
Online Robust Dictionary Learning

Cewu Lu Jianping Shi Jiaya Jia

The Chinese University of Hong Kong

{cwlu,jpshi,leojia}@cse.cuhk.edu.hk

Abstract

Online dictionary learning is particularly useful for pro-

cessing large-scale and dynamic data in computer vision.

It, however, faces the major difficulty to incorporate robust

functions, rather than the square data fitting term, to han-

dle outliers in training data. In this paper, we propose a new

online framework enabling the use of ℓ1 sparse data fitting

term in robust dictionary learning, notably enhancing the

usability and practicality of this important technique. Ex-

tensive experiments have been carried out to validate our

new framework.

1. Introduction

Many signals and natural images can be represented as

a sparse linear combination of basis vectors over an over-

complete dictionary. Sparse coding and dictionary learning

have been widely employed in many computer vision tasks,

including image denoising [2], texture synthesis [10], and

image inpainting [8], as well as higher-level tasks such as

image classification [17] and unusual event detection [18].

A general framework for sparse dictionary learning is to

minimize the objective function

Q(Bn,D) =
1

n

n
∑

i=1

{f(Dβi − xi) + P(λ, βi)}, (1)

where xi ∈ R
p is the ith sample in set Xn = {x1, ...,xn}

and Bn = {β1, ..., βn}. In sparse representation, each xi

is a sparse linear combination over a set of basis vectors

from an over-complete dictionary D in R
p×q with its cor-

responding sparse coefficient βi. f(Dβi − xi) is the data

fitting term and P(·) is a sparsity penalty.

The traditional way to solve Eq. (1) involves steps to

update D and Bn iteratively until convergence. Recent on-

line strategies [8, 14] only update one βi for xi each time

in Bn. It is shown in [8] that this type of online solvers

can achieve comparable performance as the batch process-

ing scheme. It is because, in the training process, D can

be considered as a combination of statistical parameters for

Xn, which does not require complete history information in

D updating. We denote Θb as the batch dictionary estimator

and Θo as the online dictionary estimator. The two types of

dictionary learning are respectively expressed as

D
n
batch = Θb(xn,Xn−1),

D
n
online = Θo(xn,Dn−1).

In the online process, there is no need to record and process

Xn in each round. It combines current xn with D
n−1 that is

produced in previous iteration, statistically representable for

Xn−1. Thus, linearly increased computation and constant

memory consumption are resulted in as data size grows.

Online dictionary learning [8, 14, 13] is vastly useful for

applications that involve large-scale and dynamic data, such

as video sequences [11], for which traditional batch process

is not suitable.

All existing online dictionary learning methods do not

use the robust function in the data fitting term and might

be vulnerable to large outliers. In robust statistics, ℓ1 fit-

ting functions were found useful to make estimation reli-

able. This scheme has also been extensively adopted in

solving many computer vision problems. For example, in

[15], robust face recognition with ℓ1 data fitting can be ac-

complished even when the input faces are partly occluded.

A probabilistic robust matrix factorization method was used

in [16] to model background. Zhao et al. [19] applied robust

dictionary learning to background subtraction.

Online updating for objective functions with the ℓ1 fit-

ting error, unfortunately, is inherently challenging. To illus-

trate it, we use the simplest example with only the ℓ1-norm

operator expressed as

min
µ

n
∑

i=1

|xi − µ|.

The optimal µ is actually the median of {x1, ..., xn}.
This apparently simple form, unfortunately, causes tremen-

dous trouble for online processing because µn cannot be

quickly estimated given only the history result µn−1 =
median(x1, ..., xn−1) and incoming datum xn. There is

no direct relation between µn−1 and µn. So even with the

1

computed µn−1, finding µn may still require long computa-

tion time, losing all benefits brought by the online scheme.

This difficulty, in fact, stems from dissimilar differentiabil-

ity properties of the ℓ1- and ℓ2-norms. In the ℓ2-norm opti-

mization expressed as

min
µ

n
∑

i=1

(xi − µ)2,

online parameter estimator can be easily written as µn =
n−1

n
µn−1 + 1

n
xn. The problem tractability is grounded on

the fact that the derivative of the ℓ2-norm expression is a lin-

ear system with homogeneity, additivity, and superposition.

In contrast, the ℓ1 data fitting term is non-differentiable and

does not have a closed-form solution.

1.1. Our Contribution

We propose an online robust dictionary learning (ORDL)

algorithm. It addresses the aforementioned updating issue

by converting the problem to that of minimizing several

quadric functions iteratively, in which energies can be ex-

pressed in a simpler manner and their derivatives form a

linear system. Our ORDL approach takes the full advantage

of an online scheme – that is, it consumes constant memory

as data grow and takes time linear to the size of data. In

the meantime, it is very robust against outliers thanks to

the sparsity nature. Our method makes dictionary learning

more practical and usable in many computer vision applica-

tions, exemplified in this paper.

2. Our Approach

For a training set consisting of n elements X =
{x1, . . . , xn}, where each xi is normalized as zero mean

and unit variance, we assume that dictionary D belongs to a

closed, convex, and bounded set D as

D , {D ∈ R
p×q s.t. ∀j = 1, . . . , q, d

T
j dj ≤ 1},

where dj is the jth column of D. Previous online dictionary

learning [8, 14] is based on the function

min
D∈D,B

1

n

n
∑

i=1

{

‖xi −Dβi‖
2
2 + λ‖βi‖1

}

,

where B = {β1, , ..., βn}, and λ is a regularization param-

eter. Different from it, our robust dictionary learning is de-

fined as

min
D∈D,B

1

n

n
∑

i=1

{

‖xi −Dβi‖
1
1 + λ‖βi‖1

}

. (2)

As described in Section 1 and in [15, 19], ‖xi − Dβi‖
1
1

makes date fitting less vulnerable to outliers. We will

Algorithm 1 Online Robust Dictionary Learning

1: Input: signals X ={x1, . . . ,xn}, regularization pa-

rameter λ, initial dictionary D0, mini-batch data size

h
2: for each {xt−h+1, . . . ,xt} in X do

3: for j = t− h + 1 : t do

4: update β̂j = arg minβ
j

‖xj −Dβj‖
1
1 + λ‖βj‖1

5: end for

6: update Dt by combining Dt−h and {β̂t−h+1, . . .,

β̂t}.
7: t = t + 1.

8: end for

9: Return Dn.

present several applications later that can be profitted from

this model.

By tradition, online dictionary learning updates D and

robust sparse coding estimates B, which is achieved by iter-

ative reweighed least squares discussed in [19]. Algorithm

1 lists the steps.

In what follows, matrices are denoted by capital bold let-

ters. The ith row of A is A(i, :) and the ith column of A is

A(:, i). The entry of A in the ith row and jth column is aij .

2.1. Batch Dictionary Update

We begin with the batch dictionary update procedure and

then extend it to the online version. Theoretical robustness

analysis of our online dictionary update is provided.

In batch robust dictionary learning [19], updating of the

dictionary assumes that all elements in B are provided.

We denote matrix X as [x1, ...,xn] ∈ R
p×n and B as

[β1, ..., βn] ∈ R
q×n in order to distinguish them from those

in the online procedure. Batch dictionary updating is ac-

cordingly expressed as

min
D

1

n
‖X−DB‖11, (3)

which is a standard ℓ1-regression problem. It cannot be

solved the same way as ℓ2-regression owing to the lack of

differentiability. We resort to the iterative reweighted least

squares (IRLS) [3].

Since each D(j, :) (j = 1, ..., p) can be estimated in-

dependently, without loss of generality, we express the jth

function optimization as

D(j, :) = argmin
d

1

n

n
∑

i=1

|xij − dβi|, (4)

where d ∈ R
1×q and xij is the jth element of xi. The IRLS

scheme solves the following two problem in each iteration

2

Algorithm 2 Batch Dictionary Update

1: input: x1, · · · , xn; β1, · · · , βn; random matrix D;

wj
i = 1 for all i = 1, · · · , n, j = 1, · · · , p

2: repeat

3: for j = 1 : p do

4: Mj =
∑n

i=1
wj

i βiβ
T
i

5: Cj =
∑n

i=1
wj

i xijβ
T
i

6: solve linear system Cj = D(j, :)Mj

7: calculate wj
i (i = 1, 2, ..., n) by Eq. (6)

8: end for

9: until converges

10: output: D

until convergence:

D(j, :) = arg min
d

1

n

n
∑

i=1

wj
i (xij − dβi)

2. (5)

wj
i is computed as

wj
i =

1
√

(xij − D(j, :)βi)
2 + δ

, (6)

where δ is a small positive value (δ = 0.0001 in our ex-

periments). Each iteration of Eq. (5) involves minimiz-

ing a quadratic objective function. The global optimum can

be reached by taking derivatives and setting them to zeros.

This leads to solving D(j, :) in the linear system

[

n
∑

i=1

wj
i xijβ

T
i] = D(j, :)[

n
∑

k=1

wj
i βiβ

T
i]. (7)

The detailed steps are provided in Algorithm 2 where co-

efficients Mj =
∑n

i=1
wj

i βiβ
T
i and observation Cj =

∑n

i=1
wj

i xijβ
T
i , corresponding to the terms in Eq. (7).

2.2. Online Dictionary Update

Extending the above process to online is not straight-

forward because we only see new mini-batch data

xt−h+1, ..., xt, along with statistical records of history data

x1, ..., xt−h and their coefficients β1, ..., βt−h. The statisti-

cal records are denoted as M
j
t−h and C

j
t−h similar to those

in Algorithm 2. Their update is expressed as

M
j
t = M

j
t−h +

t
∑

i=t−h+1

wj
i βiβ

T
i ,

C
j
t = C

j
t−h +

t
∑

i=t−h+1

wj
i βiβ

T
i ,

where M
j
t−h =

∑t−h

i=1
wj

i βiβ
T
i and C

j
t−h =

∑t−h

i=1
wj

i xijβ
T
i . Now, information for new data is

stored in
∑t

i=t−h+1
wj

i βiβ
T
i and

∑t

i=t−h+1
wj

i xijβ
T
i .

Algorithm 3 Online Robust Dictionary Update

1: input: new mini-batch data xt−h+1, ..., xt, coefficients

βt−h+1, ..., βt; M
j
t−h, C

j
t−h for all j; D = Dt−h and

wj
i = 1 for all i = t− h + 1, ..., t, j = 1, ..., p

2: repeat

3: for j = 1 : p do

4: M
j
t ← M

j
t−h +

∑t

i=t−h+1
wj

i βiβ
T
i

5: C
j
t ← C

j
t−h +

∑t

k=t−h+1
wj

i xijβ
T
i

6: solve linear system C
j
t = D(j, :)Mj

t

7: calculate wj
i (i = t− h + 1, ..., t) by Eq. (6)

8: end for

9: until converge

10: output: Dt = D, M
j
t , C

j
t

With this configuration, we update Dt using Algorithm 3

in an online style. To solve the linear system in line 6 of Al-

gorithm 3, we employ a conjugate gradient method, taking

previous Dt−h as initialization in the current round. Be-

cause matrix M
j
t is often diagonally dominated, reasonable

initialization from existing data can make conjugate gradi-

ent updating converge quickly. We do not want any column

of D to be arbitrarily large, and thus optionally introduce

constrained optimization

D(:, i)←
D(:, i)

max{1, ‖D(:, i)‖22}

in each round. In practice, thanks to the warm start of Dt−h,

dictionary update in Algorithm 3 converges in 5 ∼ 7 itera-

tions.

2.3. Analysis

We analyze how robust the online algorithm is. We

demonstrate that updating the jth row of dictionary in Al-

gorithm 3 is equivalent to solving

min
d

t−h
∑

i=1

wj
i (xij − dβi)

2 +

t
∑

i=t−h+1

|xij − dβi|, (8)

where wj
i (i = 1, . . . , t−h) is the converged history weight

calculated by Eq. (6). According to [3], we can solve Eq.

(8) using IRLS as Algorithm 4.

Obviously, line 3 in Algorithm 4 is equivalent to lines 4-

6 in Algorithm 3. Therefore, estimation of each row of the

dictionary in Algorithm 3 is achieved by solving Eq. (8).

The robustness property to resist outliers in Algorithm 3 is

preserved in Eq. (8).

We analyze effectiveness of Eq. (8) in what follows.

1. At the beginning of training, term
∑

|xji −dβi| plays

an important role in outlier rejection. According to ro-

bust statistics [12], high quality results can be obtained

3

Algorithm 4 IRLS solver for Eq. (8)

1: input: xt−h+1, ..., xt, βt−h+1, ..., βt, wj
i (i =

1, . . . , t− h), all wj
i = 1

2: repeat

3: calculate d by Eq. (8)

4: calculate wj
i (i = t− h + 1, ..., t) by Eq. (6)

5: until converge

6: output: Dt = D, M
j
t , C

j
t

if the number of outliers in the coming data is smaller

than h/2. An outlier sample xij will find a small cor-

responding weight wj
i according to Eq. (6).

2. As training data grow, the history term carries inlier

information, in turn enhancing outlier rejection by Eq.

(8) and even helping handle difficult problems where

outliers in the new mini-batch data are less than h/2.

We note although this scheme is robust, it still cannot

handle the extreme case where the initial data are primarily

outliers and following ones are all inliers. But, this case is

rare in real-world applications and can be avoided generally.

2.4. Connection between Online and Batch Schemes

The online method seemingly differs from the batch ver-

sion. But, in fact, the difference in term of robustness is

rather small. To understand it, we rewrite the batch update

as

min
d

t−h
∑

i=1

|xij − dβi|+

t
∑

i=t−h+1

|xij − dβi|. (9)

Compared to Eq. (8), the difference is on the history infor-

mation part. Online robust dictionary learning (ORDL) has

a weighted square, i.e.,
∑

wj
i (xij − dβi)

2, where outliers

get small weights. In comparison, batch robust dictionary

learning (BRDL) contains the ℓ1-norm term
∑

|xij − dβi|.
In robust statistics [12], this weighted square is a reason-

able approximation of the ℓ1-norm. Practically, the two ap-

proaches perform similarly, as verified in our experiments.

3. Experiments

We qualitatively and quantitatively evaluate our online

framework on different sets of data and applications. There

has been research [19] showing that robust dictionary learn-

ing incorporating the ℓ1 data term outperforms that using

the ℓ2 data constraint when outliers exist. We show more

evidences, especially using the online scheme. All the al-

gorithms are implemented using MATLAB on a PC with

2.60GHz CPU and 2.0GB memory.

5000 10000 15000
0.85

0.9

0.95

1

Size of Training Data

C
o

rr
el

at
io

n

SNR = 25dB

SNR = 30dB

SNR = 35dB

5000 10000 15000
0

0.1

0.2

0.3

0.4

Size of Training Data

C
o

n
v

er
g

en
ce

SNR = 25dB

SNR = 30dB

SNR = 35dB

(a) (b)
Figure 1. (a) Correlation between Db and Do v.s. training data size

t. (b) ‖Dt

o − D
t−1

o ‖2

2 v.s. data size t. Noise levels are 25 dB, 30

dB, and 35 dB.

5000 10000 15000
0

200

400

600

Size of Training Data
T

im
e/

se
co

n
d

s

Batch IRLS

Online IRLS

5000 10000 15000
25

30

35

40

45

Size of Training Data

M
em

o
ry

/M
B

Batch IRLS

Online IRLS

(a) (b)
Figure 2. (a) Running time comparison. (b) Memory consumption

comparison.

3.1. Evaluation on Synthetic Data

The performance of online robust dictionary update is

compared with that of the batch process. We generate n
sparse coefficients [β1, β2, ..., βn] ∈ R

100×n with 20%
sparsity ratio, where n is the number of training data up to

16000. Given a dictionary D ∈ R
32×100, we generate train-

ing data xi = Dβi + ξi(1 ≤ i ≤ n), where ξi is additive

Laplace noise to simulate outliers. The size of incoming

(mini-batch) data is h = 50. Experiments are carried out

under different noise levels and with different sizes of data.

We measure the difference between the batch dictio-

nary result Db and the online one Do via correlation

Corr(Db,Do). We set λ = 0.15. Fig. 1(a) shows when

the training data size t is large, Do approaches Db in all

noise levels.

We also evaluate how our online scheme updates the re-

sulting dictionary by measuring the dictionary difference

‖Dt
o − D

t−1
o ‖22 with regard to the input data size t. Fig.

1(b) shows this cost quickly and monotonically decreases

when data grow. This proves that our method converges

practically and the optimization is robust against outlier.

We also compare running time and memory consump-

tion and plot them in Fig. 2. We conclude that our online

dictionary update uses linear time and nearly constant mem-

ory. The batch process, on the contrary, takes polynomial

time and memory linear to the data size.

We carry out another synthetic experiment to evaluate

the robustness of our online method. We use more data

4

(a) (b) (c) (d)

Figure 3. Image inpainting results by online and batch dictionary learning. (a) Original images. (b) Damaged images. (c) Restored images

by our method. (d) Restored images in the batch scheme.

SNR BRDL ORDL KSVD [2] [8]

15dB 0.051 0.067 0.412 0.505

20dB 0.034 0.042 0.224 0.282

25dB 0.021 0.030 0.121 0.159

Table 1. Reconstruction error under different outlier levels.

with X = [x1, . . . ,xn] ∈ R
64×16000. The data genera-

tion procedure is similar to the previous one. We train a

dictionary with D ∈ R
64×512. The robustness is measured

via total reconstruction error 1

n

∑n

i=1
‖xi − Dβi‖

2
2. If a

learning method can reject outlier in the training data, the

total reconstruction error should be small. We compare dif-

ferent methods under various outlier levels in Table 1. It

shows that the performance of our online robust dictionary

learning (ORDL) is comparable to batch robust dictionary

learning (BRDL) and outperforms those using the ℓ2 data

term significantly.

3.2. Evaluation on Natural Image Inpainting

We evaluate our online robust dictionary learning using

color image inpainting, which aims to infer missing pix-

els due to superimposed text, subtitles, or watermark. In

this application, the dictionary is trained on natural image

datasets [9] with 15% random outliers. Laplacian noise

with scale 30 is used here. We apply the same sparse cod-

ing method with the parameters set the same as those in the

previous case. In the reconstruction step, to infer missing

pixels, we minimize

1

2
‖M • (xi −Dβi)‖

1
1 + λ‖βi‖1,

where M is a mask vector to include missing pixels. • de-

notes element-wise multiplication. Initial D is generated as

2 4 6 8

x 10
4

0

1000

2000

3000

Signal Number

T
im

e (
se

co
n

d
s)

BRDL

ORDL

2 4 6 8

x 10
4

7.5

8

8.5

9

9.5

10

10.5
x 10

8

Signal Number

M
em

o
ry

 (B
y

te
)

BRDL

ORDL

(a) (b)
Figure 4. Performance comparison. (a) Running time comparison.

(b) Memory consumption comparison.

Figure 5. Example of outlier contaminated color digit images.

standard Gaussians, and is then normalized for each column

as a unit vector.

The results are shown in Fig. 3. Basically, the batch and

online processes produce very similar results; but the online

process significantly reduces the running time. For compar-

ison, considering the dictionary update step only, the on-

line procedure takes 0.7 second on average to accept a new

mini-batch input with h = 256, and 40 seconds to complete

90000 atoms. In the batch mode, it takes about 3000 sec-

onds in total. We report the time and memory consumption

in Fig. 4 to demonstrate the advantages of our method.

5

Figure 6. A few learned dictionary atoms using our Online Robust

Dictionary Learning (ORDL).

3.3. Evaluation on Digit Recognition

Digit recognition is an important tool in many systems

involving document processing. This task requires a large

number of training data. However, these training images

could be contaminated in different ways. Robust dictionary

learning remedies part of these problems.

We demonstrate, for this important application, our

method can accomplish results robustly with short running

time and reduced memory consumption. Our experiments

are carried out on handwritten digit datasets MNIST [6] and

USPS [1]. The MNIST dataset has 60000 training images

and 10000 testing images. The USPS dataset has 7291 im-

ages for training and 2007 for testing. To verify the robust-

ness of our approach, we add random outliers to the images

(both training and testing data) and colorize them to greatly

increase the versatility and complexity given the digits all

in grayscale originally. The background and digits are as-

signed with different colors. The outliers are generated by a

high-order polynomial curve with random parameters. Fig.

5 shows several examples.

We resize each image to 15× 15 pixels. All pixels from

the RGB channels are concatenated together as a final fea-

ture vector. We learn separate dictionaries for each digit

via outlier contaminated training data. In the testing phase,

given a digit image, we reconstruct it over the ten learned

dictionaries and choose the one with smallest reconstruc-

tion error. We compare our online robust learning (ORDL)

with batch robust learning (BRDL) and other state-of-the-

art ℓ2-norm data term dictionary learning methods, includ-

ing KSVD [2] and Mairal et al. [8]. The learned dictionary

by our method is shown in Fig. 6, which rejects outliers.

Compared to the ℓ2-norm data-term dictionary learning re-

sults in Fig. 7, more digit information is captured in our

atoms. Table 2 lists the recognition errors. Our ORDL can

achieve a comparable recognition rate with BRDL, while it

outperforms a new alternatives. We also compare the run-

ning time between BRDL and ORDL, where the quantities

are listed in Table 3.

3.4. Evaluation on Background Subtraction

We further evaluate our method on background subtrac-

tion. This application takes video sequences as input. Each

frame is compared against a background model. Pixels that

Figure 7. A few learned dictionary atoms using the ℓ
2 data-term

based dictionary learning method (KSVD [2]).

Dataset BRDL ORDL KSVD [2] [8]

MNIST 18.1 22.7 39.2 34.3

USPS 27.3 29.4 45.3 42.5

Table 2. Error rate (%) for the digit recognition task using different

methods on the MNIST and USPS datasets.

(a) (b) (c)
Figure 8. Background subtraction by (a) K-SVD [2] (b) batch ro-

bust dictionary update, and (c) our method with online dictionary

update. Our results do not contain the “ghost” artifacts, similar to

those produced by batch dictionary learning.

significantly deviate from the model are regarded as fore-

ground. In [5, 4], it is cast as a sparse signal recovery prob-

lem. That is, given the ith frame xi, its background is as-

sumed to be sparsely represented as a linear combination

of a few atoms in the learned dictionary D. Suppose βi is

the i-th coefficient. Foreground is represented as xi−Dβi,

which is assumed to be sparse after background subtraction.

In our model, background subtraction can be achieved

by solving our robust dictionary learning model

min
β

i

‖xi −Dβi‖
1
1 + λ‖βi‖1. (10)

Given a learned D, the background can be reconstructed

using Dβ∗

i , where β∗

i is the optimal solution of Eq. (10). In

this experiment, we use the background substraction dataset

of [5]. The video resolution is 120 × 160. Each frame is

converted into a single-channel image using [7] to reduce

computation.

It is notable that D is trained using all existing frames

in previous work [19]. However, a traffic video contains

vehicles and pedestrians, which are significantly different

from the background regions. These outliers may result

in an inappropriate dictionary. For the example shown in

Fig. 8, when the dictionary is learned with the ℓ2 data fit-

ting term, many moving vehicles (i.e., outliers) are aver-

aged into background. To reject outliers, the method of

6

Digit 0 1 2 3 4 5 6 7 8 9

Data Size 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949

ORDL 187 214 188 194 185 171 187 198 185 188

BRDL 2424 3466 2440 2587 2392 1979 2359 4115 2344 2402

Table 3. Time comparison (in second) in digit recognition in the MNIST dataset for each digit.

(a) (b) (c) (d) (e)
Figure 9. Two traffic light statuses. (a) input frames; (b) subtracted background with batch dictionary update; (c) foreground in batch mode;

(d) background with online dictionary update; (e) foreground by our online algorithm.

[19] also introduces the ℓ1 data term. However, it works

in a batch mode, difficult for long-video-sequence process-

ing. Our framework not only saves time and memory, but

also can help produce high quality foreground segments.

In our online dictionary update, new data (or min-bacth)

are with size h = 20. We compare batch and online results

with those of K-SVD [2] in Figs. 8 and 9. Our results do

not contain the “ghost” artifacts cause by outliers. Our on-

line dictionary learning takes much less time than the batch

scheme, as compared in Fig. 10.

In Fig. 11, we compare the extracted foreground seg-

ments by our online dictionary learning method, the batch

one [19], and by the method using the ℓ2-norm config-

uration. Following [19], in each sequence, we have 10-

frame ground truth foreground. Based on them, we quan-

100 200 300 400 500
0

1

2

3

4

Size of Training Data

T
im

e (
H

o
u

rs
)

BRDL

ORDL

100 200 300 400 500
0

0.5

1

1.5

2

2.5

Size of Training Data

M
em

o
ry

 (G
B

)

BRDL

ORDL

(a) (b)
Figure 10. Comparison of time and memory. (a) Running time. (b)

Memory Consumption. BRDL: batch robust dictionary learning;

ORDL: online robust dictionary learning.

titatively compare the precision, recall, and F-score. Re-

sults are listed in Table 4. it shows that our online robust

dictionary learning method can achieve comparable accu-

racy with batch robust dictionary learning and outperforms

those ℓ2 data term based dictionary methods. Online dictio-

nary update uses 1.1 seconds on a PC.

4. Conclusion

We have proposed an online robust dictionary learning

framework. The online dictionary update scheme saves

time and memory while not sacrificing much accuracy. We

have developed an algorithm with full details to accom-

plish it and have shown that this algorithm can produce

similar-quality results as the batch robust one. We believe

this framework gives an unconventional way to solve many

practical problems containing dynamic and large-size data

and will vastly and widely benefit computer vision systems.

Acknowledgements

The work described in this paper was supported by a

grant from the Research Grants Council of the Hong Kong

Special Administrative Region (Project No. 412911) and by

NSF of China (key project No. 61133009).

References

[1] Usps handwritten digits dataset. www-i6.informatik.rwth-

aachen.de/.

7

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11. Comparison of background subtraction. (a) inputs; (b) our results using online dictionary update; (c) results of [19] using an

ℓ
1-norm data fitting term; (d) sparse coding and dictionary update with the ℓ

2-norm data fitting term; (e) ground truth foreground masks;

(f)-(h) foreground masks corresponding to (b)-(d).

Videos Ocean man Water Object Rain Car

Pre Rec F-score Pre Rec F-score Pre Rec F-score

ORDL 0.8141 0.8148 0.7922 0.6752 0. 7548 0.7128 0.9236 0.7943 0.8541

BRDL 0.7552 0.7982 0.7761 0.7009 0.7225 0.7115 0.9489 0.7920 0.8634

Mairal et al. [8] 0.6367 0.8518 0.7287 0.6312 0.6149 0.6229 0.7940 0.8010 0.7975

Table 4. Precision, recall and F-score for the example shown in Fig. 11 using different dictionary methods.

[2] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An al-

gorithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on Signal Processing,

54(11):4311–4322, 2006.

[3] N. Bissantz, L. Dmbgen, A. Munk, and B. Stratmann. Con-

vergence analysis of generalized iteratively reweighted least

squares algorithms on convex function spaces. SIAM Journal

on Optimization, 19:1828–1845, 2009.

[4] V. Cevher, A. Sankaranarayanan, M. Duarte, D. Reddy,

R. Baraniuk, and R. Chellappa. Compressive sensing for

background subtraction. ECCV, pages 155–168, 2008.

[5] J. Huang, X. Huang, and D. N. Metaxas. Learning with dy-

namic group sparsity. In ICCV, pages 64–71, 2009.

[6] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 1998.

[7] C. Lu, L. Xu, and J. Jia. Real-time contrast preserving de-

colorization. In SIGGRAPH ASIA Posters, page 16, 2012.

[8] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning

for matrix factorization and sparse coding. The Journal of

Machine Learning Research, 11:19–60, 2010.

[9] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, volume 2, pages 416–423, July 2001.

[10] G. Peyre. Sparse modeling of textures. Journal of Mathe-

matical Imaging and Vision, 34(1):17–31, 2009.

[11] M. Protter and M. Elad. Image sequence denoising via sparse

and redundant representations. TIP, 19:27–35, 2009.

[12] W. Rey. Introduction to robust and quasi-robust statistical

methods. Springer-Verlag New York:, 1983.

[13] J. Shi, X. Ren, G. Dai, J. Wang, and Z. Zhang. A non-convex

relaxation approach to sparse dictionary learning. In CVPR,

pages 1809–1816, 2011.

[14] Z. Szabo, B. Poczos, and A. Lorincz. Online group-

structured dictionary learning. In CVPR, pages 2865–2872,

2011.

[15] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and

Y. Ma. Towards a practical face recognition system: Robust

alignment and illumination by sparse representation. PAMI,

34(2):372–386, 2012.

[16] N. Wang, T. Yao, J. Wang, and D.-Y. Yeung. A probabilis-

tic approach to robust matrix factorization. In ECCV, pages

126–139, 2012.

[17] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-

mid matching using sparse coding for image classification.

In CVPR, pages 1794–1801, 2009.

[18] B. Zhao, L. Fei-Fei, and E. Xing. Online detection of unusual

events in videos via dynamic sparse coding. In CVPR, pages

3313–3320, 2011.

[19] C. Zhao, X. Wang, and W.-K. Cham. Background subtrac-

tion via robust dictionary learning. EURASIP Journal on

Image and Video Processing, 2011.

8

