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1 Multispectral Dense Matching Dataset

We build a dataset including four kinds of multispectral images with labeled
key point correspondence. The dataset includes 7 RGB/NIR image pairs, 4 RG-
B/Depth image pairs, 3 Flash/no-flash image pairs and 4 different exposure
image pairs. In each pair, we uniformly select corner points and label their cor-
respondences. The resolution of the RGB/Depth image pairs is 640 × 480 and
all the other image pairs are with size 800× 600. Our images are shown below.

1.1 RGB/NIR Images

The RGB and NIR image are captured by RGB and NIR cameras respectively.
Figs. 1 and 2 show our data, including indoor and outdoor scenes. All image pairs
are with rigid and nonrigid transform. The outdoor scene images are obtained
from [1].

1.2 RGB/Depth Images

We get the RGB and depth image pairs by a Microsoft Kinect. Our images are
shown in Fig. 3. To handle holes and noise in the depth image before matching,
bilateral filter [6] is applied.

1.3 Flash/No-flash Images

The flash/no-flash images are captured in dim light. The no-flash images are
very noisy since it is produced with the high ISO setting. The flash images are
with shadow. Fig. 7 shows the images.

1.4 Different Exposure Images

The different exposure images are obtained from [4]. We crop the image into
800× 600 resolution containing the significant dynamic object moving part. The
images are shown in Fig. 5.
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(a) RGB Image (b) NIR Image

Fig. 1. RGB/NIR image pairs.
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(a) RGB Image (b) NIR Image

Fig. 2. RGB/NIR image pairs.
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(a) RGB Image (b) Depth Image

Fig. 3. RGB/Depth image pairs.
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(a) Flash Image (b) No-flash Image

Fig. 4. Flash/no-flash image pairs.
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(a) Different Exposures Image 1 (b) Different Exposures Image 2

Fig. 5. Different exposures time image pairs.
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2 Local Dense Matching Optimization

As discussed in the paper, our local dense matching framework is defined as

E(w) =
∑
p

ERSNCC(p, wp) + λ1
∑
p

ψ(‖∇wp‖2) + λ2
∑

q∈N(p)

‖wp − wq‖, (1)

where w = (uT ,vT )T is the vector form of wp and u. v are vectors of up and vp
respectively. For simplicity’s sake, we denote the three terms as ED(w), ES(w),
and ENL(w). λ1 and λ2 are two parameters.

We perform the optimization scheme in a course-to-fine manner for high
accuracy during optimizing E(w). In each level, E(w) is updated and then is
propagated to the next level as initialization. The process is depicted in Alg. 1.

To handle the non-convex E(w) in each level, we decompose the energy
function E(w) into two sub-functions that both find optimal solutions with the
scheme of variable-splitting [7]. The two functions are

E(w, ŵ) = ED(w) + λ1ES(w) +
1

θ
‖w − ŵ‖2, (2)

E(ŵ,w) =
1

θ
‖ŵ−w‖2 + λ2ENL(ŵ), (3)

where ŵ is an auxiliary variable. When θ → 0, the decomposition approaches
the original E(w) with high quality.

Our method minimizes Eqs. (2) and (3) respectively. The minimum of Eq.
(3) can be obtained by the method of [5]. We now describe how to optimize Eq.
(2) efficiently.

We solve Eq. (2) based on the variational configuration using reweighted
least squares. In each step, we update the result by a small δw after optimizing

E(w + δw, ŵ). It is done by setting ∂E(w+δw,ŵ)
∂δw = 0, yielding[

Bx + λ1L+ 1
θ I 0

0 By + λ1L+ 1
θ I

] [
δu
δv

]
= −

[
Ax + λ1Lu+ 1

θ û
Ay + λ1Lv + 1

θ v̂

]
(4)

where δu and δv are the updating vectors, and u and v are the current displace-
ment estimates. Bx, By, Ax, and Ay are diagonal matrices defined as

(Ax)pp =
∑

q∈N(p)

(ωI
qa

I,x
p,q + ω∇I

q a∇I,x
p,q ), (5)

(Ay)pp =
∑

q∈N(p)

(ωI
qa

I,y
p,q + ω∇I

q a∇I,y
p,q ), (6)

(Bx)pp =
∑

q∈N(p)

(ωI
qb

I,x
p,q + ω∇I

q b∇I,x
p,q ), (7)

(By)pp =
∑

q∈N(p)

(ωI
qb

I,y
p,q + ω∇I

q b∇I,y
p,q ), (8)
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Algorithm 1 Local Dense Matching Optimization

Input:
Multispectral images I1 and I2.

Output:
Displacement field w.

1: initialize λ1, λ2, θ, w = 0.
2: for level = 1 to MAXLEV do
3: for itr = 1 to MAXITR do
4: Solve Eq. (3).
5: Solve Eq. (2).
6: θ ← θ

3
.

7: Update Bx, By, Ax, and Ay.
8: end for
9: Re-sample w to the finer level.
10: end for

where ωI
p and ω∇I

p are weights defined in Eq. (8) in the paper. aF,x
p,q where F ∈

{I,∇I} is the corresponding coefficient of uq in AF
p and aF,y

p,q corresponds to

vq. b
F,x
p,q and bF,y

p,q are denoted similarly according to BF
p . L is the Laplacian

smoothing matrix given by

L = DT
x Ψ

′
Dx +DT

y Ψ
′
Dy, (9)

where Dx and Dy are the discrete backward difference matrices, which are used

to compute image gradient in x- and y-directions. Ψ
′
is a diagonal matrix that

defines the robust weight, whose diagonal elements are (Ψ
′
)pp = ψ

′
(|∇up|2 +

|∇vp|2). ψ′(x) here is the differentiation of ψ(x).

3 More Results

As discussed in our paper, the Multispectral dense image matching is with great
challenges due to the structure inconsistency. Many applications can be benefit-
ted by our method. We show a few more examples in the file.

Our method is appropriate for matching of different exposure images that
are not well aligned for restoration of high dynamic range images from low
dynamic range ones. Fig. 6(a)-(c) are different exposure time images from [4].
Our Multispectral dense matching method maps (a) and (b) to (c) as shown in
Fig. 6(d)-(g). After matching the images, we employ the method proposed in [4]
to merge them into a high dynamic range image shown in Fig. 6(h). (i) is our
tone mapping result.

Additionally, our matching framework can be applied to flash/no-flash image
alignment as presented in Figs. 7 and 8. As flash images also suffer from shadow
and highlight, our method can work robustly against this kind of outliers as
shown in Fig. 7(d). The input images are provided in [3]. Fig. 8 is another
example.
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We then show an example of depth image and RGB image matching in Fig.
9. Depth image captured by Kinect or other equipments may be different in
structure compared with the corresponding RGB image as shown in Fig. 9(c).
Moreover, the captured depth image is with noise and holes, which should be
removed by smoothing with a kind of filters. However, single-image filtering
steps could destroy to an extend original depth structure. Our method matches
the smoothed depth image to the corresponding RGB image, and then apply
the method of [8] to restore and sharpen edges. Our alignment and restoration
results are shown in Fig. 9(d) and (f).

NIR image is a good tool to restore the corresponding noisy RGB image as
described in [8]. However, RGB and NIR images are often captured by different
cameras and should be aligned before restoration. It is a challenging work due
to their nonrigid transform. Our method can well handle nonrigid transform as
shown in Figs. 10 and 11. After matching the RGB and NIR images using our
method, we perform the Multispectral joint image restoration [8]. The results
are shown in Fig. 10(d), Fig. 11(h) and Fig. 12(d). Fig. 13 is another example
to handle dense matching of RGB and NIR Multispectral images with gradient
reverse.
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(a) LDR Image 1 (b) LDR Image 2 (c) LDR Image 3

(d) Displacement of (a) to (c) (e) Displacement of (b) to (c) (f) Warping Result of (a)

(g) Warping Result of (b) (h) HDR Image (i) Tone Mapping of (h)

Fig. 6. Low dynamic range (LDR) images to one high dynamic range (HDR) image.
(a)-(c) Three LDR images under different exposures and misaligned pixels. (d)-(e)
Displacement field from (a) to (c) and (b) to (c) respectively. (f)-(g) Corresponding
warping results. (f) and (g) are corrected with gamma = 2.2. (h) Constructed HDR
image from (c), (f), and (g). (i) Tone mapping result of (h).
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(a) Flash Image (b) No-flash Image

(c) Blending result of (a) and (b) (d) Blending result of matched (a) and (b)

Fig. 7. Flash/No-flash matching example. (a)-(b) Unmatched Flash/No-flash images.
(c) Blending result of (a) and (b). (d) Result by blending matched (a) and (b). (c) and
(d) show misalignment exists in input images and our method effectively eliminates it
for further restoration operations. Input images are from [3].
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(a) Flash Image (b) No-flash Image

(c) Blending result of (a) and (b) (d) Blending result of matched (a) and (b)

Fig. 8. Flash/No-flash matching example. (a)-(b) Unmatched Flash/No-flash images.
(c) Blending result of (a) and (b). (d) Result by blending matched (a) and (b). (c) and
(d) show misalignment exists in input images and our method effectively eliminates it
for further restoration operations.
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(a) RGB Input Image (b) Raw Depth Image

(c) Blending of (a) and (e) (d) Blending of (a) and Warped (e)

(e) Smoothed Depth Image (f) Depth Restored with Two Aligned Inputs

Fig. 9. RGB and depth images matching. (a)-(b) are the RGB and depth raw data
from [8]. (c)-(d) show the blending results of RGB and depth images and of RGB and
aligned depth images. They illustrate how large displacements are. (e) is the single-
depth-map smoothed version. (f) is the restoration result based on (a) and matched
(e). Result in (f) preserves better structures without fattening artifacts.
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(a) Noisy RGB Image (b) NIR Image

(c) Restored without Matching (d) Restored with Matching

(e) Close-ups

Fig. 10. Multispectral image restoration example. (a) and (b) are unmatched noisy
RGB and clean NIR image respectively. (c) is the restoration result without matching
(a) and (b) while (d) is the result employing our matching method. The Multispectral
image restoration algorithm is our implementation of the one presented in [8]. (e) shows
the close-ups.
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(a) Noisy RGB Image (b) NIR Image

(c) Blending Result of (a) and (b) (d) Warping Result of SIFT Flow from (b) to (a)

(e) Our Warping Result from (b) to (a) (f) Blending Result of (a) and (d)

(g) Blending Result of (a) and (e) (h) Our Restoration Result of (a)

Fig. 11. Multispectral image restoration example. (a) and (b) are the unmatched noisy
RGB and clean NIR images respectively. (d) and (e) are the results of SIFT Flow and
our method respectively. (h) is the restoration result by the method of [8] using our
matching result. (c), (f) and (g) are the blending results to illustrate if any misalignment
exists.
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(a) Noisy RGB Image (b) NIR Image

(c) Blending of (a) and (b) (d) Our Restored Result after Matching

Fig. 12. Multispectral image restoration example. (a) and (b) are the unmatched noisy
RGB and clean NIR images respectively. (c) is the blending of (a) and (b). (d) is the
restoration result by the method of [8] using our matching result.

(a) NIR Image (b) RGB Image (c) SIFT Flow Result (d) Our Result

Fig. 13. RGB image and NIR image matching example. (a) and (b) are the unmatched
NIR and RGB images respectively. (c) is the warping result of (b) according to (a) by
SIFT Flow [2] while (d) is our result.


