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Scale Adaptive Dictionary Learning

Cewu Lu, Member, IEEE, Jianping Shi, Student Member, IEEE, and Jiaya Jia, Senior Member, IEEE

Abstract—Dictionary learning has been widely used in many
image processing tasks. In most of these methods, the number of
basis vectors is either set by experience or coarsely evaluated
empirically. In this paper, we propose a new scale adaptive
dictionary learning framework, which jointly estimates suitable
scales and corresponding atoms in an adaptive fashion according
to the training data, without the need of prior information.
We design an atom counting function and develop a reliable
numerical scheme to solve the challenging optimization problem.
Extensive experiments on texture and video data sets demonstrate
quantitatively and visually that our method can estimate the
scale, without damaging the sparse reconstruction ability.

Index Terms—Dictionary learning, sparse coding, sparse
representation, image restoration.

I. INTRODUCTION

PARSE dictionary learning [1] aims to construct dictio-

naries according to specific input visual data. It gives rise
to sparse representation of images patches or video volumes
using only a few atoms and has become very popular in these
years as it can be employed in solving many image processing
problems [2]-[7].

A dictionary contains many atoms in general. Its scale is
highly variable, ranging from hundreds to hundreds of thou-
sands in different applications. Experienced developers need a
few tryouts or fix it to a number s/he feels comfortable with.
For example, in [1], [5], and [8], the scale is set according to
experience. In [9], three different dictionary scales are tested.

In terms of scale determination, previous approaches are
either time consuming or requiring extensive knowledge. It
is especially inconvenient when dealing with applications
that involve processing large-scale data or learning many
dictionaries at the same time.

For example, in texture synthesis illustrated in Fig. 1,
texture data have different dictionary scales, which depend on
how informative structures are. For the simple brick texture,
23 dictionary atoms are enough to describe structure variation.
On the contrary, for the “crowd” image, its complex patterns
lead to a dictionary with 189 atoms. These numbers are not
intuitive for humans to be aware of. If the dictionary scale can
be determined automatically during optimization, visual data
can be processed effectively without needing extensive human
experience or prior knowledge.
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Fig. 1. Two images and their suitable dictionaries used in example-based
inpainting and image completion.

Fig. 2. A texture image and its patch dictionary constructed in [2].
The patches whose correlation is larger than 0.99 are marked with the same
color.

It has also been found if the scale of a dictionary deviates
much from what it should be, the resulting atoms may not
be sufficiently informative or contain many similar or even
repeated atoms. The latter case could slow down the testing
procedure. An example in Fig. 2 demonstrates that the method
of [2] could suffer from redundant atoms.

Bayesian sparse models [10] were developed aiming to
learn dictionaries in a non-parametric way. Inferring dictio-
nary scales is also achievable. But, as pointed out in [11],
these methods may not know whether the Bayesian model
is appropriate or not for the data at hand. Further, they
generally take heavy computational costs. Ramirez ef al. [11]
employed the Minimum Description Length (MDL) principle
to estimate dictionary size using an enumeration scheme.
It estimates all possible dictionary scales from one to the
maximum value allowed. When the latent dictionary scale is
large, this enumeration scheme is not that efficient. Moreover,
both Bayesian sparse [10] and MDL [11] models cannot avoid
identical and very similar atoms theoretically.

In this paper, we propose a Scale Adaptive Dictionary
Learning (SADL) method. Unlike enumeration in MDL [11],
it is a unified framework to learn the sparse dictionary rep-
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Fig. 3. In sparse linear combination of basis vectors, coefficients a can
measure whether one basis vector is used or not. An Atom Indicator Vector
(AIV) @ j contains all coefficients in a red rectangle corresponding to basis d;.

resentation and determine the appropriate number of atoms
simultaneously, which has a dissimilarity lower bound for any
two atoms theoretically.

Our main contribution is threefold. First, we enable the
learnt dictionary scale automatically adaptive to the input data
by introducing Atom Indicator Vectors (AIVs) to describe
the compactness of output atoms. Second, we prove that our
model can lead to a compact dictionary with a nonzero atom-
wise distance lower bound. Third, we utilize the Multivariate
Moreau Proximal Indicator (MMPI) penalty to solve for SADL
efficiently. Our extensive experiments in different visual data
manifest that our learnt dictionaries preserve good reconstruc-
tion ability and their scales are appropriate.

II. ANALYSIS AND FORMULATION

In this paper, matrices, vectors and sets are in bold capital,
bold lower-cased and calligraphic fonts respectively. For a
dictionary matrix D, d; denotes the i-th column (i.e., an atom)
and d ; denotes the j-th row.

Typical dictionary learning is formulated as

n

1 1
in  E(D,A) £ - —IDa; —x; 1|3 4 Alleilli > (1
pmin - ED,A) £ ;[zn o; = xill5 + Alleilli 5 (1)
where / is a regularization parameter. X = {x1, ..., X,} is the
training data set with sparse coefficients A = {ay, ..., a,}

over dictionary D in R”*¥_ | Det; —x; ||% is the data fitting term
whereas |le¢;||1 is sparsity regularization. The problem can be
solved via alternatively solving for D and A. Dictionary D is
restricted to a closed convex set D following the setting in [9]:

DE2DeR™ 51 Vji=1,.. .k dld;<1}.

In Eq. (1) the size of the dictionary is a free parameter.
Originated in the well known model selection criteria, such
as AIC and BIC [12], we introduce a model scale penalty. In
signal processing, scale penalty is described by a row-sparse
norm [13]. We alternatively make use of the corresponding
response from A and define Atom Indicator Vectors (AIVs)
@ = [o1j,...,0m ;] (1 < j < k), where a;; is the j"
element of «;. It is illustrated in Fig. 3. AIVs can measure the
importance of individual basis with the count of zero elements.
To utilize this clue, we update the original dictionary learning
framework to

k
ED, A) + x> 1@)), 3)

min
De ;
Jj=1

)
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where Zl;zo I(aj) imposes dictionary scale penalty and u is
a balance parameter. The indicator function is defined as
1@) = || e
otherwise

It outputs 1 for non-zero vectors. Hence, the sum of the indica-
tor functions for all AIV elements, expressed as ZIJC-:] I(a)),
can represent the number of the atoms that are indeed used.

Note that we do not assume that a dictionary originally
contains zero vectors. Instead, the objective function within
Eq. (3) can automatically control the number of non-zero
AlVs in optimization. The linear sparse representation can
be adjusted in scale by penalizing le‘-:ll(&j). We name
this method as Scale Adaptive Dictionary Learning (SADL).
We note that previous model selection methods, such as AIC
and BIC [12], aim to compare models. They cannot directly
estimate a scale.

A. Dictionary Compactness and Scale Adaptation

High dictionary compactness makes learnt atoms discrimi-
native. There are approaches, such as [14], that add extra dis-
criminative terms to accomplish this goal. But these methods
still pre-define the dictionary size, independently from the data
at hand. Our framework can ideally capture this compactness
property. We prove in what follows that it can avoid identical
or very similar atoms in dictionary learning. We also show
that the Euclidian distance between any two learnt atoms in
our results has a nonzero lower bound. These conditions have
never been discussed in this field. They are also not necessarily
satisfied in prior models.

Theorem 1: Assuming {D*, A*} is the optimal solution of
Eq. (3), any two atoms d and d* with I(&}) = 1 and I(a}}) =1
must satisfy

nui?
K2’
where ¢ = 2?21{%”7‘1'”%} andx = 1+ %
The proof is given in the Appendix. Theorem 1 indicates
that when u = 0, Eq. (3) degrades to the traditional dictionary
learning model expressed in Eq. (1). Given a non-zero ,
Theorem 1 ensures a dissimilarity lower bound for any two
atoms, making the learnt dictionary compact.

2
Idy —dyliz >
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III. MULTIVARIATE MOREAU PROXIMAL INDICATOR

The objective function in Eq. (3) involves multivariate
indicator terms I(af;). We introduce a novel Multivariate
Moreau Proximal Indicator (MMPI) penalty Y'(a) to avail
optimization. The MMPI penalty is defined as

Y (@) = min{plla -t + 1(1)}. (5)

If p is sufficiently large, MMPI approaches the multivariate
indicator function I(e;). To facilitate description, we plot the
penalty of Y, in 1D and 2D under different p in Fig. 4. The
peak gets sharper with a larger p. When p = 1000, Y, is
nearly identical to the multivariate indicator function I.

With the MMPI penalty, we can optimize the problem
with a suitable model scale. Also, the MMPI penalty is quite
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different from the Moreau proximal mapping discussed in [15],
which involves only univariate indicator functions whereas our
MMPI is a multivariate model. We give in Lemma 1 the MMPI
solution. That lemma enables optimization in a very nice form.

Lemma 1: The solution to the MMPI penalty Y,(a) in
Eq. (5) is with the form

pllal} if fal3 < 1/p,
Tp(@) = 1 2 otherwizse ©)
Proof: We discuss two situations.
« When t = 0,, it equals to plla|3.
e When t # 0,, the optimum is reached when t = a. In
this case, Y, (a) = min¢{p|la — t||% +1}=1.
In summary, ifp||a||% <1,wegetY,(a) = p||a||%. Otherwise,
Y,(a) = 1. [ ]

IV. OPTIMIZATION

We approximate the multivariate indicator term I(a;) by the
MMPI penalty Y, (a;) in Eq. (3) and obtain function

1 n k
in — Da; — x5 + Alle; Y,@;). (7
D‘e%r,‘m;{” @ — x5+ ||ozl||1}+u;1 ,@)). (7)

It now can be solved efficiently in a two-step scheme, which
optimizes D and A alternatively. The two steps are referred
to as dictionary update and dictionary selective sparse coding
respectively.

A. Dictionary Update

Given the estimated .4 in the previous step, we solve

n

1 1
in L(D) = min — —IDe; — x; |13} . 8
min (D) Slé%nizzliz” o x,nz] 8)

We resort to the classical first-order projected stochastic gra-
dient descent algorithm [16] to compute D. It updates D
iteratively. In each iteration,

D =[]D -4 VpLD)],
D

where d; is the gradient operator, and [[p represents the
projector to refine the dictionary in set D.

B. Dictionary Adaptive Sparse Coding

With the estimated D in the above step, we minimize .4 by
solving

11 ) o
mjngg{znnui—xi||2+1||ai||1}+uZTp(a,->. ©)
= J

According to the definition of Y,(-) in Eq. (5), we rewrite
Eq. (9) as
in L [ S01Da - x4 2l
min — o — X; o;
A n = i il il
k
i ;-G +1dn}. o
+umT1n];[p||a, JI+IE]]. (10)
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We provide its equivalent formulation as
1 n
min — Do; — X [|5 + Alle;
min {?” = xil3+ 2l ]
k
+u Y lplaE -~ G+ 1E) A

J=1

Similar to & j,/t\j is the corresponding row vector in T, and
t; is the column vector. It holds that T = [?b ... ,/t\k]T =
[t1, ..., t,].

Since there are two variables 4 and T in Eq. (11), we
decompose the problem into two sub ones, both of which have
closed form solutions.

1) Updating A: We ignore the constant terms with respect
to A in Eq. (11). The objective function becomes

k

1L .
min > (1D = x;[3 + Allei)ll}+u D pla; =413
i=l1 j=1

1 n
= min — > {|Da; — x5 + Allet; F—tl13). (12
H,lcl\nni_l{” o — X3 + Alleilly +nuplle; — tillz}. (12)

Functions for different i are independent. We thus solve each
separately as

min [Da; — x5 + Allei |1 +nppllei — til3. (13)

It is a combination of quadratic term and £! sparse term, this
formation can be solved by iterative shrinkage and threshold-
ing method [17] efficiently.

2) Updating T: We ignore the constant term with respect
to T in Eq. (11) and solve

k

min " plla; -5 + I(E).
tlETj=0

(14)

It can be decomposed to k independent functions with respect
to index j. Without loss of generality, we discuss how the j*
problem is solved, which is

rr%inpua,- — 13 +I(t)). (15)

J

It is a standard MMPI penalty, and can be directly solved via
Lemma 1.

C. SADL Framework Summary

In summary, starting with a random D, we apply
Algorithm 1. In the inner iteration of {.A, T}, when the energy

I (1
E,D, AT =~ {SIDe; x5 + Ao 1

i=

k
+u D Iplld; =15 +1@)] (16)
j=1
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Fig. 4. 1D and 2D plots for Y, under different ps. A larger p corresponds to a smaller aperture in the plot. (a) p = 5. (b) p = 10. (¢) p = 100.
(d) p = 1000.
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Algorithm 1 Scale Adaptive Dictionary Learning (SADL)

input: input data {x1,...,x,}; regularization parameters \

and p
initialize p = 1, ¢ = 1; generating D, randomly.
repeat

TO = thl’ .AO = .Atfl 5 1 =0

repeat

with T?~!, solve for A% in Eq. (13);
with A%, solve for T? in Eq. (15);

t=1+1
until £,(D,_ 1,TZ A?) converge;
T, =T, A, = A%

with A;, D;_1, solve for D; using gradient descent
algorithm [16];
p—2pt=1t+1;

until D; converge or p > 10°

D* = Dt, T>k = Tt

return atoms {dj|I(/t\;k) =1} forVj=1,...,k.

reaches its limit, the system terminates. The final dictionary
consists of atoms {d}’fII(t;’f) = 1}. The scale is automatically
adaptive to input visual data.

D. Analysis and Discussion

1) Convergence Analysis: In Algorithm 1, we increase p
gradually in iterations as shown in Fig. 5. This scheme, com-
pared to fixing p as a large value, warms up the optimization,
and has the effect to pull results out of local minima.

P

p increases gradually in iterations to make Y(-) approach I(-).

According to Eq. (6), the distance between .4 and T reduces
in iterations, whose upper-bound in " iteration is
1
<2
where p; is the value of p in the ¢'" iteration. With improved
A and T, D is updated until convergence.

2) Parameter Discussion: Parameter A controls the sparsity.
Its value is in 0.2 ~ 0.3. Its empirical validation on visual data
is presented below. u is the regularization strength. Its effect is
to exclude atoms that are least used in the training data. Even
if its value is fixed, scale can still be automatically adaptive.
Empirically, we set u = 0.002 in our experiments.

1
—,0 17)
Pt

t’h

la; — €13 <m1n{

V. EXPERIMENTS

We conduct extensive experiments to verify our model.
In qualitative evaluate, we define “safe dictionary”
and “85%-dictionary.” Safe dictionaries are trained via
the traditional method [1], which are with double the
number of atoms than those produced in our method. If our
dictionaries are similarly effective as these safe ones, our
learnt dictionary is regarded as complete. Meanwhile, we
train dictionaries with 85% of the size determined by our
method. We call them 85%-dictionaries. If reducing 15% of
the atoms significantly increases sparse reconstruction errors,
it is obvious that our estimated scale is very close to the
lower bound that a dictionary needs to be with.

A. Evaluation on Synthetic Data

This experiment is to manifest that our proposed approxi-
mation algorithm solving Eq. (19) can be very similar in terms
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Fig. 6. (a)—(g) are the seven texture examples with increasing complexity.
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Fig. 7.
(f) 103. (g) 189.

TABLE I
COMPARISON OF SCALES COMPUTED BY THE TWO MODELS

[ Ground Truth Scale s ][ 10 [ 50 [ 100 [ 150 [ 200 |

Ideal model Eq. (18) 11 | 56 | 113 | 159 | 216
Approximation Eq. (19) 13 | 62 | 124 | 166 | 235

of performance to the ideal model in Eq. (18).

I 5 koo
min j;;{nnai —xiuz+ﬂ||ai||1}+uzll(a,-). (18)
= j=

1 n k
in — Da; — x;||3 + Alle; Y,@;). (19
Drenll)r,lAni_Zl{” @ —x;|I3 + ||a1||1}+uj; ,@j). (19)

We randomly generate a dictionary D € R!0*S and the
sparse coefficients [« 1, . .., &, ] with 20% sparsity ratio, where
n = 40000 and the dictionary scale s is chosen under
different levels from 10 to 200. Our data are generated via
x; = Da; + & (1 < i < n), where & is the additive Gaussian
noise (SNR = 30 dB).

We compare the results produced using the two models
under different dictionary scales s. We achieve the solution of
Eq. (18) by exhaustively trying all possible scales and finding
the best one that gives a small reconstruction error. The results
are demonstrated in Table 1. It shows that the results from the
two models are close enough.

We compare our estimates with those of [11] and [10] with
ground truth dictionary scales s ranging from 10 to 1600. The
estimation errors are listed in Table III. It shows our estimates
are generally more accurate in terms of scales.

Our solver performs favorably with regard to running time.
This is because MDL [11] adopting enumeration takes heavy
computation as the dictionary scale grows and BDL [10] has to

Dictionaries trained on textures in Fig. 6. Atoms increase from left to right. The numbers are the scales of D. (a) 23. (b) 41. (c) 64. (d) 76. (e) 82.

TABLE II
ESTIMATED DICTIONARY SCALES ON THE 25 MTC SETS

[(MiCset [ T [ 2 [ 3 [ 415161 7]

|DJ 52 93 135 | 164 | 172 | 182 | 201
MTC set 8 9 10 11 12 13 14

D] 232 | 277 | 315 | 346 | 384 | 425 | 462
MTC set 15 16 17 18 19 20 21

D] 493 | 522 | 551 | 560 | 578 | 599 | 618
MTC set 22 23 24 25

[ D] [ 666l [677]702] [ [ |
30
30
5% 5
o D20
2 2
w 10 w o
0 10 15 20 0 10 15 20
Iterations Iterations
(a) (b)

Fig. 8. (a) and (b) demonstrate the energy change during optimization for
textures in Fig. 7(a) and (b) respectively. Energy decreases quickly in both
examples.

repeatedly solve optimization problems. We list running time
of the three methods on a PC (CPU 2.80GHz, RAM 2.96GB)
in Table IV. Our method is more efficient due to much less
iterations in optimization being performed.

B. Texture Experiments

Sparse representation is very useful in solving many texture-
involved problems, such as texture inpainting, synthesis, and
classification [18], [19]. We first use them to evaluate our
method. In general, structure complexity of texture or the
amount of information stored can be coarsely perceived. For
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TABLE III
ESTIMATION ERRORS |s* — s|/s FOR EACH METHOD, WHERE s* AND s ARE ESTIMATED AND GROUND TRUTH SCALES RESPECTIVELY

[ Ground Truth Scales s [ 10 | 50 [ 100 | 150 | 200 | 400 | 600 [ 800 | 1000 | 1200 | 1400 | 1600 | Average |
MDL [11] scale error (%) 30.0 | 32.0 | 35.0 | 26.6 | 245 | 227 | 155 | 193 19.2 17.5 16.2 23.3 23.5
BDL [10] scale error (%) 20.0 | 28.0 | 32.0 | 233 | 225 | 182 | 195 | 17.7 18.6 19.0 21.3 24.6 22.0
Our SADL scale error (%) 30.0 | 24.0 | 240 | 106 | 175 | 102 | 11.6 | 12.7 12.9 11.9 10.7 13.9 15.8

TABLE IV
RUNNING TIME UNDER DIFFERENT SCALES
["Ground Truth Scale s [| 10 | 50 | 100 | 150 | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 | 1600 |
MDL [11] (hours) 0.05 | 029 | 0.56 | 1.10 | 1.95 | 3.75 | 454 | 532 | 5.20 7.54 8.21 9.38
BDL [10] (hours) 1.37 | 219 | 348 | 333 | 395 | 452 | 505 | 6.13 | 6.55 7.24 7.45 8.29
Our SADL (hours) 0.07 | 0.12 | 0.21 | 0.25 | 0.29 | 042 | 0.57 | 0.59 | 0.63 0.67 0.73 0.78
TABLE V

AVERAGE RECONSTRUCTION ERRORS WITH VARYING SPARSITY IN FIG. 6. “SPARSITY” IS MEASURED AS THE RATIO OF NON-ZERO ATOM NUMBER
TO THE TOTAL NUMBER N LEARNT AUTOMATICALLY BY OUR METHOD. “SCALE” DENOTES THE NUMBER OF DICTIONARY ATOMS.
WE COMPARE OUR RESULTS TO THOSE WITH DICTIONARY SIZES PRE-DEFINED AS 2N AND 0.85N

Sparsity Scale | Texture 1 | Texture 2 | Texture 3 | Texture 4 | Texture 5 | Texture 6 | Texture 7

N 0.5388 1.3144 1.7752 1.2959 0.4135 0.7590 1.0292

10% 2N 0.5144 1.2841 1.6594 1.2863 0.3910 0.7422 0.9609
0.85N 0.8568 1.7937 2.3220 1.6851 0.6163 1.0399 1.4658

N 0.4511 1.2949 1.6571 1.2326 0.4056 0.7503 0.9327

20% 2N 0.4346 1.2354 1.5830 1.2100 0.4034 0.7274 0.9035
0.85N 0.7413 1.7917 2.2879 1.6741 0.6060 1.0122 1.3758

N 0.3643 1.2242 1.5512 1.1740 0.4104 0.7060 0.8910

40% 2N 0.3599 1.2077 1.4852 1.1647 0.3940 0.6958 0.8536
0.85N 0.5892 1.7597 2.0988 1.6153 0.5719 0.9744 1.3286

TABLE VI

MEAN, VARIANCE, MINIMUM, AND MAXIMUM OF 100 ESTIMATED
SCALES PRODUCED WITH DIFFERENT INITIALIZATION
FOR EACH TEXTURE EXAMPLE

@ | ® | © | @ | (e () (g
Mean 229 | 41.0 | 63.8 | 759 | 82.1 | 103.0 | 188.9
Variance 0.19 | 0.13 | 023 | 0.13 | 0.16 | 0.21 0.20

Minimum 24 42 66 78 83 105 191
Maximum 22 40 63 74 80 101 187

TABLE VII
SCALE ESTIMATES UNDER DIFFERENT 4 ON THE SEVEN TEXTURES

Al@I® [©]W@W]E ][ O | @
0.1 23 | 41 | 64 | 76 | 82 | 103 | 189
02 || 23 | 41 | 64 | 76 | 82 | 103 | 189
0.3 23 | 41 | 64 | 76 | 81 | 103 | 189
04 || 23 | 41 | 63 | 76 | 81 | 102 | 188

1) Performance With Different Starting Points: We use a
random dictionary for initialization. Experiments have been
conducted to evaluate how sensitive our algorithm is to
different starting points. For each texture in Fig. 6, we
randomly generate 100 different initial dictionaries, starting
from which we produce our results. Statistics are listed
in Table VI.

2) Parameter Setting: Two parameters A and u are allowed

Fig. 9. Inpainting results. First row: damaged images. Second row: inpaint-
ing results using our dictionaries. Third row: inpainting results using safe
dictionaries. Fourth row: inpainting using 15% smaller dictionaries.

example, in Fig. 6, the left most texture is apparently less
complex than the right most ones. So the dictionary size
should increase accordingly. In our experiments, we resize

texture images to 400 x 400 pixels. Patches in each image are
regularly sampled with size 16 x 16 in an overlapping manner.
We compare the resulting dictionary scales and conduct
inpainting to evaluate our method.

to vary in our method. We show how results are influenced
in Tables VII and VIII. These statistics manifest that our
method is not vastly sensitive to these parameters when they
are reasonably set and thus can use fixed values in general.
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TABLE VIII
SCALE ESTIMATES UNDER DIFFERENT y ON THE SEVEN TEXTURES

p @ ® O] @[] 0@
0.0005 23 41 65 77 83 104 189
0.001 23 41 64 76 82 103 189
0.002 23 41 64 76 82 103 189
0.004 23 41 64 76 82 103 189
0.008 23 41 63 76 81 103 188
0.016 23 40 62 75 81 102 | 188

TABLE IX
ESTIMATED DICTIONARY SCALES BY BDL AND OUR
METHOD ON THE SEVEN TEXTURES

(@ | () | © | d | @ | B | (@
SADL 23 41 64 76 82 | 103 | 189
BDL 198 | 211 | 230 | 212 | 241 | 237 | 244

3) Scale Adaption Evaluation: We apply our method to a set
of texture images in Fig. 6. Our experimental results manifest
the intuition that the left- and right-most dictionary sizes vary a
lot. For the simple brick texture, 23 basis vectors are enough
to describe structure variation, as shown in Fig. 7. For the
flower image, the texture has more details. Its dictionary size
accordingly increases to 76. Finally for the crowd texture,
although its resolution is small, the many details lead to
a dictionary with 189 atoms, complying with our visual
intuition. For each texture, we have 10, 000 training patches;
the average training time for each texture is 5.90 minutes.

In quantitative evaluation, we calculate and compare average
sparse reconstruction errors %ZLI Ix — Dﬁ||% for all the
patches. They are listed in Table V. They indicate that our
dictionaries are complete and their scales are close to the lower
bounds that the dictionaries need to be with.

We have also experimented with a larger-scale texture
dataset [20], which contains 25 texture classes and 40 samples
in each class. We index the texture class from 1 ~ 25 and
define 25 mix-texture class (MTC) sets where the i’" MTC set
includes all textures from class 1 ~ i — that is, the i MTC
is a subset of (i + 1)’ MTC. For each MTC, the number of
training patches is fixed to 50000; all texture classes contribute
equally to the samples. The estimated dictionary scales by
our method are shown in Table II. With the increase of patch
structure variety, our dictionary size grows from MTC 1 to 25
steadily.

The convergence is guaranteed in our method. In applying
patch-based dictionary learning to texture images, the energy
in Eq. (7) decreases quickly within a few iterations, as shown
in Fig. 8.

Non-parametric Bayesian dictionary learning (BDL) [10]
can also estimate the dictionary scale as a byproduct. It is
notable that the dictionary compactness cannot be guaranteed
in this method. We compare BDL with our SADL framework
on 7 textures on texture reconstruction based on dictionary
learning. The code of BDL is provided by the authors. Default
parameters are used. Initial atom number is set to 256. The
compared result is shown in Table IX. Our estimated dictio-
nary scales are much smaller. We also plot the reconstruction
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Fig. 10.  (a) Sparse reconstruction errors of our dictionaries and those of

BDL under the same sparsity degree on the left most brick texture in the seven
textures examples. (b) A dictionary learned by BDL for the brick texture.

(b)

Fig. 11.

(a)—(f) are six human action samples in [21].

errors for texture in Fig. 10(a). The reconstruction errors on
100 randomly selected patches are comparable. Fig. 10(b)
shows a resulting dictionary by BDL. Our method can achieve
smaller dictionary scale in comparison to BDL under compa-
rable error reconstruction.

4) Texture Inpainting: We visually compare the sparse
reconstruction results in texture inpainting using our dictionar-
ies and the safe dictionaries with double the number of atoms.
Reconstruction coefficients of the damaged texture patches are
computed via minimizing %Hm < (xi —=DB)II+ AlB; 11, where
m is a mask vector to indicate whether a pixel is missing or
not. The operator - is element-wise multiplication. The two
methods produce almost identical results, as shown in Fig. 9.
When using dictionaries with scale 85% of our estimated
ones [1], the results are worse.

C. Human Action Recognition

Sparse dictionary learning was used in human action recog-
nition [22]. We adopt the spatio-temporal interest point detec-
tor proposed by Dollar et al. [23]. The dense features are
extracted following the procedures in [22] and [23]. Then
samples of training and testing data are the extracted motion
dense features in the video interest points. For those color
dataset, we convert the RGB frame to gray scale one using
[24].

1) Scale Adaption Evaluation: Our goal is to learn a human
action dictionary from videos containing several actions. We
use the KTH dataset [21], containing six types of human
actions (walking, jogging, running, boxing, hand waving,
and hand clapping) in the outdoor and indoor environment.
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TABLE X
AVERAGE RECONSTRUCTION ERRORS FOR THE VIDEOS. THE CONFIGURATION IS THE SAME AS THAT IN TABLE V

Sparsity Scale Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
N 4.4024 | 43508 | 4.4226 | 4.3875 | 4.7437 | 4.6660
10% 2N 43828 | 4.2855 | 43596 | 4.3037 | 4.5059 | 4.5944
0.85N | 5.5022 | 52941 | 5.3583 | 4.9569 | 5.6816 | 5.5166
N 3.9207 | 3.7306 | 3.7425 | 3.6357 | 4.0633 | 3.7027
20% 2N 3.8544 | 3.6324 | 3.5243 | 3.5579 | 3.9122 | 3.4536
0.85N | 45134 | 45975 | 4.4294 | 477406 | 4.7985 | 4.3366
N 3.1611 | 3.3353 | 3.1249 | 3.3639 | 3.8236 | 3.5409
40% 2N 3.1581 | 3.2992 | 3.0244 | 3.2593 | 3.6750 | 3.3797
0.85N | 3.8711 | 4.1526 | 3.9902 | 4.2405 | 4.5636 | 3.9535
TABLE XI TABLE XIIT
ESTIMATED DICTIONARY SCALES ON THE S1X MAV SETS RECOGNITION RATES
MAV Set 1 2 3 4 5 6 safe dictionary | 85%-dictionary ours
Estimated |D| 245 | 402 | 519 | 644 | 729 | 796 KTH 93.08% 87.83% 93.17%
Weizmann 92.10% 86.71% 92.05%
TABLE XII

ESTIMATED DICTIONARY SCALES BY BDL AND OUR
METHOD ON THE S1X MAV SETS

MAV set set 1 | set2 | set3 | set4d | set5 | set6
SADL 245 402 519 644 729 796
BDL 1067 | 1124 | 1349 | 1452 | 1556 | 1560

Traditionally, finding suitable dictionary scales need tryouts
in this task.

A few examples are shown in Fig. 11, selected from the 589
short sequences. We index the actions from 1 — 6. We define 6
mix-action video (MAV) sets similar to that for MTC: the i'"
MAV set includes all data for actions 1 ~ i. The estimated
dictionary scales using our method on the 6 MAV sets are
listed in Table XI. The tendency of increasing scales complies
with our understanding of information richness in the input
data. As the training set grows, scale increasing speed slows
down. It is because the added patches share some common
information with previous ones.

In quantitative evaluation, given learnt dictionary D, we
compare the average sparse reconstruction error % > lx—
Dﬁ||% for 1000 randomly selected motion features, where f;
is the i’ training sample x;’s sparse coefficients over D. The
sparse reconstruction errors are listed in Table X. They also
manifest that our results are complete and the estimated scales
are suitable.

We again compare BDL with our SADL framework. The
initial atom number for BDL is chosen as 2000 for MAV
dictionaries. We tabulate the result in Table XII. Our method
obtains more compact dictionaries.

2) Human Action Recognition: We implement the human
action recognition framework of [22], [25]. Following the
standard procedures, we compute an action descriptor z; by the
max pooling for the i'" video. yi € Y ={l1,..., L}is the label
for the i’ data. Then given the training data {z;,y;}, a linear
SVM is used to classify different human actions. We adopt
the Leave-One-Out scheme. Our experiments are conducted
on both the KTH dataset [21] and the Weizmann set [20].
The recognition accuracy using our learnt dictionaries, safe
dictionaries, and 85%-dictionaries is given in Table XIII. It is
noticeable that the recognition accuracy using our dictionary
and the safe one is very close. When the 85%-dictionaries are
used, the rates drop.

The detailed recognition accuracies on our learned dictio-
naries, “safe dictionary” and “85%-dictionary” are illustrate in
Fig. 12, represented by confusion matrices. Confusion matrix
is widely used in human action recognition to evaluate results
considering different actions. The element in the i"" row and
j™ column means the percentage of action i being classified
into action j. A good result is expected to have diagonal

elements close to 1.

D. Unusual Event Detection

We also demonstrate that unusual event detection can benefit
from our SADL method. This task needs to learn normal event
patterns. Then any incoming frame that is greatly deviated
from these normal patterns is labeled as unusual. Learning a
dictionary for each local region is a common choice. In our
experiment, we resize each frame to 120 x 160 pixels with
12 x 16 regular patches. So each patch is with 10 x 10 pixels.

Obviously, scales of dictionaries in different regions cannot
be identical, since normal event patterns vary from region to
region. We extract motion features following that of [26] and
learn a dictionary for each subregion. Unusual subregions are
those with the reconstruction error larger than a threshold (0.2
in our experiments). When the number of unusual subregions
in 3 consecutive frame exceeds 30, an unusual event is
detected. We test our method on two datasets, i.e., UCSD Ped1
dataset [27] and Subway dataset [28].

To demonstrate the scale adaption ability of our SADL
method, we report our learnt dictionary scales in different
subregions on the UCSD dataset in Fig. 13. In regions con-
taining tree structures, the motion pattern is mostly regular.
Therefore, a small dictionary is enough. On the contrary, the
road regions involve complex crowd motion, which requires
large dictionaries.

We compare our SADL with traditional dictionary
learning [9] that sets the same scale for all dictionaries for
different subregions. For fairness, we test setting a variety
of scales including 50, 100, 200, 400, and 800 for the
dictionaries. We report the results on the Subway dataset in
Table XIV. With automatic dictionary scale estimation, our
method runs faster and yields the more accurate detection
result. We also compare results on the UCSD Pedl Dataset.
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bend KM .00 .00 .00 .00 .00 .00 .00 .00 .00
jack | oo i) .00 .00 .00 .00 .00 .00 .00 .00
jump | 00 . .00 .09 .00 .00 .00
pjump |.00 . .00 .00 .00 .00 .00
run .00 .00 .00 .00 8 00 .00
side |.00 .00 .00 .00 . 00 .00
skip .00 .00 .14 .00 . 00 .00
walk |.00 .00 .00 .00 .00 .00 .05 [§ .00
wave1 |.00 .00 .00 .00 .02 .00 .00 . .09
wave2 |.00 .00 .00 .00 .00 .00 .00 .00 .

b Lol O, T Sy S ey Wy W,
ey K 0’,0/‘"%” % "% "oy %e}%ee

eoxJeE] .02 .00 .00 .00 .

.06 .00 .00 .

Handciap| . 05 |

Handwav|.04 .

"y

B A o, R
% Ry Uy % T4
P

(@)
Fig. 12.
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Recognition accuracy represented using confusion matrices. The first row is for the result in the KTH dataset; the second row shows the result

in the Weizmann dataset. In each confusion matrix, x-coordinate indexes ground truth action and y-coordinates are for different actions.(a) Our method.

(b) “Safe dictionary.” (c) “85%-dictionary.”
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Fig. 13.
scales in different subregions.

TABLE XIV

(a) Frame in the UCSD Pedl Dataset. (b) Reports learnt dictionary

True Positive Rate
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—p— PDS=800
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Fig. 14. ROC curve on the UCSD Pedl Dataset [27].

RESULT COMPARISON ON THE SUBWAY ENTRANCE VIDEO. “GT”

STANDS FOR GROUND TRUTH. “PDS” MEANS ALL

SUBREGIONS

HAVE THE SAME DICTIONARY SCALE. EVENTS INCLUDE WD

(WRONG DIRECTION), NP (NO PAYMENT), LT (L

II (IRREGULAR INTERACTIONS), ALL (SUM OF ALL
UNUSUAL CASES), AND FA (FALSE ALARM)

OITERING),

VI. CONCLUSION

We have presented a new model to automatically estimate
the dictionary size during learning. It involves Atom Indicator
Vectors (AIVs) to indicate if one basis is important or not
by evaluating the responses. The final function is solved by

approximating the novel dimension constraining term by a
Multivariate Moreau Proximal Indicator (MMPI) penalty. We
evaluate the effectiveness of our system using texture and
human action examples. They indicate that our estimated
dictionary scale is suitable. Our framework is general. It
could possibly benefit many image processing and computer

WD | NP | LT | I | misc | All | FA

GT 26 13 14 | 4 9 66 0
PDS = 50 20 7 12 | 4 7 50 | 27
PDS = 100 22 7 12 | 4 7 52 19
PDS = 200 21 8 11 4 7 51 11
PDS = 400 20 6 11 4 8 49 6
PDS = 800 20 7 10 | 4 7 48 5
Ours 23 9 12 | 4 8 56 5

correct scales.

We tune the threshold (number of unusual subregions) to plot

the ROC curve, given in Fig. 14.

These experiments show that scale adaptation for dictio-

nary learning is important. If the assigned

vision problems and helps save time and effort in finding

APPENDIX

Proof of Theorem 1: Assuming {D*, A*} is the optimal

scale is lower

than necessary, normal patterns may not be well represented,
resulting in more false alarms. On other hand, an overly
large dictionary may smoothly represent abnormal patterns,

increasing ambiguity. Note that hand-tuning these scales for

all regions is impossible.

where ¢ = Z;l:l{%HXiH%} and x =14 £

solution of Eq. (3), any two atoms d and d;; with I(a}) =1
and I(a}) = 1 must satisfy

nui?
Kp?’

I} — 35 > (20)

Vné
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Proof: The objective function for our model in Eq. (18)
consists of the following three parts, i.e.,

1 1
ExD, A) = — > {~IDe; — xi[13},
i=1

1 n
E,(D = - ill,
2D, A) = 2= fletill

i=1

k
E3(D, A) = u > 1@)).
j=l1
Here, E1(D, A) is the data fitting term, E> (A, D) is the sparse-
inducing term, and E3(A, D) is the dictionary scale penalty
term.
Suppose {D*, A*} is an optimal solution. We can construct
another solution {D*, AT} as

21

ai, taf, if j=u
“i+j: 0 if j=0 Vi=1,...,n. (22)
of otherwise

iJ
We discuss the relationship between {D*, A*} and {D*, A*}

with regard to the above three terms respectively. For the data
fitting term, we have

1 n
E\D*, A") = - 3 (IR +of, &} +af, di 15}, (23)
i=1

where R; = ZjeQ al’.kjd;f—xi, and Q is the index set excluding
u and v. Moreover, Eq. (23) is equivalent to
E1(D*, A%)

1 n
= 2 D IR + (o], + o)A} +af, (@ —dDI3). (24)
i=1

Given vectors a and b, the following inequality holds.
la+bl3 > llall3 — IbI3 — 2lla+bl2lbll2.  (25)

We can derive an inequality from the above three equations,
written as

1
E|(D*, A*) > E;(D*, A") — Ena:n%ndz —d:3
1 n
== 2 lal ] VE(D*, AN - d) — .
i=1
(26)

Given || - ||; an element-wise operator, the sparse term can be
written as

E>(D*, A%

1 .
= el = 2= @l
i=1 j=1

o s o
A;{Z AR A T
jeQ
S CATRA CA TR CARS-A TS
L _
= Ex(D%, A + 2 (@l + 1@ I

—[l@y + &1} > E2(D*, AT)

27)
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since the norm operator satisfies the triangle inequality

@ulls + ll&s 11 > [t + a1 (28)
For the dictionary size penalty term, we have
k

> 1@)H=y_1@;) + L@, +a,)+1@,)+1@,) — 1@, +a).
j=1 jeQ
We thus can write
E3(D*, AY)

= E3(D*, A") + p((@,) + 1(@) — 1@ +&u))

> E3(D*, A%) + u. (29)

since df and d; are selected as output dictionary atoms, it is
natural that I(a,) = I(a,) = 1, making

I(&U) + I(&u) - I(&U + &u) > 1~ (30)
Combining Egs. 26, 27 and 29, we obtain
1
E(D*, A") = E(D*, A") + p = (1@ 13]ld; — a7l
1 n
== 2 laf, ] VE(D, AN - dy — . 31)
i=1

As {A*, D*} is the optimum solution, it holds that E(D*, A*)—
E(D*, AT) < 0. Hence, we have
e 13 11d;; — df 13 + 20l 11/ Er (D%, A%)[[df — dlla>2np.
(32)
Eq. (32) involves both ||d} —dl”j||§ and ||d} —d||,. We simplify
it by computing the upper bound of ||d} — d¥|> as
Id;; —dyll2 < lldj 2+ Id) [l =2

— |ld; — d; 13 < 2/d; - dl2 (33)
Therefore, Eq. (32) can be reformulated as

(@13 + VEID*, A @il Id — il > nu.  (34)

What we need to do now is to estimate upper bounds of ||e; ||%,
loc|ly and E;(D*, A*). Further, there are two inequalities
expressed as

%Z {%lez-llﬁ} = E(D*, 0) > E(D*, A%)
i=1

A Ao
> E»(D*, A%) > ;H“;”l > ;IlOCZHz, (35)

1l
=3 {5113} = E®@",0) = E@*, 4% = E10*, A",
n o 2

(36)

where 0 is the matrix whose elements are all zeros. Combining
Egs. 32, 35 and 36, we get

2
f—2+§\/g)nd: —djl2 = nu, 37
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where ¢ = >"" | {21 [13}. It further leads to
2

xnl
I — djll2 > pe

where ¢ = Z,’-’:l{%llxl-llﬁ} and x = 1/(1+ JZ?)'

L. (38)
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