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Abstract—Radar high-resolution range profiles (HRRPs) are
typical high-dimensional, non-Gaussian and interdimension de-
pendently distributed data, the statistical modelling of which is a
challenging task for HRRP based target recognition. Assuming
the HRRP data follow interdimension dependent Gaussian distri-
bution, factor analysis (FA) was recently applied to describe radar
HRRPs and a two-phase procedure was used for model selection,
showing promising recognition results. Besides the interdimen-
sional dependence, this paper further models the non-Gaussianity
of the radar HRRP data by local factor analysis (LFA). Moreover,
since the two-phase procedure suffers from extensive computation
and inaccurate evaluation on high-dimensional finite HRRPs,
we adopt an automatic Bayesian Ying-Yang (BYY) harmony
learning, which determines the component number and the
hidden dimensionalities of LFA automatically during parameter
learning. Experimental results show incremental improvements
on recognition accuracy by three implementations, progressively
from a two-phase FA, to a two-phase LFA, and then to an auto-
matically learned LFA by BYY harmony learning.

Index Terms—Automatic model selection, Bayesian Ying-Yang
(BYY) harmony learning, high-range resolution profile (HRRP),
local factor analysis (LFA), radar automatic target recognition.

1. INTRODUCTION

ADAR automatic target recognition (RATR) is to identify
R the unknown target from its radar-echoed signatures. A
high-resolution range profile (HRRP) is the coherent summation
amplitudes of the complex time returns from target scatterers
in each range cell, which contains target structure information
such as target size and scattering distribution. Therefore, radar
HRRP target recognition has received intensive attention from
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the RATR community [1]-[3]. Bayesian classifiers are widely-
used for this typical pattern recognition task [4], [5].

Radar HRRP data is typically high-dimensional, non-
Gaussian, and interdimension dependently distributed, the
statistical modelling of which is a challenging task [6]-[8].
Nonparametric methods suffer from the curse of dimensionality
in this application [9], and parametric methods are usually pre-
ferred [4], [6] and also considered in this paper. In the literature,
many efforts have been made on two important topics. The
first is how to determine a family of parametric models that
can appropriately describe HRRP distribution, and the second
is how to appropriately learn the model based on finite HRRP
training samples.

On selecting an appropriate parametric model, early efforts
[1], [7], [8] assumed that the range cells (dimensions) in HRRP
are independently Gaussian distributed, which nevertheless was
later found inappropriate based on physical arguments and re-
sults of empirical investigations [6], [10]. There are mainly two
streams of efforts for improvement. On one hand, papers [5], [6],
[10] extended the independent Gaussian to independent (mix-
ture of) Gamma distribution. On the other hand, papers [4],
[11] considered dependence among dimensions by a Gaussian
factor analysis (FA) model. However, none of these efforts con-
siders both non-Gaussian and interdimensional dependence si-
multaneously. This paper is thus motivated to consider both by
mixture of factor analyzers (MFA) [12], or called local factor
analysis (LFA) (see [13, Sec. 3.2]). Possible alternative choices
may include (mixture of) correlated Gamma, (mixture of) in-
dependent component analysis and (mixture of) correlated log-
normal, which deserve future studies.

Once a family of parametric models has been chosen, we ap-
proach the learning task, which consists of parameter learning
for determining all unknown parameters given a model scale k
and model selection for choosing an appropriate scale k to avoid
under-fitting or over-fitting [14]. For LFA model, this k con-
sists of the number of components and the local hidden dimen-
sionalities. Parameter learning is usually implemented by the
expectation-maximization (EM) algorithm [15], [16] under the
maximum-likelihood (ML) principle. Model selection is con-
ventionally tackled by a two-phase procedure with the help of
a model selection criterion, such as Akaike’s Information Cri-
terion (AIC) and Bayesian Inference Criterion (BIC) [4], [14].
The work in [4] implements a two-phase procedure with AIC
and BIC on FA. This paper implements a two-phase procedure
on LFA instead, which improves the HRRP recognition perfor-
mance in [4].
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However, for high-dimensional data such as HRRPs, this
two-phase implementation inevitably suffers from extensive
computation and unreliable estimated values of the criterion
(see [13, Sec. 2.1] for a detailed discussion). To relieve these
problems, this paper further adopts an automatic Bayesian
Ying-Yang (BYY) harmony learning algorithm [13], [17], [18]
for LFA, which automatically determines the number of com-
ponents and local hidden dimensionalities during parameter
learning (see the interpretations in [13, Egs. (3) and (4)]). Based
on the LFA model, this automatic algorithm not only obtains a
better HRRP target recognition performance, but is also much
faster than the two-phase procedure.

In addition, there exists one crucial target-aspect sensitivity
in HRRP data [4], [5], [11]. The works in [4] and [19] parti-
tioned consecutive HRRP samples into several aspect-frames
and then modelled HRRPs in different frames separately. Fo-
cusing on parametric modelling, paper [4] proposed a heuristic
partition mechanism with the help of AIC and BIC. The effort in
[19] proposed another adaptive frame segmentation method by
evaluating the curvature of HRRP manifold in a nonparametric
way. Following [4], this paper further implements the heuristic
partition mechanism under the BYY harmony model selection
criterion.

The rest of this paper is organized as follows. In Section II,
we give some background knowledge about HRRP based target
recognition. Section III gives a review of existing works and
justifies the motivations of this work. We implement a two-
phase procedure on LFA instead of FA, and compare its HRRP
recognition performances with [4]. In Section IV, we further
introduce an automatic BYY harmony learning algorithm on
LFA, and describe the heuristic aspect-frame partition based on
a BYY harmony criterion. Section V systematically compares
the HRRP target recognition performances of the two-phase
procedures on FA and LFA, and the automatic BY'Y learning al-
gorithm for LFA. Finally, some concluding remarks are drawn
in Section VL.

II. BACKGROUND FOR RATR BASED ON HRRP

A. Target Recognition Based on HRRP

For a high resolution radar, the wavelength of radar signal
is far smaller than the target size, and the electromagnetism
characteristic of the target can be described by the scattering
center model approximately [20], [21]. According to this model,
a target consists of many scatterers distributed in several range
cells along the radar line of sight (LOS). Intuitively, an HRRP
can be viewed as a projection of radar returns from these scat-
terers onto the radar LOS, as illustrated in Fig. 1. Formally, an
HRRP x € R? is the coherent summation amplitudes of the
complex returns from target scatterers in each range cell, where
d is the number of range cells, i.e. the dimensionality of HRRP.
Measured HRRPs are usually high-dimensional, e.g., d = 256
in [4], [11], and this paper.

Carrying essential information about the target’s overall size,
shape and structure, HRRP is widely used as a discriminative
feature for radar automatic target recognition (RATR) [1], [2],
[22], [23]. For the task of HRRP based radar target recognition,
Bayesian classifiers have been widely investigated in the RATR
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Fig. 1. Radar returns from the scatterers on the target are projected onto the
LOS, resulting in an HRRP.

range cell

community [4], [10], [11]. For a C-class classification task, an
HRRP sample x; is assigned to the class é(x;) € {1,...,C}
with the maximum a posteriori (MAP), i.e.

&(x¢) = argmaxp(cx;) = argmax [pe(x;)p(c)] (1)

where p.(x) = p(x|c) is the conditional probability density
given class ¢ and p(c) is a prior over class ¢. To implement (1),
we need to estimate p..(z) for each class. In the literature, two
kinds of methods can be used for density estimation, i.e., non-
parametric and parametric. However, since the HRRP data is
high dimensional, nonparametric method not only is time and
storage consuming, but is also insufficient or inaccurate to de-
scribe HRRP data distribution due to the sample sparseness [9],
therefore impractical. Following [4], [10], this paper considers
parametric modeling.

B. Sensitivities and Aspect-Frames Partition

Before radar HRRP statistical modeling, three sensitivity is-
sues need to be considered, namely, translation [5], [24], ampli-
tude-scale [5] and target-aspect sensitivities [4], [5], [11]. The
former two could be commonly tackled by translation alignment
[25], [26] and amplitude-scale normalization [4], [5], respec-
tively. Similar to [4], we will assume all HRRPs in each frame
have been slide correlation aligned and Lo normalized, without
further specification.

The target-aspect sensitivity [5], [6] refers to the issue that the
HRRP distribution varies as the target-aspect angle changes. To
tackle this problem, we adopt the divide-and-conquer policy in
[4], [5], [11], i.e., consecutive HRRP samples are partitioned
into different sectors, named as aspect-frames, and then all as-
pect-frames are modelled separately. More precisely, HRRPs of
a target c are divided into K. frames, and a model is used to de-
scribe p.(x|7) in each frame j. Then, the conditional probability
pe(x¢) in (1) for classifying a testing sample x; is calculated as

pelxe) 2 max [pe(x|7)pe( )] @

where p.(j) is a prior probability of the jth aspect-frame in
target ¢, which is assigned to be proportional to its sample size
in this frame. For each pair of ¢ and j, the density p.(x|j) will
be denoted as p(x) in the sequel for simplicity.
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| plane | length (m) | width (m) | height (m)
Yak-42 36.38 34.88 9.83
Cessna 14.40 15.90 4.57
An-26 23.80 29.20 9.83

Fig. 2. Descriptions of the plane target parameters of the radar HRRP data
corpus used in experiments.
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Fig. 3. Projections of target trajectories onto ground plane. (a) Yak-42. (b)
Cessna. (c) An-26.

To partition the consecutive training samples into as-
pect-frames, both the frame number and the partition positions
need to be determined. Efforts in [1], [5], [7], [8] conducted the
segmentation with equal intervals. The work [4] improves this
equal-interval partition by a heuristic partition approach, which
sequentially determines aspect-frame boundaries based on AIC
or BIC. For a comparison, this paper adopts the same heuristic
partition mechanism as described in Section III-B of [4] and
restated by the following two nested levels:

1) In the inner level, a set of candidate aspect-frames is built.
A model is learned based on the samples in each candidate
frame.

2) In the outer level, the candidate frame with the optimal
value of a criterion, such as AIC, BIC and BYY harmony
criterion, is selected as the current frame.

C. Data Set Description

All experimental investigations in this paper will be made
based on the measured HRRP data corpus of 3 planes, including
Yak-42, Cessna Citation S/II, and An-26. The bandwidth of the
radar signal is 400 MHz, and the center frequency is 5520 MHz.
The dimensionality of the data, i.e., the number of range cells
in an HRRP, is d = 256. Fig. 2 shows the parameters of the
plane targets. The projections of target trajectories onto ground
plane are segmented as shown in Fig. 3, where each segment
contains 26 000 samples. The training and testing segments are
chosen based on the two reasons: 1) the training data cover al-
most all the target-aspect angles of the testing data; 2) it is pre-
ferred to choose training and testing data differently for a rea-
sonable evaluation of the generalization performance. Finally,
the 2nd and the 5th segments of Yak-42, the 6th and the 7th seg-
ments of Cessna Citation S/II, the 5th and the 6th segments of
An-26 are taken as the training samples, with the remaining left
for testing.

In [4], the experiments were made on one particular subset
uniform-randomly sampled from this corpus, where the training
and testing sample sizes are, respectively, 3200 and 2000 for
each target. In this paper, we test all methods on not only that
subset but also other uniformly randomly sampled data sets of
the same size.
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III. STATISTICAL MODELS AND LEARNING APPROACHES

A. Choosing Statistical Models

Several early efforts [1], [7], [8] assumed the range
cells in HRRP are independently Gaussian distributed, i.e.,
p(x) = H,‘le p(z;) and each p(z;) = G(w;|pi,0?), where
G(-) denotes Gaussian density. This assumption was later
found inappropriate based on physical arguments and empirical
investigations [5], [6]. To tackle this problem, the development
falls into two streams as follows.

The first stream assumes p(x) H;i:l p(xz;) with p(z;)
of each range cell being a non-Gaussian distribution. For in-
stance, Webb et al. [6], [10] considered a Gamma mixture model
for p(z;). In [5], a compounded model was introduced, where
p(x;) is either a Gamma distribution or a Gaussian mixture
distribution.

The second stream considers the interdimensional statistical
dependence of range cells [4], [11]. The authors in [4] sug-
gested to model HRRP in a frame by Gaussian factor analysis,
assuming that a d-dimensional observable variable x is gener-
ated via a linear mapping from an m-dimensional independent
Gaussian factor y with m < d, plus a Gaussian noise which
is independent of the factors. The resulted p(x) by FA is still
a Gaussian but the degrees-of-freedom of its covariance matrix
is greatly reduced, which is more suitable for high dimensional
data sets with small sample sizes like radar HRRPs [4]. More-
over, principal component analysis (PCA) is a special case of
FA under the maximum-likelihood principle [12], [18].

Nevertheless, none of these efforts considers both
non-Gaussian and interdimensional dependence simultane-
ously. This paper is thus motivated to extend FA [4] to LFA.
We consider a d-dimensional observable variable x from
p(x) = Y5, app(x]l), with Yoy > 0, Y5, a; = 1, and each
component p(x|l) is an FA

p(X|y7 l) = G<X|Uly + Hys ‘I,l)7
p(Y”) = G(Y|07Al)7 s.t. UlTUl = Iml'

For each component [, «; is the mixing weight, m; is the local
dimensionality of the hidden factor y, U, is a d X m; rectangular
orthogonal loading matrix. Moreover, A; is an m; X m; diag-
onal covariance, g, is a d-dimensional mean vector, ¥; is a diag-
onal covariance matrix for noises. Combining FA and Gaussian
Mixture Model (GMM), LFA is equipped with both interdimen-
sional dependence and non-Gaussianality.

(€)

B. Two-Phase Model Selection on LFA

Given a family of parametric models, the task of modeling
p(x|Ox) consists of estimating the parameters Oy and selecting
an apjeropriate model scale k based on training samples Xy =
{x¢},_,, where k refers to the hidden dimensionality m for
FA [4], the number of components for Gamma mixture model
[10], the component number £ and the local hidden dimension-
alities { ml}le for LFA. One widely used method to estimate
parameters Oy is the maximum-likelihood learning, i.e. ék =
arg maxe, Hi\; 1 p(x¢) (if samples {xt}iv: , are assumed inde-
pendently identical distributed), usually implemented by an EM
algorithm [16]. A particular EM algorithm for LFA model has
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TABLE I
THE CONFUSION MATRICES AND ACRRs OF LFA SELECTED BY AIC AND BIC. FOR SHORT, Y STANDS FOR Yak-42,
C FOR Cessna, AND A FOR An-26. THE ROW LABELED BY () SHOWS THE ACRRs IN [4] OF FA BY AIC AND BIC

Equal Interval Partition Heuristic Partition
AIC BIC AIC BIC
Plane Y C A Y C Y [ A Y [ A
Y 100 0.90 5.20 100 0.35 3.75 100 0.20 2.70 100 | 0.20 1.85
C 0 96.55 0.65 0 97.60 0.60 0 98.15 0.50 0 99.10 0.45
A 0 2.55 94.15 0 2.05 95.65 0 1.65 96.80 0 0.70 97.70
ACRR 96.90 97.75 98.32 98.93
[ COFA | 9450 [ 96.78 | 9553 | 98.73 |

been formulated in [15]. However, one remaining but important
issue is how to appropriately determine k to avoid over-fitting
or under-fitting, which is a typical example of model selection
[14].

Conventionally, model selection can be addressed and
treated in a two-phase procedure. In the first phase, a candi-
date range M for k is pre-specified and assumed to contain
the optima} model scale k*. For each k € M, parameter
estimates @y are obtgined by the EM algorithm [12], [16].
Ip the second phase, k* is selected as an estimate to k* via
k* = argmingea J(Ok, k), where J(Oy, k) is a model
selection criterion such as AIC and BIC [14], [27] as follows:

Jo1c(O, k) = — 2L(Xx|Ox) + Cure D(K),
with CAIC =2 and CB]CZIIIN, (4)

where L(X x|Ox) is the log-likelihood of training samples X
based on the ML-estimated parameters @y, and D(k) is the
number of free parameters with a scale k. Considering LFA for
p(x|0x) with k = {k, {m;}}_,}, we have D(k) = 2kd + k —
1+ Zle my(d — ((m; — 1)/2)), where the number of free
parameters in {oy} is & — 1, in {g,} and {¥,} are both kd, in
{U}is o8 (dmy —my(my+1)/2), and in {A;} is Y35, m.

In experiments, for the equal interval partition, we set 35 as-
pect-frames for Yak-42, 50 for Cessna Citation S/II, and 50 for
An-26, same as in [4]. For the heuristic partition, the criterion
AIC or BIC is used simultaneously in the outer level to deter-
mine frames and in the inner level to select LFA models. On the
same data set as in [4], the recognition accuracy by LFA based
on a two-phase procedure is reported in Table I, in terms of
confusion matrix and average correct recognition rate (ACRR).
As shown, LFA-AIC/BIC outperforms FA-AIC/BIC taken from
[4].

However, since the candidate scale range M for LFA is un-
known and difficult to be pre-specified appropriately, usually
it has to be searched among a wide range. Consequently, the
two-phase procedure still has the following two key problems:

1) Enumerating k for parameter estimation requires a huge
computation.

2) As the model scale k increases, parameter estimation is
less reliable so that the evaluation of the criterion is less
accurate for selecting an appropriate k*.

Readers are referred to [13, Sec. 2.1] for a systematic discus-
sion on the two-phase procedure. Subsequently, we tackle these
problems by automatic BYY harmony learning.

IV. AUTOMATIC BYY HARMONY LEARNING FOR HRRP
BASED TARGET RECOGNITION

A. Automatic BYY Harmony Learning on LFA

Firstly proposed in 1995 [17] and then systematically de-
veloped over a decade, Bayesian Ying-Yang harmony learning
provides a general statistical learning framework for parameter
learning and model selection under a best harmony principle.
BYY harmony learning on typical structures leads to new model
selection criteria, new techniques for implementing regulariza-
tion and a class of algorithms that implement automatic model
selection during parameter learning.

Denoting the observation as X and its inner repre-
sentation as R = {Y,0}, two types of decomposition
p(X,R) = p(R[X)p(X) and ¢(X,R) = ¢(X[R)g(R) are
called Yang machine and Ying machine, respectively. Such a
Ying-Yang pair is called a BY'Y system, as illustrated by the left
part of Fig. 4. The best harmony principle is to mathematically
maximize the following harmony measure in a general form:

H(pllg) = / P(RX)p(X) In [¢(X[R)q(R)] IXdR
- / p(OX)H(p||q.©)d,

H(pllq,0) = /p(YIX-/G)p(X) In[¢(X]Y,0)q(Y[O)]
x dXdY + 1n ¢(0). 5)

Different from maximizing the likelihood function, an impor-
tant nature of maximizing H (p||q) is that it leads to not only a
best matching between the Ying-Yang pair, but also a compact
model with a least complexity. Such an ability can be observed
and investigated from several perspectives, and here we only
introduce one of them due to space limit. On one hand, max-
imizing H (pl|q) forces Ying machine ¢(X, R) to match Yang
machine p(X, R). Due to a finite sample size and practical con-
straints imposed on the Ying-Yang structures, a perfect equality
may not be really reached but still be approached as possible as
it can. At this equality, H(p||¢) becomes the negative entropy
that describes the complexity of the system. Further maximizing
it actually minimizes the system complexity, which provides a
model selection ability.

The above is only a brief introduction on the Bayesian Ying-
Yang harmony learning. Readers are referred to [13] for a recent
systematic description.

In the sequel, we focus on LFA model described in
(3), where each observation x comes from the hidden
representation Y =  {y,l} via the Ying machine
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py[x.Dp(l]x)

p(lesOylx) q(X|Y~®\L\‘)

P(Y[X))=G(y|W,(x—p,).T)
L =(U"Y, 0, +A7)?

p(lx)= a;‘l(‘;[)

q(x]y.l)
q(x|y.)) =G(x/U)y +p,.¥,)

> a,q(x}j)
J=

cocccscccccscnscsaccccnan
T L L X T T T

Harmony function: Eq.(5)

Fig. 4. The BYY system in the general form (left) and in the specific form for LFA (right).

q(Dq(y|l)g(x|y,!) according to (3). A given set of input
samples is considered by a smoothed Parzen window density
pr(x) = (1/N) Zivzl G(x|x¢, h*14). Moreover, it follows
from the “variety preservation principle” (see Eq. (27)
in [13) that we get p(Ifx) = oug(xll)/ X, asa(xli)
and p(y|x,1) Gy|Wi(x — m),T7), where
W, consists of unknown parameters and T =
[0? In[g(x|y, Da(y, D)/dydy™]™t =(UF¥;'U, + A;)7?
(according to Eq. (31) in [13]). Also, we ignore the prioris on
0 = {{og, 1,9, U, A\, Wi} h} except the one on h
only, i.e., ¢(®) = ¢(h). Furthermore, p(©|X) is considered
to be a free structure, and thus maximizing H (pl|q) leads to
p(0]|X) = 6(0 — ©) with ©® = argmaxeg H(p||q, ©).

Algorithm 1: Automatic BYY harmony learning on local
factor analysis (BYY-A)

Input: An observed data set Xy = {x,},,.

~ k&
Output: LFA model © = {oy, p;, Uy, Ay, ¥;, W },_, together
with model scales {k, {ml}le}.

1 Inmitialization: Randomly initialize a model with large
enough & and {ml}le; set7 =0and H(7) = —o0;

2 repeat

w

Yang-Step: After randomly picking a sample x;, update
Yang machine as follows:

4 forl =1,...,kdo
Wiew = Wi+ ape (A7 + U8 U))
(W, = W))S;4;

6 Sit = el,t,eft + By, e = X — s
W, = A UTM,, M, = (UAUT + )7,

7 pre = pxe)[1 + 6n(l,%¢)], 060 (1, %)

= Inp(lxe) — Y5y p(ilxe) Inp(jfxe);

8 Ying-Step: Update Ying machine parameters and
conduct automatic model selection:

9 for! =1,...,kdo

new new k new
10 a = exp(A;°")/ Ej:l eXP(ﬂj )
7 =B+ n(pre — Ele pit) B =Inay;
11 @ if ay — 0 then discard component [, let k = k — 1
and continue;
12 u7e = py + et

~new 2 ~new

3 A= )N = (-
+77plﬁtdiag[WlSlth;F]l/2, Kl = All/Z;

14 o if Al(j ) . 0 then discard hidden dimension 7 of
component [ and let m; = m; — 1;

5w = @8 = 1 ¥
npidiag[(Lq — UIWI)Sl,t(Id - UIWI)T]l/Z,
{Ivll = \I’ll/Z;

16 U = U + n(Gu, — UlGITJlUl), with
Gu, = pr. ¥ (I, — UZWZ)Sl,tVVIT;

17 Normalize U, every 5 steps via Up*Y =
uper(uperTuper)

18  Smoothing-Step: h2"" = hmew? prew — b 4 nAh,

Ah = (d/h) = h 321, eaTr[MI] = (B/h?):

19 where 8= Y0 SN (%, — %) (% — x/)
x exp[—(1/2h2) (xr — x0)T (% = %))/ Tty 200
x exp[—(1/2h?)(x, — x¢)T (%, — x4)];

20 if another N/5 iterations have passed then let

7 = 7 + 1, and calculate H(7) by (6);

21 until H(7) — H(t — 1) < eH(T — 1), withe = 10—°
in our implementation;

The above Ying-Yang components for LFA are summarized
in the right part of Fig. 4. Substituting them into (5), certain
simplification leads us to the following detailed expression:

H(pllg,©)
= Hy(pllq,®) + Inq(h),
q(h)

:_ln[

Hy(pllg, ©)

1 N k
= o (i)

t=1 =1

x {2lna; — (d 4+ my) In(27) —my — In|Ay| — In | ¥
—Tr [[WITAI_IVVI + (Id — UZWZ)T

=2~

N N
Z Z G(x¢|%r, hZId)] ,
t=171=1

X‘I’l_l (Id — UZWZ)}

(ke = ) (xe — )T+ 12L4] ]} (6)
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TABLE II
THE CONFUSION MATRICES AND ACRRS BY LFA CLASSIFIER LEARNED BY BYY HARMONY LEARNING

Equal Interval Partition Heuristic Partition
no smoothing smoothing no smoothing smoothing
Plane Y C A Y C A Y C A Y C A
Y 100 | 0.80 330 | 100 | 045 2.80 | 100 | 0.15 1.85 | 100 | 0.10 1.75
C 0 97.15 | 0.45 0 98.00 | 0.45 0 99.20 | 0.35 0 99.35 | 0.25
A 0 2.05 | 96.25 0 1.55 | 96.75 0 0.65 | 97.80 0 0.55 | 98.00
ACRR 97.80 98.25 99.00 99.12

An implementation of maximizing (6) is summarized in Al-
gorithm 1, for which we address four points as follows.

First, the above (6) for the harmony measure may not be ex-
actly the same as the counterpart given in [13, Fig. 9], due to a
different order used in handling the gradient and the integration
(or summation). This Algorithm 1 is a gradient-based adaptive
implementation, while the paper [13] provides a Ying-Yang al-
ternative iteration as given in Fig. 9 of [13]. Interested readers
are further referred to [13, Sec. 4.3].

Second, the use of py,(x) with A2 > 0 leads to a smoothing
regularization as discussed in [28], which is equivalent to adding
noises to samples. To determine an appropriate value for the
smoothing parameter h, one choice for ¢(h) is shown in (6) with
its detailed updating formulas given in the “Smoothing-Step” in
Algorithm 1. Readers are referred to [28] for further details on
getting h.

Third, it follows from the interpretations on Eqgs. (3)&(4) in
[13] that Algorithm 1 is capable of automatic model selection.
As the component number %k and the hidden dimensionalities
{my}¥_, are initialized as large enough integers, maximizing
H(p|lq,®) provides an intrinsic force to push a; — 0 if the
[th component is extra, and push Al(j ) 0 if the jth hidden
dimension of the /th component is extra. In Algorithm 1, the
extra sub-structures are removed in the steps labeled by “®”.

Last but not least, remarks are provided on the implementa-
tion of Algorithm 1 as follows: .

1) The initialization of Yang maching parameter W,
for each component ! is made by W, W, with
W, = AZUIT(UlAlUlT + ‘111)71.

2) On Lines 6 ~ 7, the determinant |U;A; U7 + ¥,| and the
inverse (U;A; U] + ¥;)~! is computed indirectly via the
following formulas, which are more efficient when m; <
d:

UAUT +)|= ‘A,‘l + U,T\IJI_IUI‘ AT,

1 _ _ _ _ -1
(UAUT + ) =9, — ;U (Al LUl lUl)
-1
x UFw; .
3) If the value of p(I|x;) is too small, calculating p; , on Line
7 may exceed the machine precision due to the compu-

tation In p(l|x;). This can be easily avoided by the fol-
lowing tricky but equivalent formula: p;; = p(l|x;) +

(e )P0 ]=p(ixe) 552 Infp (e 0],
B. Harmony Criterion Based Heuristic Aspect-Frame Partition

To tackle the target-aspect sensitivity problem, we consider
the heuristic aspect-frame partition, which has been restated as

the two nested levels in Section II-B. In the work [4], the first
level, i.e., to learn an FA model for each candidate frame, is im-
plemented in a two-phase implementation. Thus, the two levels
in [4] (i.e., FA-AIC/BIC) is actually the following three-phase
procedure:

I: Estimate the parameters of FA for each candidate model
scale (i.e., the hidden dimensionality of FA);
Select the model scale by the optimal values of AIC/BIC;
Implement Phases I&II on each candidate frame, and se-
lect the frame by the optimal value of AIC/BIC.

The inner level in Section II-B actually consists of the
above Phases I and II, and the outer level is Phase III. The
LFA-AIC/BIC in Section III-B is implemented with LFA taking
the place of FA in the above three-phase procedure.

Similarly, the above three-phase procedure may also be im-
plemented with LFA taking the place of FA and with the fol-
lowing BYY harmony criterion Jpyy (see [13, Sec. 2.2 and
Fig. 5(b)]) taking the place of AIC/BIC:

1I:
II:

Jeyy = —H(pllq,0) + D(k)/(2N) (N

where D(k) is the number of free parameters as described
below (4). Experiments show further improvements over
LFA-AIC/BIC but not so significant. Still, its Phases H&III
suffer from the two key problems addressed at the end of
Section III-B.

To relieve the problems, Phases I&II are simultaneously im-
plemented by Algorithm 1 featured with automatic model selec-
tion, while the above Jpyy takes the place of AIC/BIC in Phase
III. We denote the resulted two-phase procedure as LFA-BYY,
which not only reduces the computational cost, but also further
improves the recognition performance.

V. EXPERIMENTAL RESULTS

First, the HRRP recognition performances of LFA-BYY is in-
vestigated, with either heuristic aspect-frame partition or equal
interval frame partition, and Algorithm 1 is implemented with
or without data smoothing. The recognition accuracies are re-
ported in Table II in terms of confusion matrix and average cor-
rect recognition rate. Moreover, Fig. 5 shows the resulted as-
pect-frames by heuristic partition with data smoothing. The size
of each frame is proportional to its sample size, and thus we have
28, 30, and 42 aspect-frames for Yak-42, Cessna and An-26, re-
spectively, in order.

According to the results in Table I and Table II, we summarize
the observations as follows:

1) Theresults by FA-AIC/BIC, LFA-AIC/BIC and LFA-BYY

show incremental improvements. The recognition accu-
racy on Yak-42 is 100% by all approaches, and we
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Fig.5. The heuristically partitioned aspect frames by BYY-A in the inner level
and BY'Y harmony criterion in the outer level. Each separated sector refers to a
partitioned aspect-frame, with the angular size proportional to its sample size.
The notation /. represents the number of aspect-frames in corresponding class
c. (a) Yak-42 (Ky = 28). (b) Cessna (K¢ = 30). (c) An-26 (K 4 = 42).

(@ (b)

only calculate the improvements of the average ac-
curacy on Cessna and An-26. For the equal interval
partition, LFA-AIC/BIC outperforms FA-AIC/BIC
by 2.40%/0.97%, and LFA-BYY further outperforms
LFA-AIC/BIC by 1.35%/0.50%. For the heuristic
partition, LFA-AIC/BIC outperforms FA-AIC/BIC
by 2.79%/0.20%, and LFA-BYY further outperforms
LFA-AIC/BIC by 0.80%/0.19%.

The results with data smoothing outperform ones without
data smoothing, by 0.29% in average, implying that the
data smoothing technique is helpful for sparse data.

The numbers of resulted frames by LFA-BYY are (28, 30,
42) for the three planes, respectively, which are all smaller
than (32, 39, 48) by FA-AIC and (31, 35, 47) by FA-BIC
in [4].

We test the recognition performance of FA-AIC, LFA-BIC,
and LFA-BYY on 20 data subsets, which are of the same size
as in [4] randomly sampled from the corpus. Only the results by
FA-BIC and LFA-BIC are reported since we already know from
Table I that BIC outperforms AIC based on both FA and LFA.
Table I1I lists the recognition accuracies in terms of mean =+ std
together with the average time costs of determining one as-
pect-frame, from which improvements on recognition accura-
cies are incrementally obtained, as we proceed from FA-BIC to
LFA-BIC and then to LFA-BYY. Especially, we have the fol-
lowing detailed observations:

1) The improvement from FA-BIC to LFA-BIC is at the cost
of significantly increased time, mainly because Phase I of
LFA-BIC is repeated for more times as enumerating the
candidate model scale. Consequently, LFA-BIC is not pre-
ferred for this task when time cost is emphasized.
LFA-BYY achieves the best recognition performance at
the cost of only 9 additional minutes compared to FA-BIC,
with a considerably reduced deviation of recognition accu-
racies. That is, automatic BYY harmony learning can ef-
fectively relieve the key problems in implementing Phases
1&I1 of FA-BIC and LFA-BIC, as addressed at the end of
Section III-B.

To further investigate the impact of different initializations
to LFA-BYY, we run LFA-BYY on each of the 20 data subsets
for 50 times, and the LFA model is initialized randomly in each
run. Based on the 1000 trials in total, the classification accuracy
in percentage is 97.84 £+ 1.95 for equal interval partition, and
98.81 £ 1.13 for heuristic partition, indicating that LFA-BYY
is not very sensitive to the initialization.

2)

3)

2)
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TABLE III
RECOGNITION ACCURACY ROBUSTNESS (IN PERCENTAGE) AND AVERAGE
TIME TO DETERMINE A FRAME (IN MINUTES) ON 20 RANDOM DATA SUBSETS.
A THREE-PHASE IMPLEMENTATION BASED ON AIC COSTS THE
SAME TIME AS THAT BASED ON BIC

Equal Interval Partition | Heuristic Partition | Time Cost
FA-BIC 93.47 £ 4.33 95.13 £ 2.40 33.1
LFA-BIC 96.60 + 2.51 97.28 +1.48 542.3
LFA-BYY 97.82 £ 1.93 98.75 £ 1.04 42.6

VI. CONCLUDING REMARKS

As a further investigation of a recent work [4] on radar HRRP
data statistical modelling and recognition, this paper considers
LFA for modelling both the interdimensional dependence and
the non-Gaussian distribution of HRRPs. An automatic BYY
harmony learning algorithm is adopted for learning LFA to re-
lieve the difficulties encountered in a two-phase implementa-
tion. Moreover, the BYY harmony criterion is employed to re-
place AIC or BIC in the heuristic aspect-frame partition for
tackling the target-aspect sensitivity. Recognition results on the
same HRRP data set as [4] show incrementally improved per-
formances. In a two-phase implementation, LFA obtains better
recognition performances than FA in [4]. On LFA, the automatic
BYY learning outperforms its counterpart of the two-phase im-
plementation in help of AIC or BIC, for both equal interval and
heuristic aspect-frame partition.
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