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Abstract We propose a depth and image scene flow estima-
tion method taking the input of a binocular video. The key
component is motion-depth temporal consistency preserva-
tion, making computation in long sequences reliable. We
tackle a number of fundamental technical issues, including
connection establishment between motion and depth, struc-
ture consistency preservation in multiple frames, and long-
range temporal constraint employment for error correction.
We address all of them in a unified depth and scene flow esti-
mation framework. Our main contributions include develop-
ment of motion trajectories, which robustly link frame cor-
respondences in a voting manner, rejection of depth/motion
outliers through temporal robust regression, novel edge oc-
currence map estimation, and introduction of anisotropic
smoothing priors for proper regularization.

Keywords Video depth estimation · Consistent scene
flow · Chained temporal profiles · Stereo matching

1 Introduction

In many computer vision tasks, reliable depth and motion
estimation fundamentally assures high quality result pro-
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duction. If depth can be accurately inferred in 3D videos
with necessary temporal consistency, traditionally challeng-
ing video editing to alter color, structure, and geometry, as
well as the high-level scene understanding and recognition
tasks can be accomplished much more easily. In addition,
with the precipitate prevalence of 3D display and 3D captur-
ing devices, the “2D-plus-depth” format becomes common
and important, as it can be used to generate new views1 for
3DTV.

Although a tremendous number of binocular videos have
come into existence, with only two views, it is still very
difficult to compute reliable and consistent depth in long
sequences. Structure-from-motion (SFM) and multi-view
stereo matching can be applied to static scenes where global
constraints are established through the multi-view geome-
try (Snavely et al. 2006; Furukawa and Ponce 2007; Zhang
et al. 2009). It is not suitable for videos that contain mov-
ing or deforming objects, which handicap correspondence
establishment across multiple frames.

In optical flow estimation (Baker et al. 2011), which cap-
tures 2D apparent motion, correspondence between consec-
utive frames can be established. 2D optical flow and depth
variation are jointly considered in Patras et al. (1996), Zhang
and Kambhamettu (2001), Vedula et al. (2005), Huguet
and Devernay (2007), Wedel et al. (2008, 2011), Valgaerts
et al. (2010), Rabe et al. (2010), which is typically referred
to as image scene flow. Given intrinsic camera parame-
ters, 3D scene flow can be constructed (Basha et al. 2010;
Wedel et al. 2011). These methods either compute motion
and depth independently or resort to a four-image configu-
ration. They do not tackle the temporal-consistency preser-
vation problem in multiple frames.

12D-Plus-Depth: (2009). Stereoscopic video coding format. http://en.
wikipedia.org/wiki/2D-plus-depth.
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Local temporal constraints were imposed in depth esti-
mation for video sequences, known as spatiotemporal stereo
matching (Zhang et al. 2003; Richardt et al. 2010). These
methods do not cope with object motion across multiple
frames and thus are more suitable for static scene videos.
In optical flow estimation, the methods presented in Black
(1994), Bruhn and Weickert (2005) have temporal terms.
They, however, may suffer from two main estimation prob-
lems. First, it is difficult or inefficient to perform long
range information propagation temporally. Second, erro-
neous estimates caused by occasional noise, sudden lumi-
nance change, and outliers in one frame could influence later
results. There is no effective way to measure and reduce es-
timation errors globally.

We aim at reliable depth and motion estimation from
multi-frame binocular videos with appropriate temporal
consistency. Our method is not based on global multi-view
geometry because dynamic objects do not obey them. We
also do not count on the locally established temporal con-
straint due to its inefficiency in information propagation.

We make several major contributions to construct the
system, which can measure and reduce estimation errors
in multiple frames. (1) We propose motion trajectories that
link reliable corresponding points among frames. It is robust
against occasional noise and abrupt luminance variation.
(2) We build structure profiles by considering multi-frame
edges. Through a voting-like step, only edges reliable in
multiple frames are enhanced. (3) Long-range temporal con-
straints are advocated, based on the robust motion trajecto-
ries. Regression then corrects errors and improves estimates
temporally. (4) Last but not least, we propose anisotropic
smoothing to non-uniformly regularize pixels, incorporat-
ing temporal edge information and preventing unconstrained
boundary degradation.

2 Related Work

Simultaneous depth and motion estimation from stereo im-
ages was studied in Zhang and Faugeras (1992). In Wedel
et al. (2008), motion and depth were computed sequen-
tially and independently, assuming that the depth in previous
frames is known. To improve the results, depth and motion
are jointly estimated, using two stereo pairs (Patras et al.
1996; Zhang and Kambhamettu 2001; Min and Sohn 2006;
Huguet and Devernay 2007; Valgaerts et al. 2010). These
approaches estimate motion fields from two calibrated cam-
eras, where constraints are established in the four-frame
configuration. Temporal consistency may still be a problem.

Recently, Wedel et al. (2011) pointed out that decou-
pling disparity and motion field computation is advanta-
geous in that different optimization techniques can be ap-
plied. A semi-dense scene flow field was computed in

Cech et al. (2011) through locally growing correspondence
seeds. Instead of modeling image scene flow, Basha et al.
(2010) imposed constraints on 3D surface motion. Cali-
brated multi-view sequences were used. Rabe et al. (2010)
applied Kalman filtering to independently computed flow
estimates and disparities. Hadfield and Bowden (2011) pro-
posed a particle approach for scene flow estimation, mak-
ing use of depth sensors and the monocular image camera
in Microsoft Kinect. Vogel et al. (2011) incorporated a lo-
cal rigidity constraint to regularize scene flow estimation.
Our method primarily differs from these approaches in the
way of enforcing temporal consistency, as multi-frame long-
range structure information is made use of.

Efforts have also been put to motion/depth discontinu-
ity handling. Zhang and Kambhamettu (2001) used seg-
mentation and applied piecewise regularization. Xu et al.
(2008) applied segmentation model to optical flow estima-
tion. Edge-preserving regularizer (Min and Sohn 2006), im-
age driven regularizer (Sun et al. 2008), and complementary
regularizer (Zimmer et al. 2009) were used to preserve mo-
tion and depth boundaries. The color edges or segments that
are used as guidance are generally hard to be consistent over
time, making producing high-quality depth boundary diffi-
cult.

In optical flow, two-frame configuration is common
(Brox et al. 2004; Bruhn et al. 2005; Zimmer et al. 2009;
Xu et al. 2010). A taxonomy of optical flow methods, along
with comparisons, is reported on the Middlebury website
(Baker et al. 2011). To enforce temporal smoothness, in
Brox et al. (2004), Bruhn and Weickert (2005), Bruhn et al.
(2005), constraints are yielded by assuming that the flow
vectors from consecutive frames at the same image loca-
tion are similar. It also applies to smoothly-varying motion.
Álvarez et al. (2007) enforced symmetry between the for-
ward and backward flow to reject outliers. Assuming con-
stant motion acceleration, Black (1994) enforced temporal
smoothness by predicting motion for the next frame using
current estimate. These methods only consider consecutive
frames, which are not effective and may accumulate errors
when propagating information among frames that are far
apart.

Using multiple frames, Irani (2002) projected flow vec-
tors onto a subspace and assumed that the resulting ma-
trix has a low rank for noise removal. Global motion in
static scenes is considered. To construct chained motion
trajectories, particle samples were generated and linked in
a probabilistic way (Sand and Teller 2008). In Sundaram
et al. (2010), chained trajectories were constructed by bi-
directional check of motion vectors based on large displace-
ment optical flow estimation (Brox et al. 2009). The quality
of trajectories depends excessively on flow estimate from
consecutive frames, making these methods possibly vulner-
able to noise and estimation outliers.
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Fig. 1 x correspondences in different frames

To achieve temporal consistency in depth estimation,
Zhang et al. (2003) proposed spacetime data costs that
aggregate data term over a short period. Richardt et al.
(2010) extended the idea by applying spatio-temporal cross-
bilateral grid on the data cost, derived from the locally
adaptive support aggregation window of Yoon and Kweon
(2006). Temporal relationship is also considered upon
nearby video frames. These methods did not deal with large
motion between frames and thus are more suitable for static
scenes.

Contrary to all these approaches, we propose a general
binocular framework addressing the temporal consistency
problem in depth and motion estimation in long sequences.
Temporal information from multiple frames is incorporated
with novel chained profiles.

3 Notations and Problem Introduction

Given a rectified binocular video, our method computes two-
view stereo for each frame pair across the two sequences, to-
gether with dense motion in each sequence. Our framework
can be readily extended to unrectified stereo videos linked
with a fundamental matrix (Valgaerts et al. 2010).

We denote corresponding frames in the stereo sequences
as f t

l and f t
r , indexed by time t where t = {0,1, . . . ,N −1}.

For each pixel x in frame f t
l , we find the corresponding pix-

els in the neighboring frames either temporally using mo-
tion estimation or spatially with stereo matching, as shown
in Fig. 1. The correspondence xt

r in f t
r is expressed as

xt
r = x + dt

l (x),

where dt
l is the view-dependent disparity. In this paper, we

alternatingly use dt
l (x) and dt

l to represent the disparity value
at point x. Meanwhile, optical flow correspondence in the
left sequence for pixel x is

xt+1
l = x + ut,t+1

l ,

based on the displacement u in frame f t+1
l . The 2D vec-

tor ut,t+1
l is written as ut,t+1

l = (u
t,t+1
l , v

t,t+1
l )T , as shown

in Fig. 1. Finally, the correspondence for x in f t+1
r is ex-

pressed as xt+1
r = x + ut,t+1

l + dt+1
l , involving both motion

and stereo. 3D image scene flow is, by convention, denoted
as

st,t+1 = (
u

t,t+1
l , v

t,t+1
l , δdt,t+1

l

)T
,

where δdt,t+1
l = dt+1

l (x + ut,t+1
l ) − dt

l . This representation
includes spatial shift and depth variation for correspon-
dences in successive two frames. In this paper, both “depth”
and “disparity” are used to denote the displacement of pix-
els in two views, although, strictly speaking, depth is pro-
portional to the reciprocal of disparity.

The above correspondences suggest a few fundamental
constraints that are used in spatial-temporal depth estimation
for every neighboring four frames (illustrated in Fig. 1). The
four commonly used scene flow conditions are

EF =
∑

k

Γ
((

f [k]t
r

(
x + dt

l

) − f
[k]t
l (x)

)2)
,

EL =
∑

k

Γ
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f
[k]t+1
l

(
x + ut,t+1

l

) − f
[k]t
l (x)

)2)
,

EB =
∑

k

Γ
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f [k]t+1
r

(
x + ut,t+1

l + dt
l + δdt,t+1

l

)

− f
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(
x + ut,t+1

l

))2)
,

ER =
∑

k

Γ
((

f [k]t+1
r

(
x + ut,t+1

l + dt
l + δdt,t+1

l

)

− f [k]t
r

(
x + dt

l

))2)
, (1)

where [k] indexes channels and Γ (·) is the robust Charbon-
nier function, i.e., the variant of L1 regularizer, written as
Γ (y2) = √

y2 + ε2 to reject matching outliers. EF and EB

are stereo constraints and EL and ER are motion constraints
for the neighboring-four-frame set. In what follows, we omit
the subscript l for all left-view unknowns for simplicity’s
sake.

In Eq. (1), each f has 5 channels as adopted in Sand
and Teller (2006), i.e., f = (fI ,1/4(fG − fR),1/4(fG −
fB),f∂h, f∂v), to make the following computation slightly
more robust against illumination variation, compared to only
considering RGB colors. fI is the image intensity; f∂h and
f∂v are horizontal and vertical intensity gradients.

Key Issues Simultaneously estimating all unknowns, i.e.,
depth and scene flow, is computationally expensive. It takes
hours for the variational method (Huguet and Devernay
2007) to compute one scene flow field for one frame. We
also found that only using these constraints cannot produce
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Fig. 2 Depth/scene flow estimation example. (a) and (e) are two corresponding frames in a binocular video. (b)–(d) show the depth estimates
from the joint method of Huguet and Devernay (2007). (f) and (g) are our depth results. (h) visualizes the 3D scene flow

temporally consistent results. As briefed in the introduction,
only connecting very close frames lacks representation abil-
ity to describe the relationship among correspondences that
are far apart in the sequence. This deficiency could cause
devastating failure in estimation.

We show one example in Fig. 2 where (a) and (e) are
two stereo frames in the binocular sequence. (b)–(d) contain
depth maps estimated using the joint method of Huguet and
Devernay (2007). Even by simultaneously considering the
motion and stereo terms, along with the L1 regularization,
the results are not temporally very consistent.

This is explainable: when all correspondences are locally
established between successive frames, they are vulnerable
to noise, occlusion and illumination variation. Unlike multi-
view stereo, there is no global constraint to find and elimi-
nate errors over the sequence. Even with the temporal con-
straints, when one depth estimate is problematic, all follow-
ing computation steps can be affected, inevitably accumulat-
ing errors and eventually failing estimation. In light of this,
other considerations should be taken especially for long se-
quences.

We propose new chained temporal constraints to make
long-range depth-flow estimation less problematic. We show
in Fig. 2(f)–(g) our depth results and in (h) our 3D scene flow
estimate. Their quality is very high. In what follows, we use
gray-scale values to visualize disparity maps and 3D arrows
to visualize image scene flow. 2D optical flow is color-coded
according to the wheel in Fig. 2(h), in which hue represents
motion direction and intensity indicates flow magnitude. 3D
scene flow vectors are similarly color coded for their first
two dimensions.

Algorithm 1 Outline of Our Method
INPUT: a rectified stereo sequence

1. Initialize motion fields and disparity maps.
(Sect. 4.1)

2. Establish temporal constraints. (Sect. 4.2)
2.1 Build robust trajectories.
2.2 Compute edge occurrence maps.
2.3 Compute trajectory-based depth and motion

using robust regression.
3. Refine depth and scene flow with global temporal

constraints. (Sect. 4.3)
OUTPUT: disparity maps and scene flow

4 Our Approach

Our method is to generate consistent depth and scene flow
from only a binocular video, utilizing pixel correspondence
among multiple frames. The overview of our system is given
in Algorithm 1, which consists of main steps of initializa-
tion, temporal constraint establishment, and final depth and
joint scene flow refinement.

4.1 Initialization

To initialize depth and motion, by convention, we apply the
variational method to optical flow estimation and use dis-
crete optimization for two-view stereo matching, the latter
of which is capable of estimating large disparity.
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Fig. 3 Initial depth and flow. (a)–(b) Depth maps for two consecutive frames. (c) Close-ups of (a) and (b) in a top-down order. (d)–(e) Initial
color-coded optical flow fields

Disparity Initialization We compute the disparity dt
l for

each frame t by optimizing

E0
(
dt

) =
∫

Ω

EF

(
dt

) + βdESd

(∇dt
)
dx, (2)

where x is defined on Ω , domain of x in the 2D image grid.
EF (dt ) is given in Eq. (1). ESd

(∇dt ) is the truncated L1

function to preserve discontinuity, written as ESd
(∇dt ) :=

min(|∇dt |, ρ), where ρ = 3. It is a regularization term to
preserve edges. βd is a weight. With the discrete energy
function, we solve Eq. (2) using graph-cuts (Kolmogorov
and Zabih 2004). Occlusion is further explicitly labeled us-
ing uniqueness check (Scharstein and Szeliski 2002). When
two pixels in the left view are mapped to the same one in the
right view, the pixel with smaller disparity is set as occlu-
sion, with od(x) = 0.

Disparity maps for two consecutive frames are shown
in Fig. 3(a)–(b). Textureless regions, such as the mountain,
and region boundaries have inconsistent estimates. Close-
ups of the depth boundaries are shown in (c). The incon-
sistent depth values cause flickering. See our supplementary
video for the depth sequence.2

Optical Flow Initialization We initialize 2D motion in a
variational framework. Both the forward and backward flow
vectors are computed, denoted as ut,t+1

l and ut+1,t
l , for out-

lier rejection. For the following robust estimation, which is
detailed in Sect. 4.2, we also compute bi-directional flow be-
tween frames f t

l and f t+2
l (denoted as ut,t+2

l and ut+2,t
l ),

and between frames f t
l and f t+3

l (denoted as ut,t+3
l and

ut+3,t
l ). Figure 4 illustrates these vectors. As all motion vec-

tors are computed similarly, we only describe estimation of
ut,t+1
l . It is achieved by minimizing

E0
(
ut,t+1
l

) =
∫

Ω

EL

(
ut,t+1
l

) + βuESu

(∇ut,t+1
l

)
dx, (3)

where ESu(∇ut,t+1
l ) is the total variation regularizer, ex-

pressed as
√

‖∇ut,t+1
l ‖2 + ε2 to preserve edges. It is a con-

2http://www.cse.cuhk.edu.hk/%7eleojia/projects/depth/.

Fig. 4 Flow vector illustration

vex penalty function and is commonly used in the varia-
tional framework. βu is a weight controlling the smoothness
of the computed flow fields. Equation (3) is optimized by
the efficient method of Brox et al. (2004). The initially es-
timated optical flow for two consecutive frames is shown in
Fig. 3(d)–(e).

4.2 Chained Temporal Priors

A part of our contribution lies on constructing motion trajec-
tories after initialization, which link corresponding pixels in
several frames, and on proposing new structure profiles, es-
sential in our system to form new temporal constraints.

Robust Motion Trajectory Estimation For each pixel, to
find its correspondences in other frames, we build motion
trajectories based on the optical flow estimate in each se-
quence. Note that motion vectors do not necessarily con-
tain integers and thus may link sub-pixels. Specifically,
x + ut,t+1(x) in f t+1 that is mapped from x in f t based
on the motion vector ut,t+1(x) is possibly a fractional value,
locating in between four pixels, as shown in Fig. 5(a). When
searching for the correspondence of x + ut,t+1(x) in frame
t + 2 or back in frame t , the motion vector for x + ut,t+1(x)

has to be estimated, generally by spatial interpolation.
Here we propose a simple and yet effective way to im-

prove interpolation accuracy. We observe in our experi-
ments that simple distance-based interpolation, e.g., bilinear
or bicubic method, could produce erroneous results. Fig-
ure 5(a) shows one example that the orange and green re-
gions undergo motion in different directions. A point pro-
jected in between pixels {y0, y1, y2, y3}, after bilinear inter-

http://www.cse.cuhk.edu.hk/%7eleojia/projects/depth/
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Fig. 5 (a) Illustration of a flow interpolation issue. (b) Interpolation
results on two patches. For each of them, bilateral and bilinear interpo-
lation results are shown on top and bottom respectively. (c)–(d) ut,t−5

and ut,t+5 based on our trajectories. Occlusion is labeled as black.

(e) ut,t+5 based on our trajectories. They are produced not considering
long-range motion ut,t+2

l (x) and ut,t+3
l (x). Errors are larger than those

in (d)

polation, is with near zero motion magnitude, which is ob-
viously inappropriate. This problem is quite common for se-
quences containing dynamic objects. We ameliorate it by in-
corporating the color information to guide interpolation bi-
laterally together with the spatial distance, originated from
spatial bilateral filtering (Tomasi and Manduchi 1998). The
operator is written as

ut+1,t ′(x + ut,t+1(x)
) = 1

|w|
3∑

i=0

ut+1,t ′(yi) ·

e−(x+ut,t+1(x)−yi )
2/σ1−(f t

I (x)−f t+1
I (yi ))

2/σ2, (4)

where t ′ can be t , t + 2, or other frame indexes depend-
ing on the motion definition. |w| is for normalization. The
term (f t

I (x) − f t+1
I (yi))

2/σ2 considers the brightness sim-
ilarity of points in different frames. σ1 and σ2 are set to 0.4
and 0.3 respectively. The comparison of bilateral interpola-
tion and standard bilinear interpolation is given in Fig. 5(b).
In the two motion field patches that contain dynamic ob-
ject boundaries, it is clear that the bilateral method produces
much sharper motion boundaries.

With this interpolation scheme, we link corresponding
points among frames, which forms motion trajectories. Due
to inevitable estimation errors in occlusion regions, object
boundaries, and textureless regions, we identify and exclude
outliers with bidirectional flow vectors (Huguet and Dever-
nay 2007). In particular, we project x + ut,t+1(x) in f t+1,
which is mapped from x in f t based on the motion vector
ut,t+1(x), back to f t . We sum the two vectors with opposite
directions and define the map ou, to mark glaring errors, as

ou(x) =
{

0 |ut,t+1
o | ≥ τ

1 otherwise
(5)

where

ut,t+1
o = ut+1,t

(
x + ut,t+1(x)

) + ut,t+1(x),

and τ is the error threshold set to 1. Satisfying the inequality
|ut,t+1

o | ≥ τ means the motion vectors that are supposedly
opposite are malposed. We in this case discard ut,t+1(x) and
set ou(x) to 0.

Removing a problematic flow vector shortens a motion
trajectory. If it is too short, insufficient temporal informa-
tion could be resulted in. With the observation that many
outliers are caused by occasional noise and pixel color vari-
ation, which do not present consistently in frames for the
same pixel in general, we also utilize longer-range bidirec-
tional flow vectors, i.e., ut,t+2

l (x) and ut+2,t
l (x), as illus-

trated in Fig. 4. If they are valid after going through the same
bidirectional consistency check, we reconnect the trajectory
from frame t to t +2. Otherwise, we continue to test the pair
of ut,t+3

l (x) and ut+3,t
l (x). Only if all these three checks fail,

we break the trajectory. The algorithm to build a motion tra-
jectory is detailed in Algorithm 2.

With these trajectories built in the forward and backward
directions, we can find a series of correspondences in other
frames for each pixel xt in frame t . The motion vector w.r.t.
xt and the correspondence in frame t ± i is expressed as
ut,t±i , which is the sum of all consecutive motion vectors in
the trajectory from frame t to t ± i for xt .

Figure 5(c)–(d) show respectively motion fields ut,t−5

and ut,t+5 produced by Algorithm 2. Unreliable matching
is marked as black (NaN in Algorithm 2). They are typically
caused by motion occlusion, leading to break of motion tra-
jectories. This type of disconnection is however desirable
because occlusion shortens trajectories by nature. Results in
(c)–(d) also demonstrate that one pixel is occluded at most
along one direction, but not both.
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Algorithm 2 Robust Trajectory Building

INPUT: {ut,t±1}, {ut,t±2}, {ut,t±3}
for i = 2 to n do

for coordinate x do
if ou(ut±(i−1),t±i ,ut±i,t±(i−1), x) then

ut,t±i (x) = ut±(i−1),t±i (x + ut,t±(i−1)(x)) +
ut,t±(i−1)(x).

else if ou(ut±(i−2),t±i ,ut±i,t±(i−2), x) then
ut,t±i (x) = ut±(i−2),t±i (x + ut,t±(i−2)(x)) +
ut,t±(i−2)(x).

else if ou(ut±(i−3),t±i ,ut±i,t±(i−3), x) and i > 2
then

ut,t±i (x) = ut±(i−3),t±i (x + ut,t±(i−3)(x)) +
ut,t±(i−3)(x).

else
ut,t±i (x) = NaN.

end if
end for

end for
OUTPUT: {ut,t±l}, l ∈ {1,2, . . . , n}

Note: NaN represents invalid motion vectors.

To demonstrate the effectiveness of longer-range bidirec-
tional flow ut,t+2

l (x) and ut,t+3
l (x) in generating trajectories,

we show a comparison in Fig. 5(d) and (e), where (e) is pro-
duced with trajectory construction not using long-range flow
and only relying on ut,t+1

l . Less black pixels are in the flow
field (d) due to higher robustness against occasional noise
and estimation outliers.

Trajectory-Based Structure Profile To build a practical
system with constraints applied across multiple frames, be-
sides trajectories, we also base our computation on a cen-
tral observation—that is, motion and disparity boundaries
are mostly in line with image structure boundaries. Salient
edge maps, in this regard, are useful in shaping motion and
disparity.

Unfortunately, depth and flow edges are very sensitive
to noise, blurriness, illumination variance, and other kinds
of image degradation. When taking sequences into consid-
eration, boundaries of dynamic objects vary over time and
are usually composed of different sets of pixels. It is com-
mon knowledge that only using image gradient information
for frames separately can hardly infer reliable and consistent
edges, as illustrated in Fig. 6(a).

Our goal in this part is to compute a series of salient
structures that are temporally consistent and spatially con-
spicuous, regardless whether they are on dynamic objects or
along illuminance variation boundaries. To this end, we first
calculate edge magnitude maps separately for each frame
after bilateral smoothing to remove a small degree of noise.

The magnitude operator is
√

f 2
∂h + f 2

∂v . Then we compute

Fig. 6 Illustration of structure profiles. (a) Single-image edge extrac-
tion. The edges are weak and inconsistent in the two frames. (b) Our
structure profile that is temporally more consistent

Fig. 7 Trajectory-based structure profile construction

an edge occurrence map Ct
f by simply setting pixels with

their magnitudes smaller than a threshold (generally set to
0.01) to zeros. It actually indicates the occurrence of sig-
nificant structure edges. All maps in the input sequence, to-
gether with the computed dense motion trajectories, are used
to establish a structure profile map for each frame.

For each pixel x in frame t , we project all edge occur-
rence values in other frames, according to the correspon-
dences along the trajectories {ut,t+i} and {ut,t−i}, to it, as
illustrated in Fig. 7. In this process, we can find consistent
edge occurrence values where errors, after a voting-like pro-
cess, can be quickly suppressed.

The corresponding point of x in frame t + i is x +
ut,t+i (x) after chain projection, where ut,t+i (x) is the over-
all motion vector. The average of the occurrence value in the
trajectory is expressed as

C̃t
f (x) = 1

n

∑

i

Ct+i
f

(
x + ut,t+i (x)

)
, (6)
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where n is the number of corresponding pixels along the tra-
jectory. The structure profiles C̃t

f (x) embody statistics of the
occurrence of strong edges over multiple frames. Its value
reveals the chance that the current pixel is on a consistent
edge.

We do not introduce weights in Eq. (6) because true edges
can typically exist in a large number of frames consistently
while a false one caused by noise and estimation errors does
not. By projecting all correspondences to the current pixel
and adding their occurrence values, a true edge point can
gather a large confidence value. Occasional outliers can-
not receive consistent support temporally, and therefore only
have small confidence. In this voting-like process, originally
weak but consistent edges can be properly enhanced.

The resulting edge occurrence maps are {C̃t
f }, which are

used to define edge priors. Figure 6(b) shows two edge oc-
currence maps, where inconsistent edges are notably weak-
ened and consistent ones are enhanced. This profile con-
struction process is robust against noise and sudden illumi-
nation change.

Trajectory-Based Depth/Motion Profile Another set of im-
portant profiles are constructed based on the fact that C̃f

does not contain scene flow information. Spatial-temporal
constraints were proposed in Black (1994), Bruhn and We-
ickert (2005), Bruhn et al. (2005) to enforce temporal con-
sistency of motion vectors. Locally constant speed (Bruhn
and Weickert 2005; Bruhn et al. 2005) and acceleration
(Black 1994) are typical assumptions. We use a temporal-
linear model to fit motion and depth, in order to reject out-
liers while allowing for depth and motion variation.

Here, we describe our depth profile estimation procedure.
Motion profile can be computed similarly. For each pixel, we
adopt a linear parametric model to fit depth after projecting
values from other frames to t temporally based on our tra-
jectories. The linear model is controlled by two parameters
w0 and w1, representing depth offset and slope. Regression
needs to minimize the energy

∑

i

γi(x)

(
w1(x)i + w0(x) − 1

dt+i

)2

, (7)

where i indexes frames in the trajectory and γi(x) is the
weight for the (t + i)th frame and 1/dt+i is the correspond-
ing depth for x in frame t + i. With sub-pixel point position,
we interpolate depth using bilateral weights described in Eq.
(4). γi(x) plays an important role and is defined as

γi(x) = e−i2/σt · od(x),

which embodies two parts. They are respectively tempo-
ral weight e−i2/σt in a Gaussian window to reduce the in-
fluence of frames far away from the current frame t with
σt = 10, and depth occlusion od(x), which is labeled using

Fig. 8 Computed w0 and w1 maps for one frame

the uniqueness check (Scharstein and Szeliski 2002). Zero
od(x) indicates occlusion, which correspondingly decreases
the weight γi(x) to zero.

Before regression in Eq. (7), we check the sum
∑

i γi .
If

∑
i γi < 3, we skip regression for the robustness’ sake.

Equation (7) provides an effective way to gather statistical
disparity information from multiple frames without much
occlusion influence. As the initial disparity values are op-
timized in a global fashion in each frame, the robust regres-
sion process actually has incorporated neighboring disparity
information for each pixel.

In minimization, taking derivatives w.r.t. the parameters
w0(x) and w1(x) and setting them to zeros yield two equa-
tions. After a few simple algebraic operations, closed-form
solutions are obtained as

w0(x) =
∑

i γi(x)i · ∑i
γi (x)i

dt+i − ∑
i γi(x)i2 ∑

i
γi (x)

dt+i

(
∑

i γi(x)i)2 − (
∑

i γi(x)i2 · ∑i γi(x))
, (8)

w1(x) =
∑

i γi(x)i · ∑i
γi (x)

dt+i − ∑
i γi(x)

∑
i

γi (x)i

dt+i

(
∑

i γi(x)i)2 − (
∑

i γi(x)i2 · ∑i γi(x))
. (9)

Finally, given the estimated linear parameters, the depth pro-
file d̃t (x) for x in frame t is written as

d̃t (x) = 1

w0(x)
. (10)

We show the w0 and w1 results in Fig. 8. w0 corresponds
to scene depth. It is made temporally more consistent after
optimization thanks to the regression to reject random out-
liers and preserve boundaries. The average magnitude of the
w1 map is much smaller than that of w0, manifesting that
depth does not undergo abrupt change over time.

For motion profile computation, we similarly apply the
linear model, yielding

ũt (x) =
∑

i γi(x)i
∑

γi(x)iut+i − ∑
i γi(x)i2 ∑

i γi(x)ut+i

(
∑

i γi(x)i)2 − (
∑

i γi(x)i2 · ∑i γi(x))
,

(11)

where ũt (x) is the motion profile for pixel x in frame t and

γi(x) = e−i2/σt · ou(x).
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Algorithm 3 Depth and Scene Flow Computation

INPUT: depth profile {ũt,t+1}, motion profile {d̃t }, se-
quences {f 0

l,r , f
1
l,r , ·, f N−1

l,r }
Update depth {d̃t } to {dt } for all frames with the temporal
constraint (Sect. 4.3.1).
for frame i = 0 to N − 1 do

Optimize scene flow si,i+1 based on (di ,di+1,ũi,i+1)
(Sect. 4.3.2).

end for
OUTPUT: temporally consistent disparity maps {dt } and
scene flow {st,t+1}

ou is motion occlusion estimated through bidirectional
check. As shown in Fig. 5(c)–(d), occlusion generally arises
along one direction—that is, either forward or backward—
but not both. So the situation that ou(x) = 0 for all cor-
respondences of one pixel in the trajectory seldom occurs,
making it always possible to find points to gather statistics
and refine motion during regression. We adopt a small σt

(set to 3) due to the fact that motion variation is typically
larger than the change of scene depth.

4.3 Temporally-Constrained Depth and Scene Flow

In this section, we describe the central steps to estimate
depth and image scene flow given the temporal constraints.
We find that estimating depth and scene flow in the same
pass is computationally expensive (Wedel et al. 2011) and
unstable due to the fact that depth and scene flow are com-
pletely different variables by nature. Disparity can have very
large values (up to tens or hundreds in the pixel scale) while
scene flow captures object position variation and thus has
much smaller scales. Putting them together makes varia-
tional optimization difficult to perform satisfyingly and be
easily stuck in local optima. As reported in Huguet and De-
vernay (2007), Wedel et al. (2011), a full joint procedure to
estimate depth and scene flow takes pretty long time.

It is also notable that the initial disparity values estimated
frame-by-frame are lack of sub-pixel accuracy, unsuitable
for δdt,t+1 estimation in scene flow. With these concerns,
we decouple depth and scene flow, and optimize the dispar-
ity sequence with the long-range temporal constraint. Scene
flow is then updated. The algorithm is outlined in Algo-
rithm 3. We describe below the spatio-temporal functions
to constrain depth and scene flow.

4.3.1 Consistent Depth Estimation

To refine depth, we minimize

Ef

(
dt

) =
∫

Ω

ôd(x)EF

(
dt

) + αdET

(
dt

) + βdES

(∇dt
)
dx,

(12)

where αd and βd are two weights. EF (dt ) is the data cost
defined in Eq. (1), which relates two views at time t . The oc-
clusion variable ôd (x) helps reduce the adverse influence of
occasional occlusion. We define ôd (x) = max(od(x),0.01),
for the sake of numerical stability. ET (dt ) is the temporal
depth data term, defined as

ET

(
dt

) = (
dt − d̃t

)2
, (13)

where d̃t is the fitted depth profile. This seemingly simple
term is essential in our method because it incorporates long-
range temporal information from multiple frames. EF , on
the contrary, is only a local frame-wise data term.

The structure profile is incorporated in depth regulariza-
tion to enforce structure consistency among frames. We only
impose smoothness for regions with small edge-occurrence
values in C̃t

f and allow depth discontinuity to take place

when C̃t
f (x) is large. On account of possible subpixel er-

rors in averaging the edge-occurrence maps, edges in C̃t
f

could be slightly wider than what they should be, as shown
in Fig. 6. It is inappropriate to naively enforce no or small
smoothness for these pixels because, without necessary reg-
ularization, edge cannot be well preserved.

We turn to an anisotropic smoothness method (Xiao et al.
2006; Sun et al. 2008; Zimmer et al. 2009) to provide crit-
ical constraints for edge-preserving regularization. We de-
compose depth gradient ∇d into {∇d‖,∇d⊥} according to
the image gradient, where

∇d‖ = 〈∇d,∇f
‖
I

〉 · ∇f
‖
I ,∇d⊥ = ∇d − ∇d‖.

where ∇f
‖
I is the unit vector parallel to the frame intensity

gradient ∇fI , i.e. ∇f
‖
I = ∇fI

‖∇fI ‖ . We propose the following
function for anisotropic smoothness regularization:

ES(∇d) = Γ
((∇d⊥)2 + (1 − C̃f )

(∇d‖)2)
, (14)

where Γ (·) is the robust Charbonnier function, defined in
Eq. (1). In Eq. (14), for all pixels, smoothness is enforced
along the isophote direction while discontinuity along gra-
dient is allowed only for reliable strong edges, which cor-
responds to large C̃f . Hence, Eq. (14) provides necessary
constraints in different directions. We note here that strong
edges caused by occasional outliers in one frame would not
affect the anisotropic regularizer. On the other hand, com-
pared with Cf , temporally consistent edges have been en-
hanced in C̃f , which boost the anisotropic properties ac-
cordingly.

With a few algebraic operations, Eq. (14) can be written
in a form of diffusion tensor

ES(∇d) = Γ
(∇dT D(∇fI )∇d

)
, (15)
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Fig. 9 Effectiveness of anisotropic regularization. (a) Our depth esti-
mate {dt }. (b) Top to bottom and left to right: patch of input image f t ,
C̃t

f , and depth results using the isotropic and anisotropic regularization

terms, both guided by C̃t
f

where D(∇fI ) is the diffusion tensor defined as

D(∇fI ) = ((∇f ⊥
I

)(∇f ⊥
I

)T + (1 − C̃f )
(∇f

‖
I

)(∇f
‖
I

)T )
,

where ∇f
‖
I and ∇f ⊥

I are two unit vectors parallel and per-
pendicular to ∇fI , respectively. Equation (12) can be effi-
ciently minimized using variational solvers to enable sub-
pixel accuracy. Note that the inherent difficulty to solve
for large displacements in the variational framework is
greatly reduced with our initial estimate d̃t , obtained by ro-
bust regression. Our energy minimization is discussed in
Sect. 4.3.3.

A depth map result is shown in Fig. 9(a), with the com-
parison in (b). The bottom left subfigure of (b) is the depth
map obtained by enforcing smoothness uniformly in all di-
rections with strength (1 − C̃t

f ). When C̃t
f is large near the

boundaries, the depth estimation is ill-posed, resulting in a
problematic map. Our result with anisotropic regularization
preserves much better edges.

4.3.2 Scene Flow Estimation

We now estimate 2D motion and depth variation with nec-
essary temporal constraints for image scene flow.

Data Fidelity Term Our new data cost is given by

ED

(
ut,t+1, δdt

)

= ôd ôuEB

(
ut,t+1, δdt,t+1)

+(
ôuEL

(
ut,t+1) + ôd ôuER

(
ut,t+1, δdt,t+1))

+ αuôuET d

(
δdt

l

) + αuET u

(
ut,t+1), (16)

where EB , EL and ER are the traditional scene flow con-
straints, defined in Eq. (1). {dt } is the disparity computed
in the above estimation step (described in Sect. 4.3.1). ôu,
where ôu = max(ou,0.01), and ôd mask out unreliable
depth and flow primarily caused by occlusion. αu is the
weight for the long-range temporal constraint.

ET d and ET u incorporate our new temporal profiles. ET d

is defined as

ET d

(
δdt,t+1) = (

δdt,t+1 + dt − d′t+1)2
, (17)

where dt is a shorthand for dt (x) and d′t+1 := dt+1(x +
ut,t+1(x)). They are disparities of x in the t-th and (t +1)-th
frames, respectively. Our depth refinement makes δdt,t+1 a
sub-pixel value.

Similarly, the flow constraint is defined as

ET u

(
ut,t+1) = (

ut,t+1 − ũt,t+1)2
. (18)

Smoothness Term In regularization, we penalize sudden
and significant change of the 2D motion ∇ut,t+1 and of the
disparity ∇δdt,t+1 w.r.t. the frame diffusion tensor, yielding
an anisotropic smoothing effect with the edge maps as guid-
ance. We define

ES

(∇ut,t+1,∇δdt,t+1)

= Γ
(∇ut,t+1T

D(∇fI )∇ut,t+1)

+ κΓ
(∇δdt,t+1T

D(∇fI )∇δdt,t+1). (19)

Here κ is a weight set to 0.5. The final objective function for
scene flow estimation with temporal constraints is given by

Ef

(
ut,t+1, δdt,t+1)

=
∫

Ω

ED

(
ut,t+1, δdt,t+1)

+ βuES

(∇ut,t+1,∇δdt,t+1)dx. (20)

We minimize it using the variational method detailed below.

4.3.3 Energy Minimization

Equations (12) and (20) can be solved in a coarse-to-fine
framework using variational solvers. However, this proce-
dure is found not necessary. It is because in our system, vari-
ables are well initialized and estimated before optimization
in the two stages. To compute depth using Eq. (12), the tem-
poral depth profile is available. While jointly optimizing el-
ements in scene flow using Eq. (20), the updated depth and
motion profiles provide good initialization. Moreover, en-
ergy minimization with proper initialization ameliorates the
inherent estimation problems for large displacements (Brox
et al. 2009; Xu et al. 2010), even in the original image reso-
lution.

With this consideration, we perform Taylor series expan-
sion on the data term and solve for the increments

Δd = d − d(0), Δs = s − s(0).
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d(0) is set to d̃ in the first place. After Δd is computed, d(0)

is accordingly updated to d(0) + Δd. Then we estimate Δd
again. We repeat this procedure for 3 times. The final depth
map is computed by d = d(0) + Δd. Given the refined depth
map, we set s(0) = (ũ, ṽ,dt+1(x + ũ) − dt ) and iteratively
solve for the increment Δs.

This scheme is referred to as the warping strategy in Brox
et al. (2004). In our system, to estimate Δd and Δs, the over-
all energy functions are minimized by solving the their cor-
responding Euler-Lagrange equations. To make description
easy, we denote

fdh := ∂hf
t
r

(
x + d(0)

)
,

fdz := f t
r

(
x + d(0)

) − f t
l (x),

εd := fdh · Δd + fdz.

In addition, Γ ′(y2) := 1/
√

y2 + ε2, representing derivative
of the Γ function. The Euler-Lagrange equation for Eq. (12)
is given by

0 = ôd

∑

k

Γ ′((ε[k]
d

)2) · ε[k]
d f

[k]
dh + 2αdΔd

−βddiv
(
Γ ′(∇dT D(∇fI )∇d

) · D(∇d)∇d
)
, (21)

where div(·) is the divergence operator. After discretizing
the equation, nonlinearity is only held in Γ ′. A fixed-point
loop similar to that in Brox et al. (2004), Bruhn and Weick-
ert (2005) is applied, which removes the nonlinearity of Γ ′
by using values obtained from the previous iteration. This
step yields linear equations, which can be quickly solved
by standard linear solvers. More details are included in Ap-
pendix A.

Similarly, for final scene flow computation, we denote

flh := ∂hf
t+1
l

(
x + u(0)(x)

)

flv := ∂vf
t+1
l

(
x + u(0)(x)

)

flz := f t+1
l

(
x + u(0)(x)

) − f t
l (x)

εL := flh · Δu + flv · Δv + flz

frh := ∂hf
t+1(x + d + u(0) + δd(0)

)

frv := ∂vf
t+1(x + d + u(0) + δd(0)

)

frz := f t+1(x + d + u(0) + δd(0)
) − f t

r (x + d)

εR := frh · (Δu + Δδd) + frv · Δv + frz.

The Euler-Lagrange equations for Eq. (20) are given by

ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2) · (ε[k]
R − ε

[k]
L

)
(frh − flh)

+ ôuΓ
′((ε[k]

L

)2)
ε
[k]
L flh + ôd ôuΓ

′((ε[k]
R

)2)
ε
[k]
R frh

+ 2αuΔu − βudiv
(
Γ ′

su · D(∇fI )∇u
) = 0 (22)

ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2) · (ε[k]
R − ε

[k]
L

)
(frv − flv)

+ ôuΓ
′((ε[k]

L

)2)
ε
[k]
L flv + ôd ôuΓ

′((ε[k]
R

)2)
ε
[k]
R frv

+ 2αuΔv − βudiv
(
Γ ′

su · D(∇fI )∇v
) = 0 (23)

ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2) · (ε[k]
R − ε

[k]
L

)
(frh)

+ ôd ôuΓ
′((ε[k]

R

)2)
ε
[k]
R frh

+ 2ôuαuΔδd − βudiv
(
Γ ′

sd · D(∇fI )∇δd
) = 0 (24)

where

Γ ′
su := Γ ′(∇uT D(∇fI )∇u + ∇uT D(∇fI )∇u

)
, (25)

representing derivatives of the smoothness penalty on 2D
motion. Γ ′

sd is expressed as Γ ′(∇δdT D(∇fI )∇δd), a penal-
ty on depth variation. Applying a fixed-point conversion, the
system becomes linear w.r.t. Δs and thus can be solved eas-
ily. Implementation details are in Appendix B.

5 Experiments

We extensively evaluate our method. We first perform
quantitative evaluation on the POV-Ray-rendered sequences
(Vaudrey et al. 2008; University of Auckland 2008), where
ground truth depth and scene flow fields are available. It
is notable that very few methods in the literature reported
error statistics on video sequences because most of them
used the four-frame configuration without leveraging long-
range temporal information. In contrast, we provide both
per-sequence statistics and detailed per-frame errors for each
step of the proposed method. Complete results are presented
in the supplementary video. To evaluate the long-range tem-
poral constraints, we also conduct experiments to separately
test important components, including the structure, long-
range depth and motion profiles. Finally, we show results on
challenging sequences containing large dynamic objects.

In dealing with synthetic sequences, βd and βu are set to
10 and 15, respectively. αd and αu are both with value 10.
For natural sequences, we use βd = 15, βu = 20, αd = 15,
and αu = 5. All other parameters are fixed as specified in
the paper.

5.1 Quantitative Evaluation

We employ the mean absolute error (MAE) to measure the
errors between our estimate d and the ground truth dispar-
ity d∗:

MAEd = 1

|Ω|
∑

Ω

∣∣d − d∗∣∣, (26)
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Fig. 10 Per-frame error statistics for sequences Traffic Scene 1 (1st row) and Traffic Scene 2 (2nd row)

where |Ω| is the number of pixels in image Ω .
For scene flow, we adopt the average angular error (AAE)

and the root mean square error (RMSE) (Wedel et al. 2011)
to evaluate the angular and end-point errors:

AAE3D

= 1

|Ω|
∑

Ω

cos−1

×
(

uu∗ + vv∗ + δdδd∗ + 1
√

(u2 + v2 + δd2 + 1)

√
(u∗2 + v∗2 + δd∗2 + 1)

)
,

(27)

RMSE3D =
[

1

|Ω|
∑

Ω

∥
∥(u, v, δd)	 − (

u∗, v∗, δd∗)	∥
∥2

] 1
2

.

(28)

The RMSE measures pixel-level errors while the AAE is
a measure in degree. For fair comparison, we exclude image
borders, occluded regions, and the infinite background, as
suggested in Wedel et al. (2011).

Traffic Scene 1 is a sequence with 100 frames (Univer-
sity of Auckland 2008), which contains rapidly moving cars.
Two frames are shown in Fig. 11(a)–(b). The whole se-
quence is provided in the supplementary video. The initial
disparity map (d) is erroneous at occluded regions. In the
robust regression result (e), we can notice that depth at oc-
clusion is refined and the estimation outliers are reduced ow-
ing to the use of temporal information. Our final variational

Table 1 Average AAE, RMSE, and MAE obtained at different stages,
including initialization (“Initial”), robust regression (“Robust”), and fi-
nal refinement (“Final”)

Stage Scene flow Disparity
MAEAAE RMSE

(a) Errors for Traffic Scene 1

Initial 2.989 0.925 0.789

Robust 1.848 0.697 0.624

Final 1.130 0.468 0.136

(b) Errors for Traffic Scene 2

Initial 4.021 0.946 0.522

Robust 3.180 0.806 0.341

Final 2.701 0.557 0.179

refinement further increases sub-pixel accuracy and lowers
MAE down to 0.1 pixel. The absolute error is visualized in
(g)–(i). The gray pixels with value 128 are with no error and
brighter pixels indicate larger positive errors, following the
representation in Wedel et al. (2011). The 3D scene flow
fields in different stages are shown in (j)–(l), with the angu-
lar error maps coded in (m)–(p). Note that the rear window
of the car and the dark shadow regions are consistently with
large errors, due to transparency and large color variation.

The corresponding statistics for the whole sequence are
listed in Table 1(a), where the errors produced in different
stages are shown. They indicate that the two main steps
make a great improvement. Detailed per-frame error plots
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Fig. 11 Traffic Scene 1 sequence. (a) and (b) are the left and right
views respectively in time t . (c) is the ground truth disparity map,
where white pixels are occlusion. (d)–(f) are disparity maps obtained
in initialization, robust regression, and in the final refinement, respec-

tively. (g)–(i) are the error images for (d)–(f) respectively, where dark
to bright pixels are with negative to positive errors. (j)–(l) visualize the
scene flow fields corresponding to (g)–(i). (m)–(o) show the angular
error maps of scene flow
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Table 2 Multi-pass depth and scene flow estimation errors

Pass Scene flow Disparity
MAEAAE RMSE

1 pass 1.130 0.468 0.136

2 passes 0.922 0.422 0.101

3 passes 0.905 0.399 0.102

Table 3 Error comparison with different structure profiles

Strategies Scene flow Disparity
MAEAAE RMSE

Without structure map 2.306 0.721 0.405

Single-frame structure map 1.310 0.519 0.273

Temporal structure map 1.130 0.468 0.136

are in the first row of Fig. 10. Our results get consistent im-
provement for all frames in each stage.

The results of Traffic Scene 2 are shown in Fig. 12. Sam-
ple frames and the ground truth depth are shown in (a)–(c).
Our results at different stages are shown in (d)–(f) with er-
rors coded in (g)–(i). The 3D scene flow vectors and errors
are shown in (j)–(l). The corresponding errors are listed in
Table 1(b). The per-frame statistics are plotted in the second
row of Fig. 10. These visual and quantitative results verify
the effectiveness of our method.

5.2 Multi-Pass Depth/Scene Flow Estimation

After obtaining scene flow and depth fields in our frame-
work, we can use them to reconstruct motion trajectories and
further refine the estimates. We have conducted experiments
by running our system several passes, each taking the result
from the previous pass as initialization. In this process, the
scene flow fields are computed bidirectionally to construct
new motion trajectories. The error statistics for Traffic Scene
1 are provided in Table 2. It is notable that multi-pass esti-
mation can only improve the result marginally because the
temporal information has already been well incorporated in
the first-pass estimation. For the sake of efficiency, we run
our algorithm only once for all examples.

5.3 Structure Profile Evaluation

We in this section evaluate the usefulness of our structure
profile C̃t

f . Table 3 contains the statistics on Traffic Scene 1.
The first-row errors are obtained by turning off the struc-
ture profile and simply setting C̃t

f (x) = 0. The second-row
statistics are with the edge map Ct

f (x) constructed in each
single frame as the structure prior. The last-row figures are
obtained with the temporal structure profile C̃t

f (x). It is clear
that employing our structure profiles yields the least errors.

Table 4 Error statistics with and without the long-range temporal con-
straints

Strategies Scene flow Disparity
MAEAAE RMSE

Without temporal constraint 2.036 0.787 0.695

With temporal constraint 1.130 0.468 0.136

In Fig. 13, we compare the disparity maps produced us-
ing the single-frame edge prior and our temporal structure
profile respectively. Temporally more consistent edges are
preserved using our complete framework. In the upper im-
age in (b), the rightmost car boundary is less erroneous.
Problematic edges are also weakened, as compared in the
bottom images. The corresponding edge maps are visualized
in Fig. 6.

5.4 Long-Range Temporal Constraint Evaluation

We evaluate another important constraint in our method—
that is, the long-range temporal depth and motion profiles.
We conduct experiments with and without the robust tem-
poral depth and motion profiles. Other components and pa-
rameters remain the same for fairness’ sake.

When the temporal depth/motion constraint is not used,
we alternatively perform variational minimization by setting
αu and αd to zeros in Eqs. (12) and (16). One comparison
is given in Fig. 14 where (a) shows three frames computed
without the temporal constraints and (b) shows our results.
Obvious problems on the moving car can be noticed in (a).
The estimates with the temporal constraints are much bet-
ter, especially for pixels in highlight and occlusion. Table 4
lists the corresponding errors generated with and without the
long-range temporal constraints.

5.5 Challenging Natural Video Examples

We also apply our method to several natural video sequences
containing multiple dynamic objects with subtle motion and
deforming surfaces. Figures 15 and 16 show intermediate
and final results of the Balloons and Fish sequences respec-
tively. In each figure, the input images, initial depth maps,
trajectory-based edge profiles that faithfully enhance bound-
aries, our depth maps obtained with robust regression, final
depth results after sub-pixel refinement, and the final 3D
scene flow fields are shown in rows in a top-down order.
Figure 17 shows another dynamic scene with a moving per-
son. Our depth maps and scene flow fields are in the second
and third rows, respectively. We note that consistent depth
and scene flow estimation for sequences containing large dy-
namic objects is very challenging due to noise, illumination
variation, and occlusions. Our final results are with properly
maintained temporal consistency.
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Fig. 12 Traffic Scene 2 sequence. (a) and (b) are the left and right
views respectively in time t . (c) is the ground truth disparity map,
where white pixels are occlusion. (d)–(f) are disparity maps obtained
in initialization, robust regression, and final refinement, respectively.

(g)–(i) are the error images for (d)–(f) respectively, where dark to
bright pixels are with negative to positive errors. (j)–(l) visualize the
scene flow fields corresponding to (g)–(i). (m)–(o) show the angular
error maps of scene flow
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Fig. 13 Results obtained with (a) the single-frame edge prior and (b)
our temporal structure profile

As the 2D-plus-depth solution for 3DTV utilizes depth
information to synthesize new views, our method is capa-
ble of converting standard two-view 3D videos into the 2D-
plus-depth format. To demonstrate the accuracy and con-
sistency of our resulting depth maps, we synthesize new
view sequences in Figs. 18 and 19. New views produced
from the initial depth are also shown for comparison, which
contain obvious visual artifacts. In our final results, con-
tinuous variation of depth both spatially and temporally is
preserved, together with discontinuous object boundaries,
thanks to the effective regularization, multi-frame profile
construction, and robust optimization. The full novel-view-
synthesis results are in the supplementary video.

5.6 Computational Cost

Although our method employs long-range temporal con-
straints, the computational cost does not increase exponen-
tially compared with single-frame methods. Despite con-
structing trajectory-based priors, the optimization procedure
between different frames is independent. It is also possi-
ble to use parallel computing techniques, such as OpenMP
(OpenMP ARB 2012), for acceleration.

For the binocular 100-frame video Traffic Scene 1 with
resolution 640 × 480, using 24 cores of Intel Xeon
@2.67 GHz, each frame only takes 1 min on average. We
list in two rows of Table 5 the running time of depth-and-
motion initialization and of the whole system when using a
single CPU core.

5.7 More Discussion

Temporal consistency is known as very important in estimat-
ing depth and scene flow maps in video sequences. However,

Fig. 14 Disparity result comparison (a) without the temporal depth
profile and (b) with the temporal depth profile

Table 5 Time (in minutes) spent for data initialization, the whole pro-
cess on a single core, and for the whole system running on 24 cores

Total running time Per frame running time

Initial 1287 13

Final 2772 28

Final+OMP 138 1.4

finding good constraints in multiple frames is still an open
problem. Previous joint estimation methods are generally in-
sufficient for long range information propagation. Recent
developments in scene flow estimation (Basha et al. 2010;
Vogel et al. 2011; Wedel et al. 2011) did not tackle the
problem from the temporal consistency point of view either.
Our approach explicitly models temporal constraints using
chained priors, which makes temporal propagation practical
and efficient. This marks the major differences between the
proposed approach and others. Our chained temporal pri-
ors described in Sect. 4.2 are also very general, which not
only benefit depth and scene flow estimation for binocular
sequences, but also work for cameras with active range sen-
sors, such as Microsoft Kinect.
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Fig. 15 The Balloons sequence results. The 1st row: input images.
The 2nd row: initial depth maps. The 3rd row: trajectory-based struc-
ture profiles. The 4th row: depth maps after temporal refinement.

The 5th row: depth maps after sub-pixel refinement. The 6th row: final
color-coded scene flow fields
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Fig. 16 The Fish sequence results. The 1st row: input images; the 2nd

row: initial depth maps; the 3rd row: trajectory-based structure pro-
files; the 4th row: depth maps after temporal refinement; the 5th row:

depth maps after sub-pixel continuous refinement; the 6th row: final
color-coded scene flow fields
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Fig. 17 The Cafe sequence results. From top to bottom: input images, our depth maps, and our scene flow fields

Fig. 18 Novel-view synthesis for frames 16–19 of the Balloons sequence. The 1st row: initial depth; the 2nd row: depth after sub-pixel refinement.
Visual artifacts are suppressed in the final results, while boundaries are faithfully preserved

6 Conclusion

In summary of our method, the major novelty lies on the
long-range temporal constraints, which significantly im-
prove the depth and scene flow consistency both visually
and quantitatively. In building the robust estimation system,
our method contributes in the following ways. Firstly, the
motion trajectory construction can find reliable estimates
consecutively and break links when occlusion consistently
arises in multiple frames. Occasional noise in one or two
frames, on the contrary, can be robustly ignored. Secondly,
the novel edge occurrence maps are constructed incorporat-
ing structural information from multiple frames. The voting-

like average scheme greatly suppresses errors that can-
not be coherent in multiple frames and enhances credible
estimates. Thirdly, we propose the anisotropic smoothing
scheme to provide proper regularization for all pixels based
on the structure profiles.

Limitation and Future Work Our method needs reasonable
depth initialization. If, for one region, its initial depth esti-
mation is consistently wrong for all frames, the following
refinement would not improve it much. Our future work in-
cludes the extension to unrectified videos and acceleration
using GPU.
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Fig. 19 Novel-view synthesis for frames 76–80 of the Fish sequence. The 1st row: initial depth. The 2nd row: depth after sub-pixel continuous
optimization
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Appendix A

We give the details of solving the Euler-Lagrange equation
(21):

0 = ôd

∑

k

Γ ′((ε[k]
d

)2) · ε[k]
d f

[k]
dh + 2αdΔd

− βddiv
(
Γ ′(∇dT D(∇fI )∇d

) · D(∇d)∇d
)
.

With the applied anisotropic diffusion tensor, the smooth-
ness term involves dhh, dvv , and dhv , which relate several
neighboring points. We use the indices in Fig. 20 to repre-
sent the 2D coordinates: d1 = d(i + 1, j + 1). q is used to
index the current point (i, j). We apply central difference
in the second order derivative computation. Specifically, we
introduce function ζ(·) expressed as

(ζdh)h :=
(

ζ2 + ζp

2

d2 − dq

hh

− ζ6 + ζp

2

dq − d6

hh

)/
hh,

(ζdv)h :=
(

ζ2 + ζp

2hhhv

d0 + d1 − d3 − d4

4

Fig. 20 Indices for the 2D
coordinates

− ζ6 + ζp

2hhhv

d0 + d7 − d4 − d5

4

)
.

(ζdv)v and (ζdh)v are defined similarly. Then we discretize
a grid with size hh × hv to apply Gauss-Seidel relaxation.
By defining

rh = (
f 2

∂v + (1 − C̃)f 2
∂h

)
/
(‖∇fI‖2 + ε

)
,

rv = (
f 2

∂h + (1 − C̃)f 2
∂v

)(‖∇fI‖2 + ε
)
,

rh1 = rh(i + 1, j + 1),

rc = −C̃f∂hf∂v

‖∇fI‖2 + ε
,

we represent the anisotropic factors in simpler forms. The
increment Δd can be computed using the following itera-
tions:

Δdp = b/a,
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a = ôd

∑

k

Γ ′((ε[k]
d

)2) · (fh)
2 + 2αd + βdg1(d),

where N is the set of neighboring pixels, Nh(q) = {2,6},
and Nv(q) = {0,4}. Further, g1 is defined as

g1(d) =
∑


∈{h,v}

∑

p∈N
(q)

Γ ′
sdqr
q + Γ ′

sdpr
p

2h2

,

and b can be derived as

b = −ôd

∑

k

Γ ′((ε[k]
d

)2) · fhfz + βdg2(d),

where

g2(d) =
∑


∈{h,v}

∑

p∈N
(q)

Γ ′
sqr
q + Γ ′

spr
p

2h2


(
dp − d(0)

q

)

+
∑

p∈{0,2,4,6}

Γ ′
sr rcp + Γ ′

sqrcq

2hhhv

× (dp−2 + dp−1 − dp+1 − dp+2)

4
.

p = p mod 8. To facilitate computation, we adopt a stan-
dard non-linear multi-grid numerical scheme (Bruhn and
Weickert 2005) to accelerate convergence. The Gauss-Seidel
relaxation works as the pre- and post-smoother, which is ap-
plied twice in each level.

Appendix B

After discretization, the linear equations to approximate Eq.
(20) can be easily derived. Δu, Δv, and Δδd are iteratively
refined, by fixing the other two variables during update. It
leads to the Gauss-Seidel relaxation, written as

Δu = bu/au,Δv = bv/av,Δδd = bδd/aδd

where

au = Cu + 2αu + βug1(u)

bu = −D−u + +βug2(u)

av = Cv + 2αu + βug1(v)

bv = −D−v + βug2(v)

aδd = Cδd + 2αuôu + βug1(δd)

bδd = −D−δd + βug2(δd)

Cu = ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2) · (frh − flh)
2

+ ôuΓ
′((ε[k]

L

)2)
f 2

lh + ôd ôuΓ
′((ε[k]

R

)2)
f 2

rh

D−u = ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2) · (ε[k]
R − ε

[k]
L

)
(frh − flh)

+ ôuΓ
′((ε[k]

L

)2)
ε
[k]
L flh + ôd ôuΓ

′((ε[k]
R

)2)
ε
[k]
R frh

− CuΔu

Cv = ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2) · (frv − flv)
2

+ ôuΓ
′((ε[k]

L

)2)
f 2

lv + ôd ôuΓ
′((ε[k]

R

)2)
f 2

rv

D−v = ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2) · (ε[k]
R − ε

[k]
L

)
(frv − flv)

+ ôuΓ
′((ε[k]

L

)2)
ε
[k]
L flv + ôd ôuΓ

′((ε[k]
R

)2)
ε
[k]
R frv

− CvΔv

Cδd = ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2)·f 2
rh + ôd ôuΓ

′((ε[k]
R

)2)
f 2

rh

D−δd = ôd ôu

∑

k

Γ ′((ε[k]
R − ε

[k]
L

)2) · (ε[k]
R − ε

[k]
L

)
(frh)

+ ôd ôuΓ
′((ε[k]

R

)2)
ε
[k]
R frh − CδdΔδd.

g1,g2 are functions defined in Appendix A. The Gauss-
Seidel iteration is accelerated by a non-linear Multi-grid nu-
merical scheme similar to the one to compute disparities in
Appendix A.
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