpreted, be they correlations,
subsets, functional relationships, etc. In fact, the multidimensional
nature of this measurement provides fertile ground for data mining.
Having a large body of such data from several products or releases
makes it particularly amenable for developing models and examining
properties, trends, and characteristics. This is useful to develop an
understanding of a development experience, as well as to characterize
teams, environments, practices, etc.

At first glance it seems relatively easy to come up with attributes
that potentially could be useful. However, it takes considerable expe-
rience to find the truly useful attribute-value sets. Thus, it is not
uncommon to see teams coming up with recommendations to improve
the classification or add new attributes. The danger in arbitrarily
adding to or changing the measurement system is that before one is
verified to be ODC, widely deploying it could be an unproductive exer-
cise. Furthermore, it is important not to thrust too many attributes on
a development team and scare them away. We have chosen to intro-
duce just four new attributes over and above what is traditionally in
place.

Figure 9.18 shows six attributes and their purposes. The italicized
attributes are recommended as starters for ODC. Defect type, trigger,
source, and impact are four attributes that are introduced as new
additions on top of the standard measurements that most defect-
tracking mechanisms provide. To help put this in perspective, two
commonly used attributes—phase found and severity—are also
shown. Most defect-tracking tools commonly have between five and
fifteen such attributes to categorize defects. Many of them never get
used, or when used, it is not uncommon for organizations to never use
the data! In sharp contrast, the ODC approach uses few attributes,
but very carefully designs them.

A defect is classified

across multiple dimensions

ARRRARRR

Orthogonal Defect Classification

395

Causal attributes Sub-population attributes Effect attributes
Defect type I Source I I Impact I
provides type of code the resultant
feedback on the that is corrected effect on the
development - new, old, customer -
process reused, capability,
vendored, usability, ...
re-fixed, ...

Trigger I Phase found Severity
provides defined on the 'BhM o 1-h4’
feedback on the development where 1 is the
verification process . hlgheSt
processes - activities - signifying major
testing, review, design, review, outage, while 4
beta test, ... test, ... could be an
annoyance

Figure 9.18 Dicing a defect, generating multidimension data.

These six attributes are further grouped under the broad areas of
cause, effect, and subpopulation identifiers. This helps us visualize a
framework on which these attributes could be used. Since every defect
will have each of these classifications, analyzing a collection of defects
allows us to statistically develop models that relate cause with effect.
Furthermore, the subpopulation identifiers allow us to slice and dice
the data and provide greater visibility of the underlying issues within
a software development process.

One of the key advantages of having the data along the dimensions
shown in the figure is that this provides a good minimal set for a variety
of purposes. For example, root-cause analysis usually requires a few
cause-and-effect attributes, particularly if we want to diagnose an issue
from a customer’s perspective. Thus, if we want to understand how to
best improve the serviceability of a product, the ODC data sets provide a
clear and efficient diagnosis search path. The impact attribute would be
used to create a subset including reliability, maintainability, and ser-
viceability defects. The subset is then examined using the defect type
and trigger to understand the reason such defects escape into the field
and the kind of faults that are being committed to cause the impact. This
understanding is then translated into recommendations for actions. To
further reduce the search space to apply such actions, the source cate-
gory can be used to explore whether certain kinds of code—new code, old
code, vendored code, etc.—dominate the volume of such problems.

s T TR T e B I

396 Practices and Experiences

The data requirements document [[BM95] provides the details of the
attributes and values of the latest version of ODC. This includes values
and definitions for the attributes that are currently tested to meet the
ODC requirements. The document also includes any enhancements
made in ODC, applied across different types of development—software,
hardware, information, etc. It also includes new attributes as they are
invented and the uses developed for them.

Having multidimensional ODC-based measurements, not just classi-
fication, opens up a new world for analysis. Fairly systematic methods
for diagnosis can be established for the commonly arising problems. At
the same time it keeps open opportunities to explore via data mining
methods.

9.8 Deploying ODC

The deployment of a technology such as ODC requires careful thought
and considerable insight into the means of process insertion. Most
practitioners would recognize that technology transfer is a difficult
business. Process transfer is yet another order of magnitude harder
and especially so in software. This is because, unlike a technology that
can be captured in a tool or a design which impacts a product group,
process transfer in software requires that every programmer change a
little. Although the change may be minor in terms of the actual work a
programmer does, getting acceptance of the concepts and buy in
through the organization is a major undertaking.

Unless programmers quickly see the value of ODC, it is hard to sus-
tain their interest and commitment to provide good data. This quickly
becomes an exercise in managing all the processes to execute ODC.
Knowing the processes and having the necessary skills are the mini-
mum requirements. Being able to quickly recognize when they are not
working and reacting to them effectively is the difference between suc-
cess and failure. At Watson Research, we started as technologists and
teamed with our divisional partners to do deployment. It quickly
became evident that the split was artificial. Both teams needed to
understand the technology and the nuisances of the real world to be
effective. We learned to create processes that were necessary and
developed schemes to maintain and troubleshoot them.

Figure 9.19 identifies some of the key processes. It also divides the
range and scope of deployment into pilot, staged production, and pro-
duction, indicating the growth of deployment in an IBM lab. The idea
is that initially an organization would usually start off with a pilot
project, almost as a trial. These usually last between three months
and one year, and become the proving ground for ODC at the pilot
stage. Most of the processes were owned by Watson Research, and the

Orthogonal Defect Classification 397

responsibilities of the participating lab were limited. As we made
progress, we would develop the skills in the organization to own more
of the processes, reducing the responsibility and involvement of the
research team. In the best cases, we were able to obtain ownership of
more than 70 percent of the processes in around 18 months. Results
from the use of ODC in projects across the company are described in
[Bhan94]. At the end of 1995, we had close to 50 projects in about a
dozen labs. Two labs could be considered to be well into staged-
production.

The cost of ODC is quite low. There is an up-front cost in terms of
modifying the tool set and providing education. The execution cost is
dramatically lower if a developer is already using a change control
system. This is because most change control systems require that the
programmers update a panel, and ODC requires only four additional
fields (in most cases), which is a small delta cost. The subsequent
costs are incurred in analyzing the data, which is mostly tool cost and
either management or technical review which runs approximately
two hours a month (on average). This can be rolled into existing qual-
ity programs or quality circle efforts, thereby not requiring additional
effort.

When ODC is used to enhance the quality circle of the defect pre-
vention process (DPP) [Mays90] significant savings can be accrued in
analysis costs. Typically, DPP-related efforts cost in the range of one
person hour per defect. Imagine four people in a room analyzing
defects. They usually do a detailed root-cause analysis of around four
or five defects in an hour. This one hour usually includes not only qual-
itative analysis but also identifying a potential solution and writing it
down as an action item for the organization to execute. Given such
high costs, it is again not common for organizations to be able to do

Pilot Staged Regular

Projects Production Production

Lab Ownership Lab Ownership Lab Ownership
Classification Classification Classification
Decisions Decisions Decisions
Actions Actions Actions

Watson Ownership ODC Education ODC Education
ODC Education Advocacy Advocacy

Advocacy

Data collection tools

Process definition
Analysis
Feedback
Databases
Consultation

Data collection tools
Process definition

Watson Ownership

Analysis
Feedback
Databases
Consultation

Figure 9.19 Deployment of ODC.

Data collection tools
Process definition
Analysis

Feedback
Databases

Watson Ownership

Consultation

398 Practices and Experiences

DPP on every defect, since they usually run into thousands. The ODC
classification, which extracts cause and effect, usually takes only two
minutes when done retrospectlvely Granted that the granularity of
the measurement is very coarse, its low cost allows full coverage over
the defect population. The analysis of these data provide a statistical
means to do causal analysis by associating cause and effect. This now
occurs not on each defect, but on a collection of them, and is appropri-
ately timed at the exit of a development phase. Since the analysis of
the data (which may even be qualitative) is amortized over several of
them, the overall cost is reduced by about an order of magni-
tude (according to our estimates) when including all the time costs
involved.

9.9 Summary

Orthogonal defect classification fundamentally improves the technol-
ogy for in-process measurement for the software development process.
This opens up new opportunities for developing models and techniques
for fast feedback to the developer, thus addressing a key challenge that
has been nagging the community for years. At one end of the spectrum,
research in defect modeling focused on reliability prediction, treating
all defects as homogeneous. At the other end of the spectrum, causal
analysis provided qualitative feedback on the process. The middle
ground did not develop, primarily because the basic discoveries estab-
lishing the feasibility were not yet there. This work is built on some
fundamental breakthroughs, which show that certain cause-effect rela-
tionships are measurable. Furthermore, the measurement system is
definable on the semantic information contained in the defect stream.
ODC provides the basic capability to extract signatures from defects
and infer the health of the development process.

Our experience with ODC indicates that it can provide fast feed-
back to developers. Developers find this a useful method to gain
insight they did not have before. It also provides a reasonable level of
quantification to help make better management decisions to signifi-
cantly impact cost and opportunity. There are several levels of analy-
sis and feedback that can be built on ODC. The published literature
discusses trend analysis, relative risk reduction, data mining, predic-
tion methods, and assisting root-cause analysis. When used to assist
root-cause analysis, it can cut the cost by a factor of 10 compared to
traditional methods. It can be used as a general diagnostic tool
retroactively to assess problem situations in development organiza-
tions. ODC has since been extended into information development
and non-defect-oriented issues, and has been applied to hardware
(microcode) development.

Orthogonal Defect Classification 399

Problems

9.1 Define a process with three stages. Take the eight defect types from Sec.
9.4 and draw the expected defect type distribution to signify the ideal signa-
ture. Explain why the mode occurs in each of the phases and its relative size
compared to the category that is second to the mode.

9.2 For the process described in Prob. 9.1, increase the process to five stages.
Now modify the distributions to accommodate the addition of process stages.
Redraw the distributions with the abscissa to represent number of defects,
instead of percent of defects.

9.3 Consider release 2 of a product made up of 80 percent of old code (from
release 1) and 20 percent of new code developed in release 2. Defects are found
during testing from the old code and the new code. Write down an expectation
of the defect-type distribution of the new code and the old code. Defend your
position. If we had information on the defects found in the field use of release 1,
how would that influence your expectations? Develop a hypothetical example.

9.4 Take data from 0DC3.DAT on the Data Disk. Develop defect-type distribu-
tions for the design phase and the code/unit-test phase. Compare the distribu-
tions and assess the trends in the changes. Next compute the proportion of
missing to incorrect defects from the two phases and explain the difference
between the two phases. Develop feedback to the development team based on
your analysis.

9.5 Suppose we have triggers of defects found during the system test and the
first six months’ usage in the field after product release. Argue what the differ-
ences or similarities should be between the trigger distribution of the system-
test defects and the field defects. Would they be (a) identical, (b) complementary,
(¢) unrelated? Explain why.

9.6 Study the trigger distributions of defects reported in reference [Chil95].
What would you recommend to the development team that is developing the
next release of this product?

9.7 How would your recommendations change if you know that the triggers
from the defects in Prob. 9.6 come from three different releases? For simplicity
let us assume that all the system-test-triggered defects are from release 1, the
function-test-triggered defects from release 2, and the others from release 3.
Now, if we were to make a recommendation for the development of release 4,
how would it be different from those of Prob. 9.6?

9.8 Develop defect types for the art of writing a paper. To do so, use the expe-
rience of writing a technical paper to identify defects.
a. Define what a defect means in this activity.
b. Define the parallel to the defect type and trigger for these defects.
c. Collect defects from a paper-writing project and classify them by defect
types and triggers.

400 Practices and Experiences

d. Develop the distributions as a function of the phases of writing a paper.
If the phases cannot be clearly identified, then develop them as a func-
tion of time.

9.9 Take the data sets of 0DC3.DAT to ODC6.DAT from the Data Disk and ana-
lyze the defect-type distribution by doing simple trend analysis to raise issues
that should be of concern. To do so, develop distributions (such as in Figs. 9.13 to
9.16) to obtain insight. Specifically, generate defect-type distribution as a func-
tion of phase, and the trigger versus type distributions. Additional insight can
be gained by looking at additional attributes in the data sets. More sample data
sets are available from the Web site: http://research.ibm.com/softeng.

9.10 Take the data for Example 9.4 and try to do a similar analysis on rela-
tive risk using a different grouping of defect types. What are your conclusions?
Are they different from the stated example?

9.11 What is the parallel to the risk assessment (Sec. 9.5) using triggers
instead of using defect types? Discuss applications for this new approach.

