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Personal Object Discovery in First-Person Videos
Cewu Lu, Member, IEEE, Renjie Liao, and Jiaya Jia, Senior Member, IEEE

Abstract— People know and care for personal objects, which
can be different for individuals. Automatically discovering per-
sonal objects is thus of great practical importance. We, in
this paper, pursue this task with wearable cameras based on
the common sense that personal objects generally company us
in various scenes. With this clue, we exploit a new object-
scene distribution for robust detection. Two technical challenges
involved in estimating this distribution, i.e., scene extraction and
unsupervised object discovery, are tackled. For scene extraction,
we learn the latent representation instead of simply selecting a
few frames from the videos. In object discovery, we build an
interaction model to select frame-level objects and use nonpara-
metric Bayesian clustering. Experiments verify the usefulness of
our approach.

Index Terms— Object discovery, object detection, scene
understanding, first-person vision and wearable camera.

I. INTRODUCTION

PERSONALLY used objects are individually characterized,
important in our daily life. Their footage provides vital

information about location, event, activity, and even individual
personality and interests. In the era of social network, under-
standing personal objects and their relationship with different
scenes avail a wide range of community service and even new
business for individual-oriented commercials. For example,
putting a medicine box to the personally-used object set could
indicate the potential need of clinical service. Removal of a
watch from the list, on the contrary, may suggest that it is
lost or damaged. Therefore, personal object information could
be a great feature for recommendation systems to establish
efficacious links between companies and customers.

Albeit valuable, detecting and finding personal objects auto-
matically from videos is still difficult, primarily due to its tight
link to first-person view. In the intensively-studied third-person
videos such as the surveillance ones, the definition of per-
sonal objects is vague and their detection is thus challenging.
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Fig. 1. A hand-touching electronic lock is not a personal object.

The difficulty also stems from distinguishing between general
and personal objects.

The prevalence of wearable cameras brings forth the
unique essentiality of wearable computing. In contrast to
the conventional “third-person” video paradigm, wearable
cameras record individual activities from another perspective.
First-person perspective videos (simplified as first-person
videos in what follows) contain egocentric cues. In this paper,
we focus on personally and frequently used object discovery
for camera wearers.

Even with a first-person video captured by a wearable
camera, personal object discovery is still nontrivial. Personal
objects vary from person to person and may have different
appearance and structure properties. The hint that personal
objects appear in the interaction process with human does
not always hold. For example, in Fig. 1, the electronic locker
interacted with the hands is not a personal object.

We study the nature of this problem and present an effective
solution. It is based on the fact that personal objects, such
as bags, wallets and mobile phones, company us in different
events and scenes. So the personal-object probability can be
high if an object appears in sufficiently many locations in a
period of time. With this clue, we define a personal object
following a few simple and conservative rules. That is, such
an object should be with generally acceptable appearance,
movable and, most importantly, be held or touched frequently
in different scenes. Accordingly, we propose a object-scene
distribution to measure interacted-object appearing frequencies
in different scenes. The final result from first-person videos is
a scored object list based on how close an object is to the
camera recorder, based on a rule in information theory.

Our method boils down measuring object appear-
ing frequencies in different scenes to two sub-problems,
i.e., scene extraction and interacted-object discovery, which are
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tackled respectively. Scene extraction needs a collection of
well-characterized data for training and comparison. However,
this data cannot be found directly in video frames when
the camera moves arbitrarily and is not deliberately path-
controlled. We thus learn the latent representative scenes
instead of simply selecting a few frames from the videos. Then
in interacted-object discovery, supervised algorithms could be
less optimal, as they require to include as many objects as
possible in the training data. In our method, we build an
interaction model to select the frame-level objects. Unsuper-
vised object discovery is implemented using a nonparametric
Bayesian clustering technique. Our scheme can discover and
locate objects that appear in disjoint frame segments in the
input video.

Our main contribution in this paper is as follows.
1) We tackle the personal-object-discovery problem based

on useful clues.
2) We propose the simple and yet effective object-scene

distribution to differentiate between personal and other
objects.

3) Latent scene learning is used for scene extraction in
first-person videos.

4) We provide a reliable unsupervised interacted-object
discovery framework for first-person videos.

We clarify due to the complicated nature of
first-person videos, our solution inevitably has several
limitations. We describe them later along with concluding
remarks.

II. RELATED WORK

We review image/video object detection and discovering
work. Research about first-person video processing and under-
standing is also discussed.

A. Object-Related Methods

Since “object” is fundamental for many tasks, object-related
topics were widely discussed, such as inpainting [1], segmen-
tation [2], [3], tracking [4], video coding [5], and saliency
detection [6]. We mainly investigate object discovery and
detection.

Early research [7], [8] tends to achieve object detection
by filtering. Luo and Crandall [9] developed a color object
detection algorithm by building a spatial-color joint prob-
ability function incorporating the color edge co-occurrence
histogram and perceptual color naming. In [10], binary parti-
tion trees (BPTs) were used that involve hierarchical region-
based representation for object detection. It reduces search
space by tree construction, similarity criterion development,
and node extension. Sun and Lam [11] introduced a forward
feature-selection technique combining a coarse-to-fine learning
scheme to construct an efficient classifier while yielding good
performance.

Guo and Wang [12] tackled the domain adaptation prob-
lem of image object detection by employing kernel analysis.
The domain adaptive input-output kernel learning (DA-IOKL)
algorithm addresses the feature distribution change issue.
In [13], an effective deformable part model was proposed

making use of latent SVM. Rather than working on images,
detecting or discovering objects in videos is also common.
Li et al. [14] proposed a Bayesian framework incorporating
spectral, spatial, and temporal features to describe the back-
ground appearance. A learning method adaptive to gradual
and sudden “once-off” background change benefits foreground
object detection. In [15], abandoned object detection in video
was studied. In [16], a method for detecting primary objects
was proposed. The key contribution is to design a self-adaptive
saliency map fusion method by learning the reliability of
saliency maps from training data.

For video object discovery and video segmentation, a
topic model by incorporating a word co-occurrence prior into
LDA was proposed [17] for efficient discovery of topical
video objects. In [18], video object discovery was achieved
using a co-segmentation scheme where an optimization-based
method identifies relevant frames containing the target object.
In [19], Faktor and Michal solved the foreground/background
segmentation of unconstrained videos. Saliency is taken to
initialize seed and segmentation is iteratively corrected by
consensus voting. Thematic objects in videos were studied
in [20]. A bottom-up approach gradually prunes uncom-
mon local visual primitives for finally locating the thematic
objects.

These methods are for general object detection and
discovery. As personal objects are special, our problem defin-
ition and solution are inherently different.

B. First-Person Perspective Methods

Pioneer research based on first-person videos captured by
wearable cameras was presented in [21] and [22]. In [23],
an automatic approach was proposed to structure and pro-
duce video summarization. Goto and Tanaka [24] presented
a text tracking and detection system to facilitate blind people.
Han et al. [25] developed a real-time face detection, recog-
nition, and identification system. Based on a normalized
optical flow field, a bottom-up segmentation algorithm was
proposed [26] to separate foreground objects in ego-centric
videos. In [27], camera wearer activity recognition was dis-
cussed. Combining optical flow features and several classifiers,
this method can achieve good recognition results. In [28],
a random-walk based influence metric, which reflects how
objects contribute to the progression of events, was exploited
to define a new objective for egocentric video summarization.

In [29], Lee et al. learned a regressor to predict important
objects. They also use human interaction cues such as gaze.
This method is unlike ours in several ways – the goal is not
personal object discovery and important objects were detected
regarding a short time frame. To find personal objects, more
frames across scenes need to be processed.

In short, different from previous methods, we solve a fun-
damental problem in personal object discovery, which relies
on the object-scene distribution. We provide new features for
effectively representing both scene and objects in egocentric
videos. An unsupervised learning method is also proposed to
find personal objects, which saves time on collecting large
labeled data.
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Fig. 2. Six representative frames in a first-person video. Background changes rapidly.

III. OUR APPROACH

We start with the introduction of the object-scene distribu-
tion (OSD), which involves methods to tackle scene extraction
and wearer-interacted object discovery. Personal object scores
derived from OSD in information theory are also discussed.
In what follows, we abbreviate “wearable camera wearer” to
“wearer”.

A. Object-Scene Distribution

We denote by {I1, . . . , IT } the frame set of a first-person
video, {S1, . . . , Sm} the m different scenes, and by
{O1, . . . , On} the n objects that have interaction with the
wearer in the video, which appear in multiple scenes. We also
define x and y as the scene and object appeared respectively
in videos. Thus, the object-scene distribution of object Oi is
P(x |y = Oi ) = {P(x = S1|y = Oi ), . . ., P(x = Sj |y = Oi )},
where P(x = Sj |y = Oi ) is the probability of object Oi

appearing in Sj . It can be further expressed as

P(x = Sj |y = Oi ) = P(x = Sj , y = Oi )

P(y = Oi )
. (1)

We introduce three indicator functions 1[xt = Sj , yt = Oi ],
1[yt = Oi ], and 1[xt = Sj ], which represent three events:
“the t th frame falls into scene Sj and contains Oi ”, “the
t th frame contains Oi ”, and “the t th frame falls into scene Sj ”
respectively. When the event happens, the indicator function
outputs 1; otherwise it outputs 0.

An event’s probability is the limit of its relative frequency in
a large number of trials. With sufficient large frame number T
in first-person videos, P(x = Sj , y = Oi ) and P(y = Oi ) can
be written as

P(x = Sj , y = Oi ) = 1

T

T∑

t=1

1[xt = Sj , yt = Oi ]

P(y = Oi ) = 1

T

T∑

t=1

1[yt = Oi ]. (2)

We denote the frame set that contains object Oi as �i to build
the link between object Oi and the scene.

∑T
t=1 1[yt = Oi ]

thus can be |�i |, where |�i | is the size of �i . P(x = Sj ,
y = Oi ) is simplified to

P(x = Sj , y = Oi ) = 1

T

∑

t∈�i

1[xt = Sj ]. (3)

In our model, considering the special properties of first-person
videos, 1[xt = Sj ] is replaced by h[xt = Sj ] indicating the
likelihood whether frame It falls into scene Sj or not. This
is because it is difficult to say a frame is exactly a particular

scene or not. As the camera moves freely, most frames describe
transformation and fall into different scenes partly. Therefore,
we employ h[xt = Sj ] instead of 1[xt = Sj ] to measure how
significant frame It falls into scene Si . Eq. (1) is rewritten as

P(x = Sj |y = Oi ) ∝ 1

|�i |
∑

t∈�i

h[xt = Sj ]. (4)

In this framework, two challenges are computing
h[xt = Sj ] and set �i respectively. The second challenge
involves discovering wearer-interacted objects and obtaining
objects’ temporal and spatial location. In what follows, we
address these challenges.

B. Latent Scene Extraction

We estimate h[xt = Sj ] by considering special properties of
first-person videos. As the camera can move freely, it is over-
simplified to define some frames as semantic “scenes”. Even if
one manually labels a few frames, view transformation could
exist, as illustrated in Fig. 2. This brings special difficulty to
identify which frames are “scenes”.

As such, we do not select frames as representative, but
instead regard each frame as a mixture of a small number of
scenes. We denote the features respectively for frame It and m
scenes as xt and {d1, . . . , dm}. Feature extraction will be
detailed later. Modeling the frame zt as a linear combination
of features from a few scenes thus yields

zt = Dβ t s.t. ‖β t‖1 < ξ, (5)

where D � {d1, . . . , dm}. The constraint ‖β t‖1 < ξ models
sparse representation on coefficients β. It stems from the fact
that one frame It can at most be a mixture of a small number
of scenes in general.

We now discuss how to obtain the m scene features
{d1, . . . , dm}. We take {d1, . . . , dm} as latent scene variables.
We learn them by solving

min
D∈D,B

1

T

T∑

t=1

{‖Dβ t − zt‖2
2 + λ‖β t‖1}

s.t. D � {d ∈ D| ‖d‖2
2 = 1} (6)

where B � {β1, . . . ,βT } and ‖ · ‖1 is the sparsity inducing
norm. Eq. (6) models sparse dictionary learning. Its solver
updates B and D iteratively in two steps. We generate a random
matrix as the initial dictionary with L2 unit column. Because
each atom of the dictionary is an abstract feature representation
of a latent scene, our method is effective to represent complex
video structures.
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Fig. 3. (a) Two similar-scene images yield alike LLC codes. (b) Two different
scenes produce dissimilar LLC codes.

Given a learned latent scene dictionary, we sparsely code
each frame by locality-constrained linear coding (LLC) [30]
with the criterion

min
β

{‖z − Dβ‖2
2 + λ

m∑

j=1

(ρ jβ j )
2}

s.t
m∑

j=1

β j = 1 (7)

where β j is the j th element of vector β and ρ j models
similarity between each basis vector and the input descriptor z.
It is written as

ρ j = exp(
1

σ
dist (d j , z)), (8)

where dist (d j , z) is the Euclidean distance between z and d j .
Compared to the �1 sparse coding (SC) that might select
quite different basis vectors for similar inputs to favor sparsity,
LLC guarantees that these inputs obtain similar codes, more
desirable in representation.

We normalize the LLC results for each frame and take
β t, j – the j th element of β t – as the likelihood that It falls in
latent scene Sj . That is, h[xt = Sj ] = β t, j . LLC ensures
that similar frames represent corresponding latent scenes
(see Fig. 3). We illustrate the representation in Fig. 4.

1) Scene Features: We use several low-level features
to represent each frame. They include pyramid of his-
tograms of oriented gradients (PHOG) [31] which produces a
680-dimension feature vector, a bag-of-features (BoF) descrip-
tor and a color histogram. BoF is created using dense SIFT
and a vocabulary of dimension 1200. The vocabulary was
computed using k-means. The color histogram is made by
quantizing each color channel in 8 levels, resulting in a
512-element feature vector. We have used the code available
online for BoF and PHOG. Before combining these feature
vectors, each of them is normalized. The dimension of the
final feature vector is reduced to 256 using PCA. We solve
Eq. (6) using standard dictionary learning [32]. The dictionary
is with scale 256 × 512.

C. Wearer-Interacted Object Discovery

In this section, we describe the procedure to detect and
locate candidates of wearer-interacted objects {O1, . . . , On}.
Since personal objects cannot be fully described by appear-
ance, we turn to object discovery in an unsupervised way.

In the first place, we generate object-like regions by
CPMC [33]. Given an image, CPMC produces a large number

Fig. 4. Latent scene combination in frames. We visualize latent scenes
using their corresponding dictionary atoms (obtained by solving Eq. (6)). The
intensity of arrows indicates coding coefficients (Coding value 1 makes the
arrow black).

of regions with object scores. A set of object-like regions
produced by CPMC are illustrated in Fig. 5. We select
100 regions with the highest scores per frame, resulting in
100T object candidates in total, where T is the number
of frames. We found empirically most personal objects are
included in these many regions.

Since the regions are clutter, it is necessary to find correct
wearer-interacted objects from them. We build an interaction
model to reject a large number of regions without interaction
with the wearer, which greatly reduces the size of regions.
Then we extract mid-level features from remaining candidates
and cluster them.

1) Interaction Model: Our interaction model is imple-
mented in a two-step rejection using hand and Gaze priors.

a) Hand prior rejection: An important feature we make
use of is frequent hand-interaction with objects. We resort to
the statistical color model in [34] to detect human skin based
on an EM algorithm. We take super-pixels with the mean of
likelihood (also called hand scores) larger than 0.6 as hands.
Euclidean distance of each region’s centroid to closest hand is
computed in each frame. If it is larger than 30% of the region
size, we reject it. Note it is only a rejection process and does
not matter if some pixels are wrongly detected as hand skin.

b) Gaze prior rejection: In general, human eye focus
is more likely to be on personal objects than other things
(e.g. trash bin). This condition helps reject a few unimportant
objects. We track and backtrack each region using the method
of [35] until the region centroid moves more than 5% of
the frame size. The track and backtrack time is recorded as
t1 and t2. If t1 + t2 is reasonably long in our experiments,
we keep the region.

It is noted that thresholds used in these rejection conditions
are both loose, in order to avoid rejecting correct objects.
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Fig. 5. Several object-like regions produced by CPMC.

We also implement face detection, which is very accurate now,
to remove nearly all face regions in these results.

2) Object Clustering: Given remaining region candidates,
we construct object clusters via a few middle-level cues
and egocentric features, which form a 261-dimension feature
vector for every candidate region. 256 dimensions are for
Bag-of-Color (BoC), 2 for centroid, 1 for object-like appear-
ance, 1 for shape descriptor and 1 for region size. They are
detailed below.

a) Bag-of-color (BoC): To model the color distribution
of our interested objects, we exploit Bag-of-Color (BoC)
representation [36] because it outperforms a few other sig-
natures in image retrieval. A palette of 256 different colors is
learned from 10000 random Flicker images. We then project
every pixel in the region onto the color palette accord-
ing to their nearest color. Post-process, including inverse
document frequency (IDF), power law transformation and
�1 normalization [36], is applied to produce the final BoC
features.

b) Shape descriptor: To incorporate shape information,
we make use of the convex hull of regions and calculate the
ratio between the areas of convex hull and the region. This
feature is useful to indicate how regular a region is.

c) Gestalt score: As stated in [33], scores output by the
learned ranking function from CPMC reflect the Gestalt cues,
which indicate the likelihood of a region being an object.
It helps discriminate between objects and others.

d) Region size: We also take region size into account.
For numerical stability, absolute region size is replaced by the
ratio between region and image sizes.

e) Location: To model the location of each object can-
didate, we compute centroids of regions and normalize them
with respect to the image.

After obtaining these features for all object candidates, we
use an unsupervised clustering algorithm in the R

261 feature
space to identify repeating objects across all frames. Since the
number of objects contained in the video is unknown, non-
parametric Bayesian clustering by Dirichlet Process Mixture
Model (DPMM) [37], is adopted. DPMM is a hierarchical
Bayesian model and its stick-breaking construction [38] is
given below.

1, Draw vi ∼ Beta(1, α), i = {1, 2, . . . ,∞}
2, Draw ηi ∼ G0, i = {1, 2, . . . ,∞}
3, For the n-th data point:

(a) Draw zn ∼ Mult (π(v)).
(b) Draw xn ∼ p(xn|ηzn ).

Note that sampling follows i.i.d., where v = [v1, v2, . . . , v∞]
is the set of infinite Beta-distributed random variables for con-
structing stick proportions π(v) = [π1(v), π2(v), . . . , π∞(v)].
Specifically, πi (v) = vi

∏i−1
j=1(1−v j ). ηi are hyper-parameters

of the i -th mixture component. G0 is a base measure and
α is the concentration parameter. In our case, the feature
of each object candidate is xn and one mixture component
p(xn|ηzn ) takes the form of a multivariate Gaussian distri-
bution. G0 is the Gaussian-Wishart distribution, which is the
conjugate prior for the multivariate Gaussian component. Since
the samples from the Dirichlet Process (DP) [39] are discrete,
data generated from DPMM can be partitioned naturally
according to the distinct values of the sampled parameters. The
number of mixture components is thus random and grows with
new observed data, making DPMM a flexible and powerful
model.

To estimate the posterior distribution in DPMM, trun-
cated stick-breaking representation and mean-field variational
inference [40] are applied. For the DPMM setting, grid search
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Fig. 6. Four resulting wearer-interacted objects. It includes personal and non-personal objects.

Fig. 7. Non-personal Object. (a)-(e) are five representative frames containing an electronic lock. Their corresponding sparse codes (likelihood) in 512 latent
scenes are shown in (f)-(j). “O-S distribution” is referred to as P(S|O).

is performed in the interval of 1-100 and with step size 5
to obtain the best concentration parameter α. The truncation
level in our case is empirically set to 500. Moreover, to avoid
sensitivity of initialization, we repeat variational inference
with hyper-parameters learned from last run. For all video
clips, DPMM automatically finds about 100 to 150 clusters.
The results from this step are call wearer-interacted objects.
A few examples are shown in Fig. 6.

3) Analysis: Why can this two-step framework discover
wearer-interacted object effectively? First, interaction model
outputs high quality frame-level candidate regions. Without
it, common regions, such as sky, road, and tree, will be
mistakenly clustered. Note a large number of wrong candidate
regions could lead to poor clustering performance.

Second, object clustering can find commonness of
one object when it appears in disconnected frames, com-
plying to the common knowledge that general personal
objects tend to present at similar viewing directions and
distances with respect to the wearable camera. This prop-
erty makes the mid-level features in different frames
comparable.

D. Personal Object Score

Given h[xt = Sj ] obtained as sparse code β t, j in Sec. III-B
and �i , we calculate the object-scene distribution P(x |y =
Oi ) = {P(x = S1|y = Oi ), . . . , P(x = Sj |y = Oi )} using
Eq. (4) and normalize it to a unit vector (

∑
j P(x = Sj |y =

Oi ) = 1). Before that, we truncate values smaller than 0.1 in
h[xt = Sj ] to 0, to only cope with dominant LLC codes.

Since personal objects generally accompany us from scene
to scene, their occurrence frequencies should be higher than
those without much interaction. According to information
theory, sparsity of the occurrence distribution is measured by
entropy

H [P(x |y = Oi )]
= −

∑

j

P(x = Sj |y = Oi ) ln[P(x = Sj |y = Oi )]. (9)

A denser distribution leads to a smaller entropy value. For
example, the digital lock in Fig. 7, which is not a personal
object, finds entropy 0.5143 because it appears only in a
specific one or two door views, while the value of bag in
Fig. 8 is 3.7497, as it is used in much more scenes.

1) Relative Entropy: Entropy in Eq. (9) treats all scenes
equally important. But in many cases objects appear in com-
mon (important) scenes should be assigned higher weights
compared to those appear in rare scenes. For example,
a personal laptop – very important object to the camera
wearer – is possibly used in apartment, office and meeting
rooms.

We count the frequencies of different scenes to measure
their importance. Scene distribution is expressed as

P(x = Sj ) = 1

Z

∑

t

h[xt = Sj ], (10)

where Z is a normalization factor to make
∑

j P(x = Sj ) = 1.
Given the wearer-scene distribution, we introduce the relative
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Fig. 8. Personal Objects. (a)-(e) are five representative frames containing a bag. Their corresponding sparse codes (likelihood) in 512 latent scenes are shown
in (f)-(j). “O-S distribution” refers to P(S|O).

Fig. 9. Personal object scores by Eq. (12).

Fig. 10. Precision-recall curves on our dataset.

entropy in a form of Kullback-Leibler divergence

K L(P(x = Sj |y = Oi )||P(x = Sj ))

=
∑

j

P(x = Sj |y = Oi ) ln[ P(x = Sj |y = Oi )

P(x = Sj )
]. (11)

In comparison to entropy in Eq. (9), the relative one considers
scene importance. K L(P(x = Sj |y = Oi )||P(x = Sj ))
ranges in [0,+∞]. To line up with scoring measure in
range [0, 1], we apply

score(Oi ) = exp(−ηK L[P(x = Sj |y = Oi )||P(x = Sj )]),
(12)

where η is set to 3, and personal object receive large values
in this measure in general. Personal objects are more likely to
receive high scores.

Fig. 11. A falsely detected wearer-interacted object. (a) Representative
frame. The regions with the red and green boundaries are detected as skin
and wearer-interacted object respectively. (b) Object-scene distribution with
personal object score 0.13.

a) Discussion: We discuss the relationship between
Eqs. (9) and (11). We rewrite Eq. (11) as

score(Oi )

= exp(−η
∑

j P(x = Sj |y = Oi ) ln[P(x = Sj |y = Oi )])
exp(−η

∑
j P(x = Sj |y = Oi ) ln[P(x = Sj )])

= exp(−ηH [P(x |y = Oi )])
exp(−η

∑
j P(x = Sj |y = Oi ) ln[P(x = Sj )]) . (13)

The numerator of Eq. (13) is exactly Eq. (9) with an exponent
operation. Compared to Eq. (9), Eq. (11) takes the scene
importance prior into consideration regarding the additional
term exp(−η

∑
j P(x = Sj |y = Oi ) ln[P(x = Sj )]).

Obviously, if an object appears in important scene Sv and
P(x = Sv ) is large, the score of Eq. (12) becomes large.

A few examples are demonstrated in Fig. 9. We compare
the results using relative and absolute entropy measures in the
next Section.
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Fig. 12. Representative frames with personal objects detected (masked in green).

IV. EXPERIMENTS

We collect 14 videos clips recorded by 7 subjects (4 males
and 3 females) using a head-mounted GoPro Hero 2 camera
with resolution 1280 × 720 in 30fps. All subjects are college
students from different disciplines. In order to collect realistic
and individual-specific data, we did not give them instructions,
and encouraged them to behave as usual. The activities involve
discussing, walking, reading, and dining. The scenes subjects
captured are mainly in campus including library, dormitory,
classroom, restaurant and campus path.

Our captured first-person videos are 11+ hours long in
total. For data compression, we extract the 10th , 20th and 30th

frames in each second; all frames are resized to 800 × 450,
sufficient for object and scene representation.

To annotate data, the question about what objects are used
is answered by all subjects. We also asked the 7 subjects
to annotate their videos by drawing a tight bounding box
surrounding each personal object and adjusting it for every
10 frames. Finally, 25 objects are annotated including mobile
phone, wallet, bag, cup, book, laptop, ID card, keyboard, to
name a few.

A. Evaluation and Results

We evaluate personal object scores. We output detected
wearer-interacted objects whose scores are higher than a
threshold τ . For each ground truth bounding box, if an output
personal object region largely overlaps with it, the object in
that frame is regarded as correctly detected. The overlapping
criterion with regard to the ground truth bounding box R1 and
detected region R2 is defined as (R1 ∩ R2)/(R1 ∪ R2) > 0.6.

TABLE I

AUC OF DIFFERENT METHODS

We vary threshold τ and count how many ground truth
bounding boxes are detected to produce the precision-recall
curve.

1) Baseline Methods: We design two baseline methods to
compare with. The first one ignores the object-scene distribu-
tion, and instead counts the appearing times of objects as their
scores. We denote it as the frequency method. In the second
baseline method, we employ a naive technique to obtain the
object-scene distribution. Instead of using h[xt = Sj ], we set
1[xt = Sj ] to estimate scene property of a frame. That is, we
select 512 frames to represent the scene where all frames are
clustered into 500 groups using GMM. Each frame is assigned
to a scene depending on the closest scene cluster using the
nearest neighbor. For wearer-interacted object discovery, we
employ K-means clustering instead of DPMM with cluster
number 100. We call this method naive OSD.

The first baseline method is to verify the effectiveness of
object-scene distribution. The second baseline tests steps in
sparse latent scene extraction and DPMM object discovery.
We report our performance using entropy scores in Eq. (9)
and relative entropy scores in Eq. (12).

2) Results: We plot precision-recall curves of the
two baseline methods and ours on the datasets in Fig. 10,
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Fig. 13. Precision-recall curves for 14 individual videos.

TABLE II

AUC ON 14 INDIVIDUAL VIDEOS. “ES” REFERS TO THE ENTROPY SCORES OF EQ. (9). RES REFERS TO THE RELATIVE ENTROPY SCORES OF EQ. (12)

which manifest that our method outperforms the alternatives.
The precision-recall curves of each individual videos are
shown in Fig. 13.

A few results are shown in Fig. 12 and video samples are
included in Youtube.1 We implement integration for precision-
recall curves to calculate the area under precision-recall

1http://www.youtube.com/watch?v=WRdd6Eh3DGI&feature=youtu.be

curves (AUC). AUC values are listed in Table I. AUCs of
each individual videos are tabulated in Table II.

Our method outperforms the “frequency method” signifi-
cantly. It is because many wearer-interacted objects, such as
public facilities, are not personal ones, although they are fre-
quently used. For example, the electronic lock shown in Fig. 7
is not removable from the door and thus can present only
in one scene. If there is no scene distribution consideration,
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Fig. 14. A mis-detection example: a deforming magazine with changing content.

this object will be regarded as a personal one. Adopting the
absolute entropy cannot tackle this problem. To test the impor-
tance of latent scene extraction and DPMM object discovery,
we exclude one of them and observe the performance drops.
Excluding respectively latent scene extraction and DPMM
object discovery result in AUCs 28.4 and 31.7.

For the second baseline method, K-mean cannot determine
an appropriated cluster number, making a cluster possibly
be broken into several small ones. In scene extraction, naive
assignment cannot model scene transition that is universal in
first-person videos.

We also experimented with the video object discovery [41]
method on our data. The AUC is only 2.16 because it does
not distinguishing between personal and other objects.

3) Computational Cost: Our method can process one frame
per 2 seconds on a single thread. The latent scene extraction
and wearer-interacted object discovery take about 30% and
60% computation time respectively. Part of our system can be
parallelized, such as sparse coding in latent scene extraction
and object discovery. Our parallel computing implementation
can process about 7 frames per second on a workstation with
24 CPU cores.

B. More Discussions

When we set threshold τ to 0, all detected wearer-interacted
objects are regarded as personal objects. We found the pre-
cision is already as high as 73.9%, indicating our wearer-
interacted objects cover many personal ones and form a good
candidate pool with a reasonable size. We nevertheless observe
a few false detection examples. In Fig. 11, the paper is close
to the yellow region and is looked at by the subject for more
than one second. These incorrectly detected regions have low
personal scores because it appears in one or a small number
of scenes, which leads to a sparse object-scene distribution
(see Fig. 11).

V. CONCLUSION AND LIMITATION

We have exploited a new topic of discovering personal
and frequently used objects. Object-scene distribution has
been proposed based on the observation that personal objects
generally accompany us in many scenes. We provided solu-
tions to extract scenes and objects from first-person videos in
an unsupervised manner. It is notable that our latent scene
learning scheme may be applied to other computer vision
systems.

Our method unsurprisingly has a number of limitations.
If a personal object is seldom used, its discovery from the
egocentric videos could be difficult. For example, keeping
the mobile phone always in the pocket or simply using it
for a very short period of time, will fail our method. Some
objects that change their appearances greatly in different
scenes may also lead to mis-detection. One failure example is
the deforming magazine with turned pages shown in Fig. 14.
This limitation could be partly alleviated by including more
egocentric information in future work.
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