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Abstract

When dealing with objects with complex structures,

saliency detection confronts a critical problem – name-

ly that detection accuracy could be adversely affected if

salient foreground or background in an image contains

small-scale high-contrast patterns. This issue is common

in natural images and forms a fundamental challenge for

prior methods. We tackle it from a scale point of view and

propose a multi-layer approach to analyze saliency cues.

The final saliency map is produced in a hierarchical mod-

el. Different from varying patch sizes or downsizing im-

ages, our scale-based region handling is by finding saliency

values optimally in a tree model. Our approach improves

saliency detection on many images that cannot be handled

well traditionally. A new dataset is also constructed.

1. Introduction

Saliency detection, which is closely related to selective

processing in human visual system [22], aims to locate im-

portant regions or objects in images. It gains much attention

recently [2, 8, 4, 15, 25, 23, 30]. Knowing where important

regions are broadly benefits applications, including classi-

fication [24], retrieval [11] and object co-segmentation [3],

for optimally allocating computation.

Stemming from psychological science [28, 22], the com-

monly adopted saliency definition is based on how pixel-

s/regions stand out and is dependent of what kind of vi-

sual stimuli human respond to most. By defining pix-

el/region uniqueness in either local or global context, exist-

ing methods can be classified to two streams. Local meth-

ods [13, 10, 1, 15] rely on pixel/region difference in the

vicinity, while global methods [2, 4, 23, 30] rely mainly on

color uniqueness in terms of global statistics.

Albeit many methods have been proposed, a few com-

monly noticeable and critically influencing issues still en-

dure. They are related to complexity of patterns in natural

images. A few examples are shown in Fig. 1. For the first

two examples, the boards containing characters are salien-

t foreground objects. But the results in (b), produced by

a previous local method, only highlight a few edges that

scatter in the image. The global method results in (c) al-

so cannot clearly distinguish among regions. Similar chal-

lenge arises when the background is with complex patterns,

as shown in the last example of Fig. 1. The yellow flower-

s lying on grass stand out. But they are actually part of the

background when viewing the picture as a whole, confusing

saliency detection.

These examples are not special, and exhibit one com-

mon problem – that is, when objects contain salient small-

scale patterns, saliency could generally be misled by their

complexity. Given texture existing in many natural images,

this problem cannot be escaped. It easily turns extracting

salient objects to finding cluttered fragments of local detail-

s, complicating detection and making results not usable in,

for example, object recognition [29], where connected re-

gions with reasonable sizes are favored.

Aiming to solve this notorious and universal problem,

we propose a hierarchical model, to analyze saliency cues

from multiple levels of structure, and then integrate them

to infer the final saliency map. Our model finds foundation

from studies in psychology [20, 17], which show the selec-

tion process in human attention system operates from more

than one levels, and the interaction between levels is more

complex than a feed-forward scheme. With our multi-level

analysis and hierarchical inference, the model is able to deal

with salient small-scale structure, so that salient objects are

labeled more uniformly.

In addition, contributions in this paper also include 1) a

new measure of region scales, which is compatible with hu-

man perception on object scales, and 2) construction of a

new scene dataset, which contains challenging natural im-

ages for saliency detection. Our method yields much im-

provement over others on the new dataset as well as other

benchmarking data.

2. Related Work

Bottom-up saliency analysis generally follows location-

and object-based attention formation [22]. Location meth-
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(a) Input (b) AC [1] (c) RC [4] (d) Ours (e) Ground truth

Figure 1. Saliency detection with structure confusion. Small-scale strong details easily influence the process and cause erroneous results.

ods physically obtain human attention shift continuously

with eye tracking, while the latter set of approaches aim to

find salient objects from images. Both of them are impor-

tant and benefit different applications in high-level scene

analysis. A survey of human attention and saliency detec-

tion is provided in [27]. Below we briefly review a few.

The early local method [13] used an image pyramid

to calculate pixel contrast based on color and orientation

features. Ma and Zhang [19] directly computed center-

surrounding color difference in a fixed neighborhood for

each pixel. Harel et al. [10] proposed a method to non-

linearly combine local uniqueness maps from different fea-

ture channels to concentrate conspicuity. These methods

detect only high-contrast edges and attenuate smooth ob-

ject interior. Patch-based center-surrounding difference was

used in [18, 1] to remedy this issue. The accompanying

problem is to choose an appropriate surrounding patch size.

Besides, high-contrast edges are not necessarily in the fore-

ground, as illustrated in Fig. 1.

Global methods mostly consider color statistics. Zhai

and Shah [31] introduced image histograms to calculate col-

or saliency. To deal with RGB color, Achanta et al. [2]

provided an approximate by subtracting the average color

from the low-pass filtered input. Cheng et al. [4] extended

the histogram to 3D color space. These methods find pix-

els/regions with colors much different from the dominant

one, but do not consider spatial locations. To compensate

the lost spatial information, Perazzi et al. [23] measured

the variance of spatial distribution for each color. Global

methods have their difficulty in distinguishing among simi-

lar colors in both foreground and background. A few recent

methods exploit background smoothness [25, 30]. Note that

assuming background is smooth could be invalid for many

natural images, as explained in Section 1.

High-level priors are also commonly used based on com-

mon knowledge and experience. Face detector was adopted

in [8, 25]. The concept of center bias – that is, image center

is more likely to contain salient objects than other regions –

was employed in [18, 14, 25, 30]. In [25], it is assumed that

warm colors are more attractive to human.

Prior work does not consider the situation that locally

smooth regions could be inside a salient object and global-

ly salient color, contrarily, could be from the background.

These difficulties boil down to the same type of problem-

s and indicate that saliency is ambiguous in one single s-

cale. As image structures exhibit different characteristics

when varying resolutions, they should be treated differently

to embody diversity. Our hierarchical framework is a uni-

fied one to address these issues.

3. Hierarchical Model

Our method is as follows. First, three image layers of

different scales are extracted from the input. Saliency cues

are computed for each layer. They are finally fused into

one single map using a graphical model. These steps are

described in Sections 3.1 – 3.3 respectively. The framework

is illustrated in Fig. 2.

3.1. Image Layer Extraction

Image layers, as shown in Fig. 2(c), are coarse represen-

tation of the input with different degrees of details, balanc-
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Figure 2. An overview of our hierarchical framework. We extract three image layers from the input, and then compute saliency cues from

each of these layers. They are finally fed into a hierarchical model to get the final results.

(a) Input (b) Over-segmentation (c) Layer L1 (d) Layer L2 (e) Layer L3

Figure 3. Region-merge results under different scales.

ing between expression capability and structure complexi-

ty. The layer number is fixed to 3 in our experiments. In

the bottom level, finest details such as flower are retained,

while in the top level large-scale structures are produced.

3.1.1 Layer Generation

To produce the three layers, we first generate an initial over-

segmentation as illustrated in Fig. 3(b) by the watershed-

like method [9]. For each segmented region, we compute a

scale value, where the process is elaborated on in the nex-

t subsection. They enable us to apply an iterative process

to merge neighboring segments. Specifically, we sort all

regions in the initial map according to their scales in an as-

cending order. If a region scale is below 3, we merge it to its

nearest region, in terms of average CIELUV color distance,

and update its scale. We also update the color of the region

as their average color. After all regions are processed, we

take the resulting region map as the bottom layer L1. The

middle and top layers L2 and L3 are generated similarly

from L1 and L2 with larger scale thresholds. In our exper-

iment, we set thresholds for the three layers as {3, 17, 33}

a

b c

d

Figure 4. Our region scale is defined as the largest square that a

region can contain. In this illustration, the scales of regions a and

b are less than 5, and that of c is larger than 5.

for typical 400 × 300 images. Three layers are shown in

Fig. 3(c)-(e). More details in this process can be found in

our supplementary file in the project website. Note a region

in the middle or top layer embraces corresponding ones in

the lower levels. We use it for saliency inference described

in Section 3.3.

3.1.2 Region Scale Definition

In methods of [5, 7] and many others, the region size is

measured by the number of pixels. Our research and exten-
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Figure 5. Efficient computation of scale transform. (a) Initial re-

gion map. (b) Map labels and the box filter. (c) Filtered region

map. As shown in (c), all colors in R1 are updated compared to

the input, indicating a scale smaller than 3.

sive experiments suggest this measure could be wildly inap-

propriate for processing and understanding general natural

images. In fact, a large pixel number does not necessarily

correspond to a large-scale region in human perception.

An example is shown in Fig. 4. Long curved region

a contains many pixels. But it is not regarded as a large

region in human perception due to its high inhomogeneity.

Region b could look bigger although its pixel number is not

larger. With this fact, we define a new encompassment scale

measure based on shape uniformities and use it to obtain

region sizes in the merging process.

Definition Region R encompassing region R′ means there

exists at least one location to put R′ completely inside R,

denoted as R′ ⊆ R.

With this relation, we define the scale of region R as

scale(R) = argmax
t

{Rt×t|Rt×t ⊆ R}, (1)

where Rt×t is a t × t square region. In Fig. 4, the scales

of regions a and b are smaller than 5 while the scale of c is

above it.

3.1.3 Efficient Algorithm to Compute Region Scale

To determine the scale for a region, naive computation fol-

lowing the definition in Eq. (1) needs exhaustive search and

comparison, which could be costly. In fact, in the merging

process in a level, we only need to know whether the scale

of a region is below the given threshold t or not. This en-

ables a fast algorithm by applying a box filter with t × t
kernel to the segment and checking if all pixel values inside

the segment are changed during filtering. A positive output

means the segment scale is below t. The process is illus-

trated in Fig. 5. Proof that this simple algorithm works is

provided in the supplementary file.

3.2. SingleLayer Saliency Cues

For each layer we extract, saliency cues are applied to

find important pixels from the perspectives of color, posi-

tion and size. We present two cues that are particularly use-

ful.

Local contrast Image regions contrasting their surround-

ings are general eye-catching [4]. We define the local con-

trast saliency cue forRi in an image with a total of n regions

as a weighed sum of color difference from other regions:

Ci =

n∑

j=1

w(Rj)φ(i, j)||ci − cj ||2, (2)

where ci and cj are colors of regions Ri and Rj respec-

tively. w(Rj) counts the number of pixels in Rj . Regions

with more pixels contribute higher local-contrast weights

than those containing only a few pixels. φ(i, j) is set to

exp{−D(Ri, Rj)/σ
2} controlling the spatial distance in-

fluence between two regions i and j, where D(Ri, Rj) is

a square of Euclidean distances between region centers of

Ri and Rj . With the φ(i, j) term, close regions have larg-

er impact than distant ones. Hence, Eq. (2) measures color

contrast mainly to surroundings. Parameter σ2 controls how

large the neighborhood is. It is set to the product of (0.2)2

and the particular scale threshold for the current layer. In

the top layer, σ2 is large, making all regions be compared in

a near-global manner.

Location heuristic Psychophysical study shows that hu-

man attention favors central regions [26]. So pixels close to

a natural image center could be salient in many cases. Our

location heuristic is thus written as

Hi =
1

w(Ri)

∑

xi∈Ri

exp{−λ‖xi − xc‖
2}, (3)

where {x0, x1 · · · } is the set of pixel coordinates in region

Ri, and xc is the coordinate of the image center. Hi makes

regions close to image center have large weights. λ is a

parameter used when Hi is combined with Ci, expressed as

s̄i = Ci ·Hi. (4)

Since the local contrast and location cues have been nor-

malized to range [0, 1), their importance is balanced by λ,

set to 9 in general. After computing s̄i for all layers, we ob-

tain initial saliency maps separately, as demonstrated in Fig.

6(b)-(d). We propose a hierarchical inference procedure to

fuse them for multi-scale saliency detection.

3.3. Hierarchical Inference

Cue maps reveal saliency in different scales and could be

quite different. At the bottom level, small regions are pro-

duced while top layers contain large-scale structures. Due

to possible diversity, none of the single layer information is

guaranteed to be perfect. Also, it is hard to determine which

layer is the best by heuristics.

Multi-layer fusion by naively averaging all maps is not

a good choice, considering possibly complex background

4



(a) Input (b) Cue map at Layer L1 (c) Cue map at Layer L2 (d) Cue map at Layer L3 (e) Final saliency map

Figure 6. Saliency cue maps in three layers and our final saliency map.

and/or foreground. On the other hand, in our region merg-

ing steps, a segment is guaranteed to be encompassed by

the corresponding ones in upper levels. We therefore resort

to hierarchical inference based on a tree-structure graphical

model. An example is shown in Fig. 2(e), where nodes rep-

resent regions in their corresponding layers. For instance,

the blue node j corresponds to the region marked in blue

in (d). It contains two segments in the lower level and thus

introduces two children nodes. The root maps to the entire

image in the coarsest representation.
For a node corresponding to region i in layer Ll, we de-

fine a saliency variable sli. Set S contains all of them. We
minimize the following energy function

E(S) =
∑

l

∑

i

ED(sli) +
∑

l

∑

i,Rl
i
⊆R

l+1

j

ES(s
l
i, s

l+1

j ) (5)

The energy consists of two parts. Data term ED(sli) is to

gather separate saliency confidence, and hence is defined,

for every node, as

ED(sli) = βl||sli − s̄li||
2
2, (6)

where βl controls the layer confidence and s̄li is the initial

saliency value calculated in Eq. (4). The data term follows

a common definition.

The hierarchy term ES(s
l
i, s

l+1

j ) enforces consistency

between corresponding regions in different layers. If Rl
i

and Rl+1

j are corresponding in two layers, we must have

Rl
i ⊆ Rl+1

j based on our encompassment definition and the

segment generation procedure. ES is defined on them as

ES(s
l
i, s

l+1

j ) = λl||sli − sl+1

j ||22, (7)

where λl controls the strength of consistency between lay-

ers. The hierarchical term makes saliency assignment for

corresponding regions in different levels similar, beneficial

to effectively correcting initial saliency errors.

To minimize Eq. (5), exact inference can be achieved vi-

a belief propagation [16]. It can reach the global optimum

due to the tree model. The propagation procedure includes

bottom-up and top-down steps. The bottom-up step updates

variables sli in two neighboring layers by minimizing Eq.

(5), resulting in new saliency sli representation with regard

to the initial values s̄li and those of parent nodes sl+1

j . This

step brings information up in the tree model by progressive-

ly substituting high-level variables for low-level ones.

Once results are obtained in the top layer, a top-down

step is performed. In each layer, since there is already a

minimum energy representation obtained in the previous

step, we optimize it to get new saliency values. After all

variables slj are updated in a top-down fashion, we obtain

the final saliency map in L1. An example is shown in Fig.

6 where separate layers in (b)-(d) miss out either large- or

small-scale structures. Our result in (e) contains informa-

tion from all scales, making the saliency map better than

any of the single-layer ones.

In fact, solving the three layer hierarchical model via be-

lief propagation is equivalent to applying a weighted av-

erage to all single-layer saliency cue maps. Our method

differs from naive multi-layer fusion by selecting weights

optimally for each region in hierarchical inference instead

of global weighting. The proposed solution theoretically

and empirically performs better than simply averaging all

layers, while not scarifying much computation efficiency.

4. Experiments

Currently, our un-optimized C++ implementation takes

on average 0.28s to process one image with resolution

400 × 300 in the benchmark data on a PC equipped with

a 3.40GHz CPU and 8GB memory. The computationally

most expensive part is extraction of image layers with dif-

ferent scale parameters, which is also the core of our algo-

rithm.

4.1. MSRA1000 [2] and 5000 Datasets [18]

We first test our method on the saliency datasets MSRA-

1000 [2] and MSRA-5000 [18] where MSRA-1000 is a sub-

set of MSRA-5000 and contains 1000 natural images with

their corresponding ground truth masks. MSRA-5000, con-

trarily, contains only the bounding box labels. We compare

our method with several prior ones, including local methods

– IT [13], MZ [19], GB [10], and global methods – LC [31],

FT [2], CA [8] HC [4], RC [4], SF [23], LR [25], SR [12].

The abbreviations are the same as those in [23], except for

LR, which represents the low rank method of [25]. For HC,

5



(a) Input (b) GT (c) MZ (d) LC (e) GB (f) RC (g) SF (h) Ours

Figure 7. Visual comparison on MSRA-1000 [2].
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Figure 8. Statistical comparison.

RC and SR, we use the implementation of [4]. For IT, GB,

FT and CA, we run authors’ codes. For LC, MZ, SF and

LR, we directly use author-provided saliency results.

The visual comparison is given in Fig. 7. Our method

can handle complex foreground and background with dif-

ferent details. More results are available on our website.

In quantitative evaluation, we plot the precision-recall

curves for the MSRA-1000 and 5000 datasets in Figs. 8(a)

and 8(b) respectively. Our experiment follows the setting

in [2, 4], where saliency maps are binarized at each possi-

ble threshold within range [0, 255]. Our method achieves

the highest precision in almost the entire recall range [0, 1].
It is because combining saliency information from three s-

cales makes background generally have low saliency values.

Only sufficiently salient objects can be detected in this case.

In many applications, high precision and high recall are

both required. We thus estimate the F -Measure [2] as

Fβ =
(1 + β2) · precision · recall

β2 · precision + recall
. (8)

Thresholding is applied and β2 is set to 0.3 as suggested in

[2]. The F -measures for MSRA-1000 are plotted in Fig.

8(c). Our method has high F -scores in a wide range, indi-

cating less sensitivity to picking a threshold.

4.2. Evaluation on Complex Scene Saliency Dataset

Although images from MSRA-1000 [2] have a large va-

riety in their content, background structures are primarily

simple and smooth. To represent more general situations

that natural images fall into, we construct a Complex Scene

Saliency Dataset (CSSD) with 200 images. They con-

tain diversified patterns in both foreground and background.

Ground truth masks are produced by 5 helpers. These im-

ages are collected from BSD300 [21], VOC dataset [6] and

internet. Our dataset is now publicly available.

Visual comparison of results are shown in Fig. 9. On

these difficult examples, our method can still produce rea-

sonable saliency maps. More results are available online.

Follow previous settings, we also quantitatively com-

pare our method with several others with publicly avail-
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(a) Input (b) GT (c) IT (d) FT (e) CA (f) HC (g) RC (h) Ours

Figure 9. Visual Comparison on CSSD.
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Figure 10. Quantitative comparison on dataset CSSD.

able implementation. We plot the precision-recall and F -

score curves in Fig. 10(a)-(b). The difference between our

method and others is clear, manifesting the importance to

capture hierarchical saliency in a computationally feasible

framework.

4.3. Comparison with SingleLayer

Our method utilizes information from multiple image

layers, gaining special benefit. Single-layer saliency com-

putation does not work similarly well. To validate it, we

take s̄i in Eq. (4) in different layers, as well as the average

of them, as the saliency values and evaluate how they work

respectively when applied to our CSSD image data. The

precision-recall curves are plotted in Fig. 11. Result from

layer L1 is the worst since it contains many small struc-

tures. Results in the other two layer with larger-scale re-

gions perform better, but still contain various problems re-

lated to scale determination. The result by naively averag-

ing the three single-layer maps is also worse than our final

one produced by optimal inference.

5. Concluding Remarks

We have tackled a fundamental problem that small-scale

structures would adversely affect salient detection. This

problem is ubiquitous in natural images due to common tex-

ture. In order to obtain a uniformly high-response salien-

cy map, we propose a hierarchical framework that infers

importance values from three image layers in different s-

cales. Our proposed method achieves high performance and

broadens the feasibility to apply saliency detection to more
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applications handling different natural images.
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