IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 10, OCTOBER 2011

1475

Motion Imitation with a Handheld Camera

Guofeng Zhang, Member, IEEE, Hanqging Jiang, Jin Huang, Jiaya Jia, Senior Member, IEEE,
Tien-Tsin Wong, Member, IEEE, Kun Zhou, Member, IEEE, and Hujun Bao

Abstract—In this paper, we present a novel method to extract motion of a dynamic object from a video that is captured by a handheld
camera, and apply it to a 3D character. Unlike the motion capture techniques, neither special sensors/trackers nor a controllable

environment is required. Our system significantly automates motion imitation which is traditionally conducted by professional animators
via manual keyframing. Given the input video sequence, we track the dynamic reference object to obtain trajectories of both 2D and 3D
tracking points. With them as constraints, we then transfer the motion to the target 3D character by solving an optimization problem to
maintain the motion gradients. We also provide a user-friendly editing environment for users to fine tune the motion details. As casual
videos can be used, our system, therefore, greatly increases the supply source of motion data. Examples of imitating various types of

animal motion are shown.

Index Terms—Motion imitation, motion gradient, mesh deformation, depth recovery, motion tracking.

1 INTRODUCTION

BESIDES appearance, motion of 3D characters is an
important visual cue to increase the rendering realism.
Imitating motion of real humans and animals is common in
film and game production. Such results are traditionally
achieved by either motion capture with specialized equip-
ments or keyframe-based pose editing, where skillful
animators are needed.

Motion capture records the movements of an actor using
trackers together with the acquisition device. It tracks the
marked points that are normally at the joints of an
articulated object over time in a carefully controlled
environment. Although methods, e.g., [1], were proposed
to alleviate the configuration requirement, motion capture is
still difficult, if not impossible, for wild (e.g., a running lion)
and small animals (e.g., a tiny salamander). Animators solve
this problem by keyframing motion by hand. However, if
the character undergoes complex motion with many subtle
details, manual keyframing could be very time consuming
and labor intensive.

In this paper, we present a novel system to significantly
automate this editing process by first acquiring the
reference motion of an animal (or a human) from a video
sequence, and then applying the acquired motion to a 3D
character. The input video can be simply taken by a
handheld camera. Neither special hardware nor a con-
trolled environment is required. The top row of Fig. 1 shows
an example.

o G. Zhang, H. Jiang, |]. Huang, K. Zhou, and H. Bao are with the State Key
Laboratory of CAD&CG, Zijingang Campus, Zhejiang University,
Hangzhou 310058, P.R. China.

Email: {zhangQuofeng, jianghq, hj, kunzhou, bao}@cad.zju.edu.cn.

o | Jia and T.-T. Wong are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong
Kong. Email: {leojia, ttwong|@cse.cuhk.edu.hk.

Manuscript received 11 Sept. 2009; revised 23 Feb. 2010; accepted 7 May
2010; published online 7 Dec. 2010.

Recommended for acceptance by S.Y. Shin.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-09-0213.
Digital Object Identifier no. 10.1109/TVCG.2010.254.

1077-2626/11/$26.00 © 2011 IEEE

The main difficulty of recovering high-quality 3D
motion from an ordinary video is the lack of dense depth
information to constrain the estimated character pose. This
paper presents a novel method to make use of both the
limited depth information computed with multiview
geometry and sparse 2D motion tracks estimated from a
monocular video to represent character motion. These two
groups of data together help define motion gradients, which
capture the essence of object movements among frames. In
the motion transfer step, motion gradient can even
compensate moderately divergent shapes of the source
and target characters.

Another contribution of our method is to accomplish 3D
animation by solving a nonrigid deformation problem with
the space-time constraints from the extracted 2D and 3D
tracks. It is notable that many motion retargeting techniques
[2], [3] are skeleton based. They only transfer articulated
motion, but not the surface deformation as in our case. Such
complex nonrigid deformation is vital for high-quality
motion imitation, which is, however, difficult to model via
articulated motion transfer.

Our system also provides powerful motion editing ability
for user to fine tune the motion-retargeted result. It is
allowed to add, remove, and modify control points in both
the video motion estimation and 3D character animation
phases. These modifications are combined with automati-
cally refined constraints to produce the desired deformation.
As a result, our motion imitation system no longer requires
highly skilled animators, or high acquisition cost as in
conventional motion capture. Besides, the supply source of
motion information is significantly expanded with the wide
availability of low-cost digital video cameras and videos. In
contrast to interframe interpolation typically adopted in the
keyframing approaches, our method generates motion in
between user-edited frames by solving an optimization
problem with regard to the extracted 2D and 3D tracks.
Hence, the resultant character animation in general is more
natural, without the need of defining dense keyframes.

Published by the IEEE Computer Society

1476

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 10, OCTOBER 2011

Fig. 1. Snapshots of the input video frames (top) and the animated characters (bottom) from our system.

2 RELATED WORK

As our method involves procedures of motion acquisition
from video and motion retargeting to 3D objects, we briefly
review the related work in these areas.

2.1 3D Reconstruction from Images/Videos
Extraction of 3D information from an image sequence of a
static scene has been extensively studied in [4], [5], and [6].
Traditional multiview stereo (MVS) methods [6] aim to
automatically recover the dense 3D models from multiple
images. In [7], [8], interactive image-based modeling
methods were proposed and tailored for the recovery of
specific types of static objects, such as trees, vehicles, or
urban buildings. All these methods are limited to static
scene as dynamic objects do not satisfy the multiview
geometry. By making use of multiple synchronized cam-
eras, methods of [9], [10], and [11] can be applied to
dynamic 3D models recovery or 3D motion capture.

Nonrigid structure-from-motion (NRSFM) methods [12],
[13] can be used to reconstruct nonrigid scenes from a
monocular video. They generally assume that the 3D
deforming object can be modeled as a linear combination
of a series of basis shapes, which is insufficient for
constructing high-quality models for complex motion with
significant (nonlinear) occlusions (see the lion example in
this paper). In contrast, our method can handle such
occlusion and eliminate visual artifacts by solving a
nonrigid deformation problem with the space-time con-
straints generated from the extracted 2D and 3D motion
tracks. It can even moderately tolerate the discrepancy
between the reference and target shapes, which is intract-
able for existing NRSFM methods.

2.2 Vision-Based Motion Capture

Typical motion capture consists of hardware sensors/
trackers and a camera to collect the motion data. It has
been widely adopted in film industry for capturing realistic
human motion. However, the specialized hardware is
usually expensive. To reduce the hardware requirement,
video-based motion capture solutions [14], [15], [16] were
proposed, based on computer vision techniques, to create
motion data using the limited information provided by a
video. However, these techniques are typically limited to
tracking simple human motion (e.g., walking), where the
acquired motion information is rough. As studied by

Gleicher and Ferrier [14], even using many strong priors
(e.g., using learned motion models to restrict or predict
likely poses), the results from the state-of-the-art vision
methods cannot overtake the ones obtained from optical
tracking systems, and are difficult to meet the production
quality. Existing methods mainly focus on tracking the
motion of articulated skeletons.

Sand et al. [17] proposed a full-body motion capture
system, which can acquire the deformable human geometry
from the silhouettes captured by one or more cameras. The
motion of the skeleton is required to be determined first. In
comparison, we propose tracking feature points in a
monocular video to constrain the surface deformation,
without skeleton. So, our method can be easily applied to a
wide range of characters, including human and animals.

2.3 Mesh Deformation for Retargeting

In 3D deformation, the representative work includes
skeleton subspace deformation (SSD) [18], free form
deformation (FFD) [19], multiresolution technique [20],
[21], and gradient domain methods [22], [23], [24], [25],
[26], [27], [28]. For animation retargeting, Sumner and
Popovic [29] transferred the deformation of a source
triangular mesh onto a target. Zhou et al. [24] demonstrated
the application of retargeting the cartoon animation to 3D
models by applying the graph Laplacian mesh deformation
technique. They used 3D curve constraints, where the
influence weight of the control curves should be carefully
tuned by the user and the depth information should be
manually assigned (or set almost constant). Therefore, it is
difficult to retarget complex 3D motions, such as the ones
shown in this paper. In addition, they did not address the
problem caused by the shape difference between the video
objects and the target 3D models. With the skeleton and key
poses of a model as input, Bregler et al. [30] proposed
applying the affine deformation from 2D cartoon anima-
tions to 2D drawings and 3D shapes. Favreau et al. [31]
proposed animating 3D animal models from existing live
video sequences. However, this method also requires the
skeleton and key poses of the model as input, and assumes
that the animation has a cyclic motion. In summary, most of
the above methods ignore the potentially useful depth
information available in the video, probably due to the
difficulty of accurate depth recovery.

ZHANG ET AL.: MOTION IMITATION WITH A HANDHELD CAMERA

Extracting
Reconstructing Cameras 2D & 3D Motion
d Backs d S i
and Background Scene 2D Point Tracks

i

1477

Motion Imitation

boundary
conditions

User-edited Poses

control venices%

— 3D Constraints

motion gradient

Mesh Animation

Mesh

3D Touch Point
Trajectories

g

Section 3.2

Section 3.1

Fig. 2. System overview.

3 MOTION IMITATION

The system overview is shown in Fig. 2. The key idea is to
infer the trajectories of both 2D and 3D feature points from
the input video and apply them to comprehensive motion
imitation. The 2D motion track refers to planar pixel shift in
the video frames, and hence is projective. The 3D motion
track, with depth information, is obtained using multiview
geometry and structure-from-motion (SFM) over multiple
frames. With the extracted motion data, we transfer them to
a 3D character by maintaining the motion gradient with a set
of 2D and 3D constraints.

Our system consists of three main phases. Given an
input video, if the camera moves, the depths of the static
scene are recovered by multiview geometry. This step is
mostly automatic where a small amount of user interven-
tion is on roughly masking out the foreground object in a
sparse set of keyframes. Then, a complete 3D background
scene is produced by pixel reprojection. If no depth
information can be recovered from the video, our system
still works, but with the trade-off of making some depth
assumption or increasing user interaction for model pose
adjustment. In the second phase, user selects 2D and 3D key
points. The corresponding motion tracks are then extracted
from the input video. Finally, in the last phase, based on
these 2D and 3D motion tracks, the motion is transferred to
the target 3D character with progressive refinement.

3.1 Camera Pose and Background Depth
Estimation

Given an input video sequence containing n frames, we
estimate camera pose C; and recover the corresponding
depth map for frame ¢. In our system, the SFM method of
Zhang et al. [32] is used to recover the parameter set
C = {K;,R;, T;}, where K; is the intrinsic matrix, R; is
the rotation matrix, and T, is the translation vector. With
these estimated parameters, we then roughly mask out the
foreground dynamic object (the reference object) using the
lasso tool. The multiview stereo method of Zhang et al.
[33] is used to recover the view-dependent, dense depth
maps of the static background.

Missing pixels, after removal of foreground object, are
inferred from the temporally neighboring frames by color
and depth projection based on the estimated camera poses.
For acceleration, we estimate depth maps only for a sparse set
of frames. They are completed and triangulated to constructa
3D background model. The depth information is used in
following steps to help generate 3D motion constraints.

motion
gradient

depth smoothing

Deformation

— 2D Constraints

Sections 3.3-3.6

3.2 Extraction of 2D and 3D Motion Tracks

We extract sparse feature tracks from the dynamic video
object, and use them to animate a 3D character. The user
first selects key points in the first frame on the character,
e.g., the leg and head points shown in Fig. 13. Then, an
interactive point tracking method described in the Appen-
dix is employed to track the movements of these points in
the successive frames and form motion tracks. Each of them
includes a set of points X} where ¢t and i index the images
and tracks, respectively.

However, the obtained 2D motion tracks are not adequate
to constrain the 3D motion imitation, due to the lack of
necessary depth information. To address this problem, we
propose tracking and determining the 3D coordinates of a
special type of surface points, called motion anchors. A motion
anchor refers to a surface point that touches the static
background from time to time. A typical example is the sole
of the foot, as illustrated in Fig. 3. When a motion anchor
contacts the ground, it should have the same depth with the
ground point and its 3D coordinate at this moment can be
determined. With this observation, we allow user to freely
define a frame set {2 and manually label anchor points in 2.
Then, the same tracking procedure described above is
employed to track the anchors in all frames.

We denote the 3D coordinate of a touch point on ground
as X, where k indexes frames and k € €, as shown in Fig. 4.
Our objective is to solve for the complete 3D trajectory M,
where t =0,...,n — 1, to capture the motion details of the
key points. Given the camera parameters estimated in the
first step (Section 3.1), each 3D point in M, projects to u, in
the image plane, as shown in Fig. 4. The depth of M,
denoted as z,,, is frame dependent with respect to the
camera parameters. Thus, estimating the 3D position M, is
equivalent to computing the depth z,,. Given the camera
parameters, projection position u; and depth value zy4,, the
3D position M; can be expressed as

Fig. 3. The soles of the feet (green points) touch the stair from time to
time.

1478
[]
— -/\/l/l—_]\ touch point PY
;e T
/ Mt
/ \ '\/
/ | \\\
) |
/ s
&y +1
zl\g\

Fig. 4. A 3D trajectory {Mgy, My,..., M,_1} is obtained for points
possibly touching the static background. M _projects to u in the video
frames. The blue point denotes the anchor X; in frame t.

R (2p K 'w)

We define a few constraints as follows to estimate 2z, in
all frames using an optimization method. First, we require
My, = X, for all k € Q. It is equivalent to minimizing

2
Ei=3"llam — 2 I (2)

teQ

Mt = 7R:Tt- (1)

In addition, we use the following temporal smoothness
terms to regularize the solution:

n—2)
= " llzm, — 2m,, |l

t=0
n—3 (3)

+ Z H2ZMI,+1 - M,
t=0

E, minimizes the integration of the first and second
derivatives to obtain C0- and Cl-continuity. E; can also be
defined as other energy functions that encourage piecewise
smoothness or occasional discontinuities. We use (3) because
we found that the depth of a moving body point in general
does not change abruptly in consecutive frames even for the
challenging examples shown in this paper. With these two
constraints, we solve for M by minimizing the energy

Ep(zm) = Ev + BEs, (4)

where § is the smoothness weight, and is set to 0.0001 in our
experiments. Ep is a quadric energy function and has a
closed form solution.

Selecting motion anchors can be done quickly in our
system. User performs simple mouse click to indicate the
contact points in sparse frames. Then, the 3D positions are
automatically computed by optimizing depths. This process
only takes 1-2 s for each frame in our experiments. As it is
possible to find multiple motion anchors, we use j to index
the trajectories and denote the jth trajectory as M.

2
= ZMyss H .

3.3 Motion Track Transfer

The above method estimates a set of 2D and 3D motion
tracks. Their absolute positions cannot be directly used to
animate a 3D character because the reference and target
shapes may not be exactly the same. Fig. 7 shows one
example of transferring the motion of a man to an armadillo

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 10, OCTOBER 2011

B‘ @ i B‘ . B
.................. 7 B /l |
7
P) | :
4 3 7
—

s d 7
5 7 7
®-: . -

(a) (b) (©)

Fig. 5. Motion track transfer. A source point P moves from position A to
B in a motion track, shown in (a). To retarget this motion to between
endpoints A’ and B', we preserve the motion gradient and take A’ and
B' (A, B’ € ¥) as new boundary conditions to solve a linear system. The
transferred motion track is shown in (b). The source motion style is
naturally preserved in the target. However, using a naive motion
interpolation as shown in (c) fails to capture important details in the
curved motion.

model. Note that their relative lengths of legs and body are
quite different. To compensate this discrepancy, we
optimize a group of position and projection constraints
with motion gradient. The notion of motion gradient was
originally used in the area of optical flow estimation and
contour tracking [34]. In this paper, it is defined as the 2D/
3D position displacement in consecutive frames.

We first adjust the scale and orientation of the target
model and make it approximately aligned with the input
video object in the first frame. This process is demonstrated
in our supplementary video. We transfer the motion
information from tracks X and M to the target model as
X and M using the motion gradient. It constrains that the
motion displacements between source A’ (or M/, respec-
tively) and target A" (or M) are similar, and are defined as

XZH_X lef+1 Xi (5)
Mz+1 M Mt+1 Mt'

To obtain a unique solution for (5), we define the Dirichlet
boundary condition on a few user manipulated frames (the
set is denoted as ¥). These frames are not continuous. For
each frame t;, € W, X" is set corresponding to an adjusted 2D
position p,, in frame t;. We express this condition as

Xftk = Py,- (6)

Combining (5) and (6), we solve a linear system and obtain
new tracks X, which have similar motion as X. The 3D
tracks M can be constructed in a similar way. Fig. 5 shows
one example. Compared to the naive motion interpolation,
the above system optimizes motion tracks between the
reference and target models with sparse point constraints,
and hence provides moderate tolerance of shape difference.

3.4 Target Mesh Animation

With the estimated X’ and M, we deform the target model by
minimizing a detail-preserving energy similar to the one in
[26]. Suppose the deformed model in frame ¢ contains vertices
V/ and S/ that correspond to X7 and M/, respectively. We
construct the following two groups of constraints:

In any frame ¢, due to the enforced correspondences
between the result vertex S and the 3D point M, we express
this condition as

ZHANG ET AL.: MOTION IMITATION WITH A HANDHELD CAMERA
Si = M;, (7)

for all j and ¢. Each mesh vertex S{ in the target 3D model is
anchored with a 3D position M;.

For the 2D motion tracks, with the similar correspon-
dences, it is required that the coordinate (u!,v}) of X maps
to the camera projection of the result vertex W in 2D, that s,

(.0 1) ~ K (RY] +),

using the estimated camera parameters K;, R;, and T, in
each frame. Denoting F; = K;R;, H, = K,T,, the above
equations can be rewritten as

(ufFi[3] — B[1])V; = Hy[1] — ujHy[3],

(R[] — B2V, = H[2] — v H]3], &

for all ¢ and ¢, where Fi[s] denotes the sth row of the matrix
F;, and Hy[s] denotes the sth element of the vector H;.
Combining (7) and (8), we construct a linear system

CU =p, 9)

such that U is an unknown vector containing all S and V. C
and p are a matrix and a vector, respectively, constructed
from (7) and (8). Finally, with a conventional detail-
preserving function G(U), we minimize the following
energy for mesh deformation:

E(U) =G(U)+ \|CU —p|*, (10)

where) is a weight and G(U) is a nonlinear surface detail-
preserving energy. It is defined as G(U) = ||LU — S(U)|I?,
where L is a Laplace matrix and 6(U) is the differential
coordinate. Their definitions are the same as the one
proposed in [26]. Energy G(U) measures the change of the
mean curvature normal under a local frame, which reflects
the local distortion of the model. Optimizing E(U) helps
distribute the distortion over the deformed mesh smoothly.
The final objective function is solved using an inexact
Gauss-Newton method. In each iteration, the following
linear system is solved as a least-squares problem:

AU = p(U"), (11)

where A = LTL+ACTC, and b(U*) = LT8(U*) + XCTp. U*
denotes the value of U in iteration k.

Note that the deformation produced from this step is
by optimizing E(U) for each frame independently. It has
a chance to be temporally discontinuous. So, we describe
in the following section a depth smoothing step to solve
this problem.

3.5 Depth Smoothing

One cause of the aforementioned problem is that the 2D
motion tracks in image plane have ambiguity in finding
corresponding depths. One example is shown in Fig. 6
where two poses look identical from one view ((a) and (c)).
But they are dissimilar from another ((b) and (d)) because of
different depth assignments for the key points. We, thus,
propose regularizing the deformation by smoothing depths
in multiple frames.

The deformation process described in Section 3.4 outputs
a depth Z for each key point X!. In this step, we refine them
by solving the function

1479

(a) (b)

il

(©) (d
Fig. 6. Depth ambiguity of the 2D constraints. (a-b) One pose of the tiger
model from two different views. (c-d) Another pose from the two views.

Their frontal views (a) and (c) look identical. But the poses differ in (b)
and (d), from a side view.

minz ||zi — EEHZ + az Hzi — Z§+1H2
% 1%

+ad_ |25~ 4~ Fall,
ti

(12)

where « is the smoothness weight. The data term ||z, — %]
requires that the depth estimate z; is similar to z}, and the
terms |21 — 2i,,[|* and [|22 — z—1 — 241]|” are the first-order
and second-order smoothness constraints, respectively. It
forms a least-squares problem and thus can be easily
solved. After refining z, with the depth information, all 2D
motion tracks are upgraded to 3D. They are taken back into
(10) to solve for a refined deformation using the same
method described in Section 3.4. The original 2D motion
tracks are not used here, as the upgraded 3D motion tracks
already contain the corresponding constraints.

3.6 User Control with Two-Pass Propagation

Our system also provides user with tools for conveniently
modifying the model. User can iteratively fine tune the
deformation result until satisfied, by manipulating control
vertices. The control vertices can be corresponding to the
tracked features in the video, or not. Whenever user adds,
deletes, or moves the control vertices in the selected
frames, our system automatically propagates the modifica-
tion to other frames. Together with the estimated trajectory
and track information from the video, the deformation of
the target model is refined. This strategy always outper-
forms interpolation-based keyframing in terms of the
interaction proficiency and result quality. Here, we
demonstrate how the system refines the deformation when
the user moves a vertex v on the mesh in frame ¢. Other
operations such as insertion and deletion of a control
vertex work in the similar way.

After changing the position of v in frame ¢ (as shown in
Fig. 9¢), we immediately redeform the mesh in frame ¢ with
this newly added 3D position constraint. Vertex v and frame
t are also added to the key point set and the user-editing
frame set ¥ (defined in Section 3.3), respectively.

1480

(b) (©

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 10, OCTOBER 2011

(d (©)

Fig. 7. “Go Upstairs” example. (a) The starting frame of the input video with the tracked points (the red crosses). The 3D trajectories of the two points
on the heel are estimated by solving (4). (b) The armadillo model. The red dots are the key points that correspond to the ones in (a), labeled by the
user. (c) The starting frame in the computed animation. An extra control point, shown in blue, is added by the user for pose adjustment. (d) The side

view of the character in (c). The pose in frame 80 is shown in (e).

If vertex v is not mapped to a motion track, we need to
estimate its motion gradient first. We propose a two-pass
propagation method to accomplish this task. In the first pass,
the positions of the old key points (without including v) in
V¥ are taken as boundary conditions. The motion transfer
algorithm described in Sections 3.3 and 3.4 is performed to
adjust the character poses in the neighboring frames. After
the first-pass deformation, the motion track of vertex v is
obtained to compute the motion gradients of v in neighbor-
hood frames. Then, in the second pass, we include the 3D
constraint of v, and redeform the mesh sequence. The two-
pass deformation naturally propagates the user modifica-
tion in frame ¢ to the neighboring ones. Note that if the
motion gradient of v is known beforehand, the deformation
propagation can be done in a single pass. But in this case,
the inference will be significantly dependent on the input
where any visual artifacts could lead to unnatural results. In
contrast, our multipass strategy mitigates this type of
influence and thus is more robust.

Fig. 9 demonstrates the effect of this two-pass propaga-
tion. The complete sequence is included in the supplemen-
tary video' (between 242" and 3'03"). Figs. 9d, 9e, and 9f
show the deformation generated in the first pass for frames
0, 11, and 25. Vertex v (Fig. 9f) still deviates from the user-
assigned position because it is not used as a motion track
constraint in this step. Nevertheless, from the deformed
mesh sequence, we can estimate a 3D trajectory for v in all
frames. So in the second pass, we take v as a track point for
final optimization, faithful to the user modification. We
denote the trajectory of v as MX. It is combined with all
other tracks to control the deformation using the algorithm
described in Sections 3.3 and 3.4. The final deformation
result is shown in Figs. 9g, 9h, and 9i. It not only contains a
new control vertex in frame ¢, but also has a natural
transition among frames.

3.7 System Summary

Fig. 7 shows a working example demonstrating the
procedure of our motion transfer. Three feature points are
initially tracked on the man in the video—two on the feet and
one on the back. Since the two points on the heel touch the
stairs in several frames, we recover their 3D coordinates and
form trajectories by solving (4) as described in Section 3.2.
These points are used to construct motion gradients, which

1. The supplementary video can be found from the following site:
http://www.cad.zju.edu.cn/home/gfzhang/projects /imitation/.

compensate the possible shape deviations between the
source and target objects, and facilitate the motion transfer
(Section 3.3). Then, we label the corresponding key vertices
on the target armadillo surface, and adjust its pose in the
starting frame. The poses in the following frames can be
automatically computed as described in Sections 3.4 and 3.5.
Finally, noticing that the feet in some frames penetrate the
stairs, we select one more control vertex on the tiptoe and
adjust its position in a few frames, as shown in Fig. 8. This
modification is automatically propagated to other frames to
create natural animation. The pose of frame 80 is shown in
Fig. 7e. Readers are referred to our supplementary video for
the illustration.

It should be noted that our progressive pose editing is
quite different from traditional keyframing approaches.
The latter models pose for a set of frames independently,
which requires talent and experience of an artist to
envision the naturalness of the character motion in multi-
ple frames. In comparison, our method compensates the
character shape discrepancy using motion tracks and
gradients. It appropriately adapts the motion of a source
video character to the target.

Moreover, keyframing typically requires manipulation
on a large number of keyframes for precisely describing
motion details, while our method only requires to edit a
significantly smaller portion of frames, thanks to the
desired constraints and optimization. The two-pass propa-
gation strategy always outperforms pose interpolation with
the same amount of user input and keyframes. Fig. 12
shows a comparison. The complete sequence is included in
our supplementary video (between 3'04” and 3'22").

(a) (b)

Fig. 8. Local pose tuning with extra control vertices. (a) shows the initial
character pose in one frame. The feet penetrate the stairs. We select a
control vertex (i.e., the green point) on the tiptoe for local adjustment.
(b) and (c) show the illustration without/with stairs.

ZHANG ET AL.: MOTION IMITATION WITH A HANDHELD CAMERA

initial deformation first-pass deformation second-pass deformation
\ \
frame 0 & 2 -
(a) (d (9

frame 11

frame 25

() (f)

Fig. 9. Two-pass deformation refinement. (a-c) Initial deformation in
three frames. Key points are shown in red. User selects one more point
(the green one in frame 25) on the model, and moves it to a desired
position (shown in blue) for pose adjustment. (d-f) The first-pass
deformation result. Although the green point still deviates from the user-
assigned position in frame 25, its motion gradient is estimated. With the
control points as the boundary condition in the edited frames, natural
deformation in all frames is yielded by the second-pass deformation as
shown in (g-i).

4 EXPERIMENTAL RESULTS

We have tested the proposed method with several challen-
ging examples where the input videos are taken by a
handheld camera. The captured animals include lion,
cheetah, rabbit, and salamander. The targeted 3D characters
are armadillo, tiger, rabbit, crocodile, and salamander
(Fig. 10). The results are computed on a desktop computer
with a 4-core Xeon 2.0 GHz CPU. Table 1 lists the statistics
for different examples present in this paper. Complete
results are demonstrated in our supplementary video.

Our system can be divided into a few unsupervised
operations that include SFM and multiview stereo, and
phases requiring simple user interactions for interactive
feature tracking (IFT) and pose editing. Table 1 lists the
running time in different stages. The implementation details
on interactive feature tracking are described in the Appen-
dix. To process the “Go Upstairs” sequence with 81 frames,

Fig. 10. The collected 3D models to animate, including armadillo, tiger,
rabbit, salamander, and crocodile.

¢ ML

1481
TABLE 1
The Statistics of Examples Present in the
Supplementary Video and This Paper
Sequences | Go Upstairs | Lion | Cheetah | Salamander | Rabbit
frames 81 240 150 100 50
3D model armadillo | tiger | tiger | crocodile/ | rabbit
salamander
mesh vertices 6002 2507 2507 |5002/10002| 5002
tracked 3 16 13 10 9
feature points
Pose-edited 7 18 20 11721 3
frames
SFM (min) 3 8 6 - 3
MVS (min) 40 90 60 - -
IFT (min) 5 90 60 90 20
Pose Editing 10 180 | 210 90/210 5
(min)

our SEFM only takes about 3 min. The interactive feature
tracking takes 5 min to track points to obtain a set of 2D
motion tracks. For correcting the drifted features, the user
only needs to manipulate two frames, then the in-between
feature positions can be automatically reestimated. After
obtaining the 2D motion tracks, we select special points that
contact with the ground as motion anchors. This operation is
only performed on the visible points in a few frames.
Selected contact points do not need much accuracy because
motion tracks after all are optimized by preserving motion
gradient with boundary conditions. Our progressive pose
adjustment is also very efficient. It is about 10 min for “Go
Upstairs” example. It should be noted that pose editing
refers to the total computation needed for generating the
mesh animation, which not only counts user interaction, but
also contains recomputation of the character poses in
multiple frames (as described in Sections 3.4, 3.5, and 3.6).
Note that the latter takes the majority of the time. The
manual intervention involves inserting and moving control
vertices in sparse keyframes for pose adjustment by simple
mouse click and dragging (Please refer to our supplemen-
tary video for more details). Each time after user manip-
ulates a few points in one frame, she/he can choose to
propagate the edit to other frames, by reexecuting the
automatic animation steps, to see how the resulted sequence
looks like. The propagation process includes reoptimizing
2D/3D motion constraints (preserving motion gradients)
and redeforming the mesh subsequence.

In the lion example shown in Fig. 11, the input sequence
contains 240 frames. The lion motion involves rock climbing
and jumping onto the wooden platform. They are very
complex for motion transfer. The muscle on the leg has
large nonrigid deformation. We select 16 points on the lion
for tracking, as shown in Fig. 13—four points on the claws,
and the other 12 points are on the body and legs. Since the
points on the claws touch the background scene in several
frames, we recover their 3D positions by solving (4). With
the tracked key points, we transfer the motion of a lion to a
tiger model with 2,507 mesh vertices. Only using the 3D
motion anchors on the claws cannot naturally transfer the
nonrigid deformation on the legs and body, as shown in
Fig. 14b. In comparison, by utilizing the 2D tracks on the
legs and body, we faithfully preserve deformation details,

1482

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 10, OCTOBER 2011

Fig. 11. Lion example. Top row shows two selected frames from the
input video. Bottom row shows the corresponding “motion imitation”
result on a tiger character.

as shown in Fig. 14c. Note that this type of detail
preservation would be very difficult for the skeleton-based
methods since body deformation is highly nonrigid in
general. We include the complete sequence comparison in
the supplementary video (between 3'23” and 3'40").

We edited 18 frames in total for progressive pose
adjustment for the lion sequence. Compared to traditional
keyframing, our local editing is much more straightforward
because user does not need to be concerned about the
motion continuity and subtle detail preservation in multiple
frames. All modifications are automatically propagated to
other frames to avoid the jittering artifacts. The deformation
time is approximately linear to the number of the mesh
vertices. For a mesh with 2,507 vertices, the function
construction time with matrix factorization for (10) is 0.2 s
in a single thread; solving (11) in each iteration takes about
0.02 s. For deformation in each frame, 5-10 iterations are
sufficient in our experiments. Note that matrix A does not

(©

Fig. 13. 16 tracked points in the video (left image) and their
corresponding 3D vertices on the tiger model (right image).

need to be reconstructed if the manual control vertices are
not added or deleted during the course of interactive pose
adjustment. So, the system feedback to user interaction is
almost in real time. The manual pose refinement for each
user-modified frame typically requires a few minutes,
depending on the motion complexity and the desired
animation quality. For most pose adjustment, it requires
only a few clicks and drags. After deformation, we insert
the animated tiger into the background scene, and render it
as shown in Fig. 11.

Figs. 16 and 17 show other animation results. For the
salamander example shown in Fig. 16, the camera does not
move. So, the 3D information cannot be recovered from the
video. We track 10 points on the salamander, on the head,
back, legs, and tail, respectively, as shown in Fig. 15. By
assuming that the point at the back has constant depth, we
recover the 3D trajectory of this point in the sequence, and
then use it as a 3D position constraint. Other nine points are
used for 2D projection constraints. For the rabbit example
(Fig. 17), since the desk is planar, we select the recovered 3D
points on the desk to fit the desk plane. In addition, the
right hand side of the rabbit cannot be observed. We resolve
this ambiguity by assuming that the right legs undergo the
same motion as the left ones.

In discussion, the amount of user interaction and the
number of pose-edited frames mainly depend on the
complexity of appearance and motion, and even on the mesh
quality. As shown in Table 1, in processing the “Go Upstairs”

(d)

Fig. 12. Comparison of our method and the interpolation-based keyframing. (a) and (b) show two key poses, in between which we infer the others
automatically. (c) The interpolated poses by a mesh morphing technique based on differential coordinates [35]. (d) The poses obtained using our
two-pass propagation. The comparison shows that our method can naturally preserve subtle motion details.

ZHANG ET AL.: MOTION IMITATION WITH A HANDHELD CAMERA

1483

(b)

Fig. 14. Deformation with/without 2D motion tracks. (a) Two frames
extracted from the reference video. (b) Deformation result only using 3D
motion anchors. (c) Deformation result using both 3D and 2D motion
tracks. 2D tracks on the legs and body help faithfully transfer the
nonrigid deformation details from the reference character to the target.

and rabbit examples, our interactive pose editing is rather
efficient, only requiring 10 and 5 min, respectively. For the
cheetah and salamander examples, since the motion is much
more complex, more user interactions are required and
denser frames are needed to be edited. The interactive pose-
editing time for the rabbit example is only 0.1 min/frame. It
increases to 1.4 min/frame for the cheetah example. Our
interactive feature tracking is also directly related to the
complexity of appearance and motion. For the salamander
sequence, the selected key points are textureless and there are
serious reflections, translucency, and fast motion, which
make the feature tracking extremely challenging. Compared
to the “Go Upstairs” sequence, the average tracking time
increases from 1.2 s/frame to 5.4 s/frame for each point.
The amount of user interaction also depends on the
required mesh quality. For the salamander example, we

Fig. 15. 10 tracked points and their corresponding 3D vertices are shown
in the extracted frame and the salamander model, respectively. We
estimate the 3D trajectory of the point at the back, and then use it as a
3D position constraint. Other nine points are used for 2D projection
constraints.

Fig. 16. Salamander example. Two frames selected from the input video
show how the animation is retargeted to the 3D model.

transfer the 3D motion to the crocodile and salamander
models. Between them, the salamander model contains more
mesh vertices and many slim triangles around the tiny legs,
which makes mesh deformation more challenging. There-
fore, more user interactions are required for locally adjusting
the leg poses.

5 CONCLUSIONS AND DISCUSSION

We have presented a comprehensive system capable of
properly “extracting” motion from a dynamic object in a
monocular video and retargeting it to a 3D character. The
motion data are described as a few sparse key points
tracked in this sequence. To obtain necessary 3D motion
constraints, our method first recovers the camera para-
meters and the static background. Then, we look for contact
points between the dynamic object and static background so
as to infer the corresponding 3D trajectories in the whole
sequence. Our system significantly expands the number
and variety of the sources of motion data, and can be
appropriately used to estimate the motion of the small scale
and wild animals that are difficult to wear trackers for a
motion capture system. Our method also saves animators
from tedious and time-consuming manual keyframing.
Our method can preserve certain fine details of motion.
The results included in the paper and in the supplementary
video have demonstrated the effectiveness of our method.

Fig. 17. Rabbit example. Top row shows the original frames from the
input video. Bottom row shows the motion-retargeted result on a rabbit
model.

1484

Taking the lion model as an example, subtle nonrigid
deformation of the leg muscle is faithfully transferred to the
target character. The ability comes from the detail-preser-
ving energy function. The extracted 2D tracks are also quite
useful to describe motion details. Increasing the number of
feature tracks can help preserve even more of them.

If the motion details cannot be observed from the video
due to frequent or consistent occlusion, there is basically no
way to obtain sufficient visual information and accordingly
the motion data. Currently, we use the temporal smoothing
and symmetry constraints to alleviate this problem. We
believe with multiple videos captured from different views,
this problem could be better addressed.

In addition, it is possible that the input video contains
dynamic background. In this extreme case, we may still be
able to obtain partial motion estimate by either increasing
user intervention to adjust the character poses or making
depth assumptions. If the body shapes of the reference and
target characters differ too much, it requires more effort to
manipulate the motion data, as our system requires control
points. We believe that this problem can possibly be solved
by first transferring our tracked motion data from the video
object to an appearance-similar 3D character, and then
applying the mesh deformation transfer technique [29] to
animate the target 3D character.

APPENDIX
INTERACTIVE POINT TRACKING ON VIDEO

Automatically extracting long and accurate feature tracks
from a video is very challenging due to possible occlusions
and viewpoint/appearance changes, as described in Section
3. We propose a simple and yet very effective interactive
approach to solve this problem. It can yield instant feedback
and has no specific preprocessing requirement. High
accuracy can also be ensured.

For a track {X}} where i and t index the track and frame,
respectively, we allow the user to manually correct the drifted
features. This process only needs to be done in the user
selected frames. Then, our system automatically solves for the
remaining feature positions. Suppose L and R are two such
frames that user operates. Features in frame ¢, where
L <t < R, are estimated by solving a function involving
three terms. They, respectively, represent the matching
coherence, appearance smoothness, and motion smoothness.

The matching term e(X?) encodes the local appearance
similarity between the corresponding points in multiple
frames. It is measured in local windows W centered at these
points, as shown in Fig. 18. We denote the window for {X"}
as W/ and copy the colors of all pixels in W} to vector p(X")
in a scanline order. e¢(X}) is defined as

[p(¥7) —p(X1)I"

Wi

[p(X:) — p(X%)[
Wi ’

where w(t) = (R—1t)/(R—L) is a weight function to

balance the appearance similarities with regard to X and

X%, respectively, based on a distance metric. |W| is the size
of the window.

e(X}) = w(t)
(13)

+ (1 —w(t))

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 10, OCTOBER 2011

z<
I
/[
{
\
T~
)
VANEIVA
LT |
\

(a) (b)

Fig. 18. Interactive tracking with DP optimization. (a) The track points in
multiple frames form a single chain. The blue rectangles denote frames
L and R that user operates. X7, for all L <t < R, is the position to be
estimated in the intermediate frames. The local window centered at X,
describes the point appearance. (b) Candidate pruning for local windows
centered at X" for different i. x°, x!, and x? are the selected
candidates, among which minimum distance d is enforced.

The appearance smoothness term is defined as the
appearance distance between temporally adjacent p(X})
and p(&7,,); and the motion smoothness term measures the
position similarity between adjacent X; and &;_ . The final
objective function combines all these terms

R R—1 iy i 2
E(XLHR) _ Ze(Xi) I Z ||P(Xt) P(Xt+1)||
t=L t=L ‘W‘

. (14)
Y E o o
t=L

where \; and A, are two cost weights, and are set to 1.0 and
0.1, respectively.

Optimization. We now describe the method to minimize
energy E(X"~"). As illustrated in Fig. 18a, since the points
in a track form a single chain, we can use dynamic
programming (DP) for optimization. Given m nodes and
N candidates for each node, the complexity of DP is
O(mN?). If N is large, the optimization will be slowed
down. In our system, we compute the initial estimate of X",
denoted as X', by linearly interpolating A, and A%,. Based
on the observation that the true position of X is generally in
the neighborhood of these estimates, we introduce an
effective pruning algorithm (Algorithm 1) to dramatically
accelerate DP.

Algorithm 1. Candidate Pruning
1. Sort all pixels in a local window, centered at X’ i<()>, with
respect to the cost ¢(X?). The re-ordered pixels are
denoted as {x*},_, .
2. Define {V(x")},_, v as boolean variables, which are
initialized to zeros. The set of position candidates
is denoted as C(x). It is initially empty.
3. Fori=1,....,N,
if V(x*) =0 & |C(x)| < 20, add x* to C(x)
for each pixel y satisfying ||x* — y|| < d,
Viy)=1
We first select a reasonable number (20, in our experi-
ments) of candidates within the circular local window
centered at each X’ i(o). These candidates produce small costs
in e(X}) and are not close to each other because our
algorithm enforces the minimal distance criteria, as illu-
strated in Fig. 18b. With the small number of candidates for

ZHANG ET AL.: MOTION IMITATION WITH A HANDHELD CAMERA

each feature, DP is performed to efficiently find the global
optimum. For further acceleration, we employ a coarse-to-
fine optimization scheme [36] with a Gaussian pyramid.
The initial local search radius r is set to 10, and the initial
distance d, defined in Algorithm 1, is set to 3. Both r and d are
gradually reduced in iterations. Four passes are sufficient to
find accurate match positions. In our experiments, tracking a
point in 50 frames only takes around 4 s, or equivalently
12 fps in speed, sufficient for the interactive operations.
Compared to the optimization method of Buchanan and
Fitzgibbon [37], our method does not need to perform
feature search in the whole image and has no preprocessing.
It, hence, yields very high efficiency.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and all
the reviewers for their constructive comments to improve the
manuscript. Thanks to Zilong Dong and Lei Jiang for their
enormous help to implement auxiliary tools and prepare
video. Thanks to Michael S. Brown for the video narration.
This work is supported by the 973 program of China (No.
2009CB320801), National Science Foundation of China (Nos.
60633070 and 60903135), the Research Grants Council of the
Hong Kong Special Administrative Region, under General
Research Fund (Project Nos. CUHK 412307 and 417107), the
China Postdoctoral Science Foundation funded project (No.
20100470092), and a research grant from Microsoft Research
Asia through the joint lab with Zhejiang University.

REFERENCES

[1] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M.H. Gross,
W. Matusik, and]. Popovic, “Practical Motion Capture in
Everyday Surroundings,” ACM Trans. Graphics, vol. 26, no. 3,
p- 35, 2007.

[2] M. Gleicher, “Retargeting Motion to New Characters,” Proc.
SIGGRAPH, pp. 33-42, 1998.

[3] C.Hecker, B. Raabe, R.W. Enslow, J. DeWeese,]. Maynard, and K.
van Prooijen, “Real-Time Motion Retargeting to Highly Varied
User-Created Morphologies,” ACM Trans. Graphics, vol. 27, no. 3,
2008.

[4] RIL Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, second ed. Cambridge Univ. Press, 2004.

[5] M. Pollefeys, L.J.V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch, “Visual Modeling with a Hand-Held
Camera,” Int’l |. Computer Vision, vol. 59, no. 3, pp. 207-232, 2004.

[6] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A
Comparison and Evaluation of Multi-View Stereo Reconstruction
Algorithms,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition (CVPR), vol. 1, pp. 519-528, 2006.

[71 P.Tan, G. Zeng,]. Wang, S.B. Kang, and L. Quan, “Image-Based
Tree Modeling,” ACM Trans. Graphics, vol. 26, no. 3, p. 87, 2007.

[8] A.van den Hengel, A.R. Dick, T. Thormédhlen, B. Ward, and P.H.S.
Torr, “Videotrace: Rapid Interactive Scene Modelling from
Video,” ACM Trans. Graphics, vol. 26, no. 3, p. 86, 2007.

[9] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S.A.J. Winder, and R.

Szeliski, “High-Quality Video View Interpolation Using a Layered

Representation,” ACM Trans. Graphics, vol. 23, no. 3, pp. 600-608,

2004.

Y. Furukawa and J. Ponce, “Dense 3D Motion Capture from

Synchronized Video Streams,” Proc. IEEE Conf. Computer Vision

and Pattern Recognition (CVPR), 2008.

D. Bradley, T. Popa, A. Sheffer, W. Heidrich, and T. Boubekeur,

“Markerless Garment Capture,” ACM Trans. Graphics, vol. 27,

no. 3, 2008.

L. Torresani, A. Hertzmann, and C. Bregler, “Nonrigid Structure-

from-Motion: Estimating Shape and Motion with Hierarchical

Priors,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 30, no. 5, pp. 878-892, May 2008.

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(7]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

(23]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

1485

V. Rabaud and S. Belongie, “Re-Thinking Non-Rigid Structure
from Motion,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2008.

M. Gleicher and N.J. Ferrier, “Evaluating Video-Based Motion
Capture,” Proc. Computer Animation (CA), pp. 75-80, 2002.

T.B. Moeslund, A. Hilton, and V. Kriiger, “A Survey of Advances
in Vision-Based Human Motion Capture and Analysis,” Computer
Vision and Image Understanding, vol. 104, nos. 2/3, pp. 90-126, 2006.
R. Poppe, “Vision-Based Human Motion Analysis: An Overview,”
Computer Vision and Image Understanding, vol. 108, nos. 1/2, pp. 4-
18, 2007.

P. Sand, L. McMillan, and]. Popovic, “Continuous Capture of
Skin Deformation,” ACM Trans. Graphics, vol. 22, no. 3, pp. 578-
586, 2003.

J.P. Lewis, M. Cordner, and N. Fong, “Pose Space Deformation: A
Unified Approach to Shape Interpolation and Skeleton-Driven
Deformation,” Proc. SIGGRAPH, pp. 165-172, 2000.

T. Ju, S. Schaefer, and]J. Warren, “Mean Value Coordinates for
Closed Triangular Meshes,” ACM Trans. Graphics, vol. 24, no. 3,
pp. 561-566, 2005.

D. Zorin, P. Schroder, and W. Sweldens, “Interactive Multi-
resolution Mesh Editing,” Proc. SSIGGRAPH, pp. 259-268, 1997.

S. Kircher and M. Garland, “Editing Arbitrarily Deforming
Surface Animations,” ACM Trans. Graphics, vol. 25, no. 3,
pp- 1098-1107, 2006.

Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum,
“Mesh Editing with Poisson-Based Gradient Field Manipulation,”
ACM Trans. Graphics, vol. 23, no. 3, pp. 644-651, 2004.

Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or, “Linear
Rotation-Invariant Coordinates for Meshes,” ACM Trans. Graphics,
vol. 24, no. 3, pp. 479-487, 2005.

K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y.
Shum, “Large Mesh Deformation Using the Volumetric Graph
Laplacian,” ACM Trans. Graphics, vol. 24, no. 3, pp. 496-503, 2005.
A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A Sketch-
Based Interface for Detail-Preserving Mesh Editing,” ACM Trans.
Graphics, vol. 24, no. 3, pp. 1142-1147, 2005.

J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng, H. Bao, B.
Guo, and H.-Y. Shum, “Subspace Gradient Domain Mesh
Deformation,” ACM Trans. Graphics, vol. 25, no. 3, pp. 1126-1134,
2006.

O.K.-C. Ay, C.-L. Tai, L. Liu, and H. Fu, “Dual Laplacian Editing
for Meshes,” IEEE Trans. Visualization and Computer Graphics,
vol. 12, no. 3, pp. 386-395, May/June 2006.

W. Xu, K. Zhou, Y. Yu, Q. Tan, Q. Peng, and B. Guo, “Gradient
Domain Editing of Deforming Mesh Sequences,” ACM Trans.
Graphics, vol. 26, no. 3, p. 84, 2007.

R.W. Sumner and J. Popovic, “Deformation Transfer for Triangle
Meshes,” ACM Trans. Graphics, vol. 23, no. 3, pp. 399-405, 2004.
C. Bregler, L. Loeb, E. Chuang, and H. Deshpande, “Turning to
the Masters: Motion Capturing Cartoons,” Proc. SIGGRAPH,
pp- 399-407, 2002.

L. Favreau, L. Revéret, C. Depraz, and M.-P. Cani, “Animal Gaits
from Video: Comparative Studies,” Graphical Models, vol. 68, no. 2,
pp- 212-234, 2006.

G. Zhang, X. Qin, W. Hua, T.-T. Wong, P.-A. Heng, and H. Bao,
“Robust Metric Reconstruction from Challenging Video Se-
quences,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2007.

G. Zhang,]. Jia, T.-T. Wong, and H. Bao, “Consistent Depth Maps
Recovery from a Video Sequence,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 31, no. 6, pp. 974-988, June 2009.

N. Ray and S.T. Acton, “Motion Gradient Vector Flow: An
External Force for Tracking Rolling Leukocytes with Shape and
Size Constrained Active Contours,” IEEE Trans. Medical Imaging,
vol. 23, no. 12, pp- 1466-1478, Dec. 2004.

M. Alexa, “Differential Coordinates for Local Mesh Morphing and
Deformation,” The Visual Computer, vol. 19, nos. 2/3, pp. 105-114,
2003.

J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani,
“Hierarchical Model-Based Motion Estimation,” Proc. European
Conf. Computer Vision (ECCV), pp. 237-252, 1992.

A. Buchanan and A.W. Fitzgibbon, “Interactive Feature Tracking
Using K-D Trees and Dynamic Programming,” Proc. IEEE CS
Conf. Computer Vision and Pattern Recognition (CVPR), vol. 1,
pp. 626-633, 2006.

1486

Guofeng Zhang received the BS and PhD
degrees in computer science from Zhejiang
University in 2003 and 2009, respectively. He
is currently a postdoc at the State Key Labora-
tory of CAD&CG, Zhejiang University. His
research interests include camera tracking, 3D
reconstruction, augmented reality, video seg-
mentation, and editing. He is a member of the
IEEE.

Hanqing Jiang received the BS degree in
computer science from Zhejiang University,
P.R. China, in 2006. He is currently working
toward the PhD degree in computer science at
the State Key Laboratory of CAD&CG, Zhejiang
University. His main research interests include
video segmentation and 3D modeling.

Jin Huang received the PhD degree from the
Computer Science Department from Zhejiang
University in 2007 with Excellent Doctoral Dis-
sertation Award of China Computer Federation
(CCF). He is currently an associate professor in
the State Key Laboratory of CAD&CG, Zhejiang
University, P.R. China. His research interests
include geometry processing and physically
based simulation. He has served as a reviewer
for ACM SIGGRAPH, EuroGraphics, Pacific

Graphics, TVCG, etc.

Jiaya Jia received the PhD degree in Computer
Science from Hong Kong University of Science
and Technology in 2004 and is currently an
associate professor in Department of Computer
Science and Engineering at the Chinese Uni-
versity of Hong Kong (CUHK). He was a visiting
scholar at Microsoft Research Asia from March
2004 to August 2005 and conducted collabora-
tive research at Adobe Systems in 2007. He
leads the research group in CUHK, focusing
specifically on computational photography, 3D reconstruction, practical
optimization, and motion estimation. He serves as an associate editor
for IEEE Transactions on Pattern Analysis and Machine (TPAMI) and as
an area chair for ICCV 2011. He was on the program committees of
several major conferences, including ICCV, ECCV, and CVPR, and
cochaired the Workshop on Interactive Computer Vision in conjunction
with ICCV 2007. He received the Young Researcher Award 2008 and
Research Excellence Award 2009 from CUHK. He is a senior member of
the IEEE.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 10, OCTOBER 2011

Tien-Tsin Wong received the BSci, MPhil, and
PhD degrees in computer science from the
Chinese University of Hong Kong in 1992, 1994,
and 1998, respectively. Currently, he is a profes-
sor in the Department of Computer Science and
Engineering, Chinese University of Hong Kong.
His main research interest is computer graphics,
including computational manga, image-based
rendering, natural phenomena modeling, and
multimedia data compression. He received IEEE
Transactions on Multimedia Prize Paper Award 05 and Young Research-
er Award '04. He is a member of the IEEE.

Kun Zhou received the BS and PhD degrees in
computer science from Zhejiang University in
1997 and 2002, respectively. He is a Cheung
Kong distinguished professor in the Computer
Science Department of Zhejiang University, and
a member of the State Key Lab of CAD&CG,
where he leads the Graphics and Parallel
Systems Group. Prior to joining Zhejiang Uni-
versity in 2008, he was a leader researcher of

= the Internet Graphics Group at Microsoft Re-
search Asia. His research interests include shape modeling/editing,
texture mapping/synthesis, real-time rendering, and GPU parallel
computing. He is a member of the IEEE.

Hujun Bao received the BS and PhD degrees in
applied mathematics from Zhejiang University in
1987 and 1993, respectively. Currently, he is a
professor and the director of State Key Labora-
tory of CAD&CG at Zhejiang University. His
main research interest is computer graphics and
computer vision, including real-time rendering
technique, geometry computing, virtual reality,
and 3D reconstruction.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

