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Abstract Converting color images into grayscale ones suf-
fer from information loss. In the meantime, it is one funda-
mental tool indispensable for single channel image process-
ing, digital printing, and monotone e-ink display. In this
paper, we propose an optimization framework aiming at max-
imally preserving color contrast. Our main contribution is
threefold. First, we employ a bimodal objective function to
alleviate the restrictive order constraint for color mapping.
Second, we develop an efficient solver that allows for auto-
matic selection of suitable grayscales based on global con-
trast constraints. Third, we advocate a perceptual-based met-
ric to measure contrast loss, as well as content preservation, in
the produced grayscale images. It is among the first attempts
in this field to quantitatively evaluate decolorization results.

Keywords Decolorization · Color2gray · Conversion ·
Contrast preservation · Perceptual-based · Quality metrics

1 Introduction

Decolorization, also known as color-to-gray, is a task aim-
ing at converting a color image into a grayscale one, where
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the latter carries only intensity information. Apart from its
fundamental importance in single channel image process-
ing, decolorization is necessary for black-and-white display
and printing. For example, many documents in government,
companies, and academia are still printed in monotone nowa-
days to save costs and resource. E-ink monotone display,
as a major digital replacement of paper books, can show
grayscale figures and characters. These devices, in fact, need
effective decolorization algorithms—grayscale versions of a
color image can be disappointing when meaningful structures
vanish.

Two examples are shown in Fig. 1. The original very con-
spicuous rectangle in (a) becomes nearly imperceptible after
being printed out by a monotone printer, as illustrated in (b).
We also tested displaying the chart in (d) on e-ink devices
(Amazon Kindle and Barnes and Noble Nook). The effect is
also not satisfactory, as shown in (e). There are many simi-
lar examples that cannot be well handled even with the most
advanced hardware. Thus, research of effective decoloriza-
tion methods is still in demand.

While decolorization is well-motivated in many practical
situations, intuitive methods, such as extracting the lightness
channel in the CIELab color space (Sharma and Bala 2002;
Fairchild et al. 2005), do not explicitly capture the important
appearance features and easily diminish salient structures.
To preserve color contrast, recent color-to-gray methods put
constraints on spatial intensity variation and require that the
grayscale contrast is similar to that of the color input. Signed
color difference, as well as the color order for neighboring
pixels, is specified (Gooch et al. 2005; Kim et al. 2009) to
constrain decolorization based on the Euclidian color dis-
tance and on the order of lightness channel. These stringent
constraints, in several cases, lose freedom in selecting suit-
able intensity values and may cause contrast loss. Figure 2a–e
contains results of a few color-to-gray methods (Gooch et al.

123

http://dx.doi.org/10.1007/s11263-014-0732-6


Int J Comput Vis

Fig. 1 The problem of color
contrast loss. a Color input. b
Printout of (a) by a HP Laserjet
printer. c Our decolorization
result. d Color input. e Image d
displayed on an Amazon
Kindle. f Display of our result

Fig. 2 One example. a Color
input. b–e Results of
state-of-the-art decolorization
methods. f Our result with
preserved contrast on the petal

2005; Smith et al. 2008; Kim et al. 2009). Although details
are mostly preserved, significant color contrast on the petal
is not well represented in the grayscale images.

In fact, human visual system does not accurately perceive
chrominance and lightness. Instead, their relationship to adja-
cent context (Lotto and Purves 2002; Corney et al. 2009)
plays a vital role. The order of different colors (Wong 2010)
also cannot be defined uniquely by people, as evidenced in
psychology and medical research. An example is that green
becomes brighter than blue in lightness in the CIELab color
system. But recent study indicates that people with differ-
ent culture and language background have different sense of
brightness. Someone feels just the opposite (Ozgen 2004; Ke
et al. 2010).

In this paper, we relax the rigorous color order constraint
and present a new method seeking a better preservation of
original color contrast and visual distinctiveness. The advan-
tage of the proposed model lies in the new weak color order
constraint, which allows for a flexible and practical color-to-

gray model. For color pairs without a clear order in bright-
ness, we propose a bimodal distribution, i.e., mixture of
two Gaussians, to automatically select suitable orders with
respect to the visual context in optimization.

We also address a color-importance problem by introduc-
ing a perceptually motivated Weber–Fechner weight, which
does not excessively depend on the dominant color compo-
nents. To effectively solve the optimization problem in the
new model, we propose a parameterized multivariate poly-
nomial function for color mapping and develop a fixed point
iteration solver. Our MATLAB implementation takes less
than 1 s to process an one mega-pixel image. Last but not
least, we propose a new metric to quantitatively measure the
quality of color-to-gray conversion in terms of distinctive-
ness preservation. Experiments indicate that the new metric
is in compliance with human visual perception, providing an
automatic way for decolorization assessment.

Our preliminary conference version (Lu et al. 2012) dis-
cussed the bimodal objective function. This paper extends
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it in the following ways. (1) We generalize the mapping
model by considering non-local color pairs and combine
both the local and global constraints in optimization. (2)
We identify the color weighting problem and propose the
“Weber–Fechner weight” to ameliorate it. (3) A new solver
based on landmark color extraction and fixed point iteration
is developed with numerical acceleration. (4) We propose
a new quantitative measure CCFR to complement the orig-
inal CCPR measure and conduct extensive experiments to
perceptually verify it.

The rest of the paper is organized as follows. We review
related work in Sect. 2. Section 3 presents our paramet-
ric decolorization model. The bimodal contrast preserving
objective function with the weak order constraint is intro-
duced in Sect. 4, with an approximated energy function pre-
sented in Sect. 5. We provide the numerical solver in Sect. 6
and results in Sect. 7. Section 8 concludes this paper.

2 Related Work

General decolorization strategies are to find a fixed and input-
independent transform to carry out color-to-gray projection.
RGB-to-YUV conversion (Sharma and Bala 2002; Fairchild
et al. 2005) can make black-and-white and color TVs com-
patible based on the same format. The Y channel is a linear
combination of RGB channels, used for black-and-white dis-
play. Another popular constant mapping to simply extracting
lightness in the CIELab (Hunter 1958) color space. Nayatani
et al. (1997) proposed a color appearance model, which is still
a content-independent mapping. Color contrast loss could
happen in these methods.

Other more advanced decolorization methods can be
roughly categorized into local and global ones, based on dif-
ferent spatial treatment of pixels. Local methods usually rely
on local chrominance edges for result contrast enhancement.
Bala and Eschbach (2004) added high-frequency chromatic-
ity components to the lightness channel, in order to enhance
edges. Neumann et al. (2007) locally selected consistent color
gradients and performed fast 2D integration to get the final
grayscale image. Smith et al. (2008) also employed a local
sharpening step after obtaining the grayscale image by global
mapping. Chrominance edges are enhanced by the adaptively
weighted multi-scale unsharp masking. These mechanisms
might occasionally alter the appearance of constant-color
regions and produce haloing artifacts, as discussed in (Kim
et al. 2009).

In global mapping, Bala and Braun (2004) sorted colors
in an image according to their lightness. Gooch et al. (2005)
enforced color contrast between pixel pairs. For each color
pair, color order is assigned based an empirical piecewise
function. Rasche et al. (2005) defined constraints directly on
different color pairs. A linear color mapping is adopted for

acceleration. Ahn et al. (2010) extended the idea of (Gooch
et al. 2005) by considering both the global and local con-
trasts. Grundland and Dodgson (2007) proposed a fast linear
mapping algorithm that adds a fixed amount of chrominance
to lightness. Parametric piecewise linear mapping is used to
convert color to grayscale. Kim et al. (2009) proposed a non-
linear parametric model. The parameters are estimated by
minimizing the cost function that aims to preserve the color
difference computed in the CIELab color space. Another
quadratic objective function computing color difference in
modified CIELCH color space was proposed in Song et al.
(2010). Ancuti et al. (2011) designed a similar decolorization
objective function as (Kim et al. 2009) and took saliency as
guidance.

In short, to preserve color contrast, most previous meth-
ods explicitly specify color orders. This strategy may shrink
the space to optimally pick grayscale values and lead to less
optimal solutions in terms of retaining originally prominent
contrast. There is also no good metric that can properly mea-
sure the result quality quantitatively.

3 Parametric Decolorization Model

The decolorization function is defined as g = f (c). For each
input RGB vector c = (cr , cg, cb), function f outputs g, the
corresponding grayscale value. We adopt a global mapping
scheme where pixels with the same color are converted to the
same grayscale.

A finite multivariate polynomial function is used. Mathe-
matically, we define the polynomial space of color c with its
degree n as

Πn = span{cd1
r cd2

g cd3
b : di = 0, 1, 2, . . . , d1 + d2 + d3 ≤ n}, (1)

where Πn is a polynomial space spanned by a family of
monomials. The mapping function is thus expressed as

f (cr , cg, cb;ω) =
∑

i

ωi mi , (2)

where mi is the i th monomial basis of Πn . The mapping
function is uniquely determined by weights {ωi }. Empiri-
cally, n is set to 2, which means the number of {ω} is 9 and
the mapping function is a linear combination of elements in
{cr , cg, cb, cr cg, cr cb, cgcb, c2

r , c2
g, c2

b}.
It is noteworthy that the polynomial form, albeit simple,

is already sufficiently powerful and flexible. It is actually a
generalization of common linear and nonlinear color-to-gray
mapping functions. We have experiment with the image set
(Cadík 2008) by first generating grayscale images using tra-
ditional methods, including the lightness channel of CIELab
(Hunter 1958), Y channel in the YUV space (Sharma and
Bala 2002; Fairchild et al. 2005), and Nayatani model (1997),
the last of which is known to be highly nonlinear. Then we
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Table 1 Mean and variance of the fitting errors when using our method
to approximate other widely adopted color-to-gray models

Mean Variance

Nayatani model 1.28× 10−2 2.61× 10−3

L channel of Lab 3.20× 10−3 8.71× 10−3

Y channel of YUV 0 0

All grayscale levels are mapped into [0, 1]

fit our model to approximate these grayscale images using
quadratic regression, i.e., by minimizing ‖ f (c, ω) − g′‖2,
where g′ denotes the grayscale results of these widely
employed methods. Table 1 lists the fitting errors. They are
all very small, indicating that our parametric model is at least
capable to work in the same way as previous color-to-gray
linear and non-linear mappings.

4 Bimodal Contrast-Preserving Energy Function

We describe in this section our new bimodal color contrast
preserving energy function with a weak color order con-
straint. To begin with, We revisit the energy used in previ-
ous approaches for contrast preserving decolorization. The
grayscales for pixel pair x and y in a pixel-pair pool P are
denoted as gx and gy respectively. They are estimated by
solving

min
g

∑

(x,y)∈P
(gx − gy − δx,y)

2, (3)

where the output image g could be with (as in Kim et al. 2009)
or without a parametric form (as in Gooch et al. 2005). δx,y

is the color contrast, having a signed value indicating the
difference of the corresponding color pixels. In the CIELab
color space, it can be expressed as

|δx,y | =
√

(Lx − L y)2 + (ax − ay)2 + (bx − by)2, (4)

which represents the color dissimilarity in the human visual
system (Wyszecki and Stiles 2000). The sign of δx,y is
typically determined by the sign in the L channel, i.e.
sign(Lx − L y). As discussed in Sect. 1, enforcing specific
orders for some color pairs could cause the contrast-loss
problem. Also, it may not be in obedience to human visual
perception.

4.1 Weak Color Order

Some color pairs obviously can be ordered in terms of bright-
ness. For example, absolute white is always brighter than
other colors in common sense. For these color pairs, a single-
peak distribution like the one in Eq. (3) is a natural choice,
indicating an unambiguous prior. We treat color pairs that
satisfy the following constraint as unwavering:

cx ≤ cy ⇐⇒ rx ≤ ry & gx ≤ gy & bx ≤ by . (5)

If Eq. (5) is satisfied, the sign of δx,y applies to gx − gy .
Otherwise, we do not specify the sign in prior but instead
propose a selection procedure to optimally find the suitable
color order. Our unambiguous color pairs keep the order of
Helmholtz–Kohlrausch (H–K) effect Nayatani (1997) with a
high probability. To verify this, we sample 10K unambiguous
color pairs from 250 images in our new COLOR250 dataset.
99.8 % of them are in accordance with the H–K effect.

Combining the above two types of order definition, we can
define our novel weak-order constraint. Practically, we con-
struct a map to distinguish between these two cases, which
is defined as

αx,y =
⎧
⎨

⎩

1 if rx ≤ ry, gx ≤ gy, bx ≤ by

or rx ≥ ry, gx ≥ gy, bx ≥ by

0.5 otherwise
(6)

If αx,y = 1, we apply prior G(δx,y, σ
2) for unambiguous

color order enforcement. Otherwise, we let the color differ-
ence follow a bimodal distribution, which allows for selection
of positive and negative signs optimally. There is one special
case where rx = ry, gx = gy , and bx = by . αx,y can be set
to any value, as δx,y is always zero. The final energy function
for pixel pairs in P is written as

∏

(x,y)∈P
{αx,yG(δx,y, σ

2)+ (1− αx,y)G(−δx,y, σ
2)}. (7)

Maximizing Eq. (7) is equivalent to minimizing its negative
logarithm, expressed as

EP (g)

= −
∑

(x,y) ∈P
ln

{
αx,y G(δx,y, σ

2)+ (1− αx,y)G(−δx,y, σ
2)

}
.

(8)

After taking the parametric polynomial model described
in Sect. 3 into Eq. (8), a function is formed consisting of
unknown coefficients {ωi }. As the global non-linear map-
ping is used, only nine parameters need to be estimated.

The difference of two grayscale pixels can then be
expressed with respect to unknown parameters {ωi }:

Δgx,y = gx − gy

= f (rx , gx , bx )− f (ry, gy, by)

=
∑

i

ωi (mix − miy). (9)

We further denote li(x,y):=mix −miy , which can be directly
computed given the color of pixels x and y. The energy func-
tion w.r.t. the parameter set ω is written as
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EP (ω) = −
∑

(x,y)∈P
κx,y ·

ln

{
αx,y exp

{
−|

∑
i ωi li(x,y) − δx,y |2

2σ 2

}
+

(1− αx,y) exp

{
−|

∑
i ωi li(x,y) + δx,y |2

2σ 2

}}
, (10)

where κx,y defines the weight for pixel pairs. It was typically
assumed to be constant for all pixel pairs. We will show later
that the constant κ setting may not be optimal, especially
when dominant color components exist.

The remaining problems in implementing Eq. (10) is to
define the set of pairs P and to set the corresponding weights
κx,y , which are presented in next section.

5 Local and Non-local Constraints

Ideally, P should include all Z2 pixel pairs, where Z is the
number of pixels in the image. This typically makes com-
putation costly. In the conference version paper Lu et al.
(2012), we set P = N , where N is the four-neighbor pair
set. It preserves the local color change, but ignores contrast
for pixels that are far apart. Here we introduce a new color
contrast constraint accounting for both local and non-local
color pairs without compromising computation efficiency.

5.1 Approximating Non-local Color Contrast

Evaluating all Z2 pixel pairs takes much computation. We
speed it up given the fact that Eq. (10) depends on the num-
ber of different color pairs presented in the image. Costs for
different pixel pairs with the same colors can be grouped
together.

Specifically, we denote by δc1,c2 the contrast of a color pair
(c1, c2), li(c1,c2) = mic1 −mic2 the color channel difference,
αcx ,cy the per-color-pair coefficient, and by Kc1,c2 the overall
weight for a color pair. Eq. (10) can be re-written as

ED(ω) = −
∑

(c1,c2)∈D
Kc1,c2 ·

ln

{
αc1,c2 exp

{
−|

∑
i ωi li(c1,c2) − δc1,c2 |2

2σ 2

}
+

(1− αc1,c2) exp

{
−|

∑
i ωi li(c1,c2) + δc1,c2 |2

2σ 2

}}
, (11)

of which the computation complexity depends only on the
cardinality of the the color pair set D and is regardless of the
number of pixel pairs in the image. Fortunately, due to the
inherent smoothing property, natural color images are usually
with a small number of main color components, instrumental
in simplifying computation.

5.1.1 Landmark Color Extraction

The goal of landmark color computation is to extract the
main color components to form the color pair set D. Similar
to (Ahn et al. 2010), for fast estimation, we apply K-means to
cluster colors in the image. The main challenge, however, is
to determine the number of clusters. We choose to seed land-
mark colors, and gradually increase them during clustering.

In the first place, we form the initial color set C as contain-
ing main colors in the image by removing those occupying
less than 1 % of the total pixels. We perform K-means cluster-
ing with s centers on C and obtain a cluster center set Cs . We
then generate an approximation of C from centers Cn , denoted
as C̄, by substituting each color in C with its clustering center
in Cs , and test the difference between C and C̄. If it is large,
we increase s and repeat this process (see Algorithm 1). The
increasing factor of s is set to α = 2− exp{−‖C − C̄‖2/σc}.
It makes s increase fast in the beginning and slow down
towards the end. For natural images, s is typically smaller
than 100; for charts and forms, the number is much smaller.
Our following method uses the estimated color in Cs .

5.1.2 Weber–Fechner Weight

We discuss the role of the weights Kc1,c2 in Eq. (11). By defin-
ition, it should be the summation of weights κx,y over all pixel
pairs (x, y) that with color (c1, c2). If all pixel pairs in the
images are treated equally, Kc1,c2 should be Nc1 Nc2 , where
Nc1 and Nc2 are the numbers of pixels that are with color
c1 and c2 respectively. They make color contrast between
large regions be best preserved to reduce energy. It how-
ever downplays the importance of color contrasts between
small-size regions, as illustrated in Fig. 3, which may not
appropriate. According to the Weber–Fechner law (Reber
1985), which explains that the relationship between real-
world stimuli, such as weight, length, and size, and human
perception follows a logarithmic correspondence. Intuitively,
in our case, the importance of regions should not grow lin-
early with size. Figure 4 shows the total number of instances
for the three color pairs in Fig. 3. Directly minimizing Eq.
(10) with equal weights generates the result shown in Fig.
3b.

Algorithm 1 Color Set Approximation
1: input: initial color set C
2: initialization: s = 2
3: repeat
4: partition C into s clusters using K-means, with s centers stored in

Cs .
5: reconstruct C using Cs , denoted by C̄.
6: s ← α · s, α > 1
7: until ‖C − C̄‖2 ≤ ε

8: output: color set Cs
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Fig. 3 Region size v.s. color
contrast. a Input. b Result with
equal weights for each pixel
pair. c Result after applying the
Weber–Fechner weights

Fig. 4 Numbers of instances for the three color pairs in Fig. 3a

We update the weights of color pairs as

Kc1,c2 = log

(
Nc1 Nc2

N0

)
, (12)

to follow the Weber–Fechner law. N0 is an empirical value
defining the threshold. Color pairs with the instance number
below it can be neglected.

If the instances of one color pair are less than N0 =
0.0012(Z)2, we treat the pair as not important and set its
weight Kc1,c1 to zero. The Weber–Fechner weight has an
effect to attenuate excessively large N . This is equivalent to

setting κx,y = Kcx ,cy
Ncx Ncy

in Eq. (10), which reduces weights of

pixel pairs with dominant colors. Better results can generally
be accomplished, as exemplified in Fig. 3c.

By substituting the Weber–Fechner weight into Eq. (10)
and employing the landmark color set Cs , we obtain a new
energy form w.r.t. parameter ω

EDs (ω) = −
∑

(c1,c2)∈Ds

Kc1,c2 ·

ln

{
αc1,c2 exp

{
−|

∑
i ωi li(c1,c2) − δc1,c2 |2

2σ 2

}
+

(1− αc1,c2) exp

{
−|

∑
i ωi li(c1,c2) + δc1,c2 |2

2σ 2

}}
,

(13)

with Kc1,c2 defined in Eq. (12) and Ds = {(c1, c2)|c1 ∈
Cs & c2 ∈ Cs}, the set of color pairs drawn from Cs .

5.2 Combining Local and Non-local Constraints

We call EDs (ω) in Eq. (13) the non-local energy as pixels
that are not neighboring are considered. However, for the
sake of efficient computation, some color components have

been dropped during clustering, which possibly lead to detail
loss in practice, as shown in Fig. 6. To reduce this problem,
we combine the non-local constraint EDs (ω) with its local
counterpart EN (ω) that involves only neighboring pixels in
the set N to form the final objective

E(ω) = EN (ω)+ λEDs (ω), (14)

where λ is a scalar balancing two terms. In defining EN (ω),
we simply set κx,y to 1 in Eq. (10). The efficacy of both the
non-local and local constraints will be validated in Sect. 7.

6 Numerical Solution

Energy function (14) involves two parts representing respec-
tively the local and non-local contrast constraints. Both con-
straints can be uniformly expressed in the form of Eq. (10),
which is still non-convex in general. We in this section devise
an efficient iterative numerical solver.

In Eq. (14), taking partial derivatives with respect to {ω j }
and setting them to zeros yield an equation system. To facil-
itate presentation, we define

βx,y := αx,yG(δx,y, σ
2)

αx,yG(δx,y, σ 2)+ (1− αx,y)G(−δx,y, σ 2)
,

βc1,c2 :=
αc1,c2 G(δc1,c2 , σ

2)

αc1,c2 G(δc1,c2 , σ
2)+ (1− αc1,c2)G(−δc1,c2 , σ

2)
.

(15)

With a few algebraic operations, the partial derivative on ω j ,
i.e. ∂ E(ω)

∂ω j
, can be expressed as

λ
∑

(c1,c2)∈Ds

Kc1,c2 ·
(

∑

i

ωi li(c1,c2)l j (c1,c2) + (1− 2βc1,c2 )l j (c1,c2)δc1,c2

)

+
∑

(x,y)∈N

(
∑

i

ωi li(x,y)l j (x,y) + (1− 2βx,y)l j (x,y)δx,y

)
= 0.

(16)

By setting all ∂ E(ω)
∂ω j

to zeros, we obtain a total of 9 equa-
tions. The difficulty in solving it stems from the terms β,
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Algorithm 2 Contrast-Preserving Decolorization
1: input: color image c = (r, g, b)

2: initialize ω0
i , t ← 0

3: compute δx,y and li(x,y) for each neighboring pixel pair in N
4: compute δc1,c2 and li(c1,c2) for each color pair in Ds
5: repeat
6: compute β t

x,y , β t
c1,c2

given ωt

7: solve for ωt+1

8: t ← t + 1
9: until t > tmax
10: g = f (c;ωt )

11: map g back to the range [min(c), max(c)]
12: output: grayscale image g.

which contain nonlinear functions about ω. We apply the
fix-point iteration strategy on ω to linearize the correspond-
ing equations. Specifically, to solve for ωt+1

i in the (t + 1)th
iteration, we use the previously estimated ωt

i to generate the
nonlinear term β t , which yields equations

∑

i

ωt+1
i

⎛

⎝
∑

(x,y)∈N
li(x,y)l j (x,y) + λ

∑

(c1,c2)∈Ds

Kc1,c2 li(c1,c2)l j (c1,c2)

⎞

⎠

=
∑

(x,y)∈N
(2β t

x,y − 1)l j (x,y)δx,y

+λ
∑

(c1,c2)∈Ds

Kc1,c2 (2β t
c1,c2
− 1)l j (c1,c2)δc1,c2 . (17)

Now the unknowns only exist in the left hand side of Eq. (17)
and we have 9 equations in the form of Eq. (17) by varying
j . In each iteration, the system is linear w.r.t. {ωt+1

i } and can
be solved easily. In implementation, we use the backslash
operator “\” in MATLAB.

Our computation framework is sketched in Algorithm 2.
Figure 5 shows an example where the grayscale image is
updated in iterations. We begin with a simple initialization
{ω0

i } as {0.33, 0.33, 0.33, 0, 0, 0, 0, 0, 0}. The corresponding
9 coefficients {ωi } in iterations are listed in Table 2.

To make the resulting grayscale image g viewable, we
linearly scale values with respect to the largest and smallest
values max(c) and min(c) in the original color image. To
process a one-megapixel color image, our MATLAB imple-
mentation spends 0.9s on a desktop PC equipped with an
Intel i3 CPU and 4GB Memory.

7 Evaluation and Comparisons

We conduct extensive experiments to evaluate our method
and compare it with other prior work using the benchmarking
dataset (Cadík 2008) and an extra COLOR250 dataset con-
taining much more examples. The parameters of the methods
to compare are the same as those used in Cadík (2008) and
are fixed for all images. For our method, σ is set to 0.2 and the

Input Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

Iteration 13 Iteration 14 Iteration 15

Fig. 5 Results updated in iterations

weight λ = 0.05 |N |∑
(c1,c2)∈Ds Kc1,c2

, where |N | is the cardinal-

ity of the neighboring pixel pair sets used for normalization.

7.1 Model Validation

As given in Eq. (14), our model consists of local and non-local
terms for contrast preservation. Both of them are important
and effective in handling different types of structures. We
respectively evaluate them.

First, we experiment with the model including and with-
out including the local contrast term EN (ω) in Eq. (14). A
few results are shown in Fig. 6. The results shown in (b) are
produced by optimizing EDK only. They are already visually
compelling. But compared to (c), a bit less details are avail-
able, indicating the importance of also enforcing neighboring
contrast. We note that our method is a global mapping one
that projects one color to a grayscale, regardless the position
in the image. The “local” and “non-local” constraints here
are only to represent neighboring pixel colors and those set
apart, in computing the global mapping.

Second, we compute results using only the local color con-
straint EN (ω) in Eq. (14), which corresponds to the method
presented in our conference paper. Figure 7 shows the results.
Compared to our prior model, the new one can capture the
color difference for regions that are not adjacent to each
other, as illustrated in (b) and (c). This property is particu-
larly important for region distinctiveness representation and
is vastly beneficial for charts, forms, clip-arts, and tables. The
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Table 2 Computed coefficients ω in different iterations

Iter. r g b rg rb gb r2 g2 b2

1 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00

2 0.97 0.91 0.38 −3.71 2.46 −4.01 −0.42 4.00 0.79

3 1.14 −0.25 1.22 −1.55 1.53 −3.51 −1.18 3.32 0.69

4 1.33 −1.61 2.10 1.35 −0.36 −1.61 −1.69 1.70 0.29

5 1.52 −2.25 2.46 2.69 −1.38 −0.30 −1.95 0.79 −0.02

6 1.64 −2.59 2.65 3.50 −1.99 0.59 −2.13 0.18 −0.27

11 1.94 −3.21 2.98 5.61 −3.22 2.55 −2.80 −1.33 −0.87

12 1.96 −3.26 3.00 5.80 −3.31 2.70 −2.87 −1.46 −0.92

13 1.98 −3.29 3.02 5.94 −3.38 2.81 −2.91 −1.56 −0.96

14 1.99 −3.31 3.03 6.03 −3.42 2.89 −2.95 −1.62 −0.98

15 2.00 −3.32 3.04 6.10 −3.45 2.94 −2.98 −1.67 −1.00

Fig. 6 Results produced with and without local contrast constraint. a Color inputs. b Results using the non-local contrast term only. c Results
combining both local and non-local color contrast preserving terms. d–f Close-ups

first example in Fig. 7 also illustrates the importance of the
Weber–Fechner weight in retaining contrast between small
color regions. The three color curves contain only a small
portion of pixels in the chart. Their contrast in our result,
however, is not diminished even with the small region sizes.

7.2 Qualitative Evaluation

We compare our method with those of (Gooch et al. 2005;
Smith et al. 2008; Kim et al. 2009), which are representative
local and global mapping color-to-gray approaches.

Figures 8 and 9 contain a few images selected from the
benchmarking dataset (Cadík 2008). Our results, shown in
the second column, preserve the most contrast presented in

the input color images. For the images shown in the first,
third and the fifth rows in Fig. 8 and second row in Fig. 9,
our method produces results with very different color orders
compared with others. It bears out the fact that in decoloriza-
tion, color difference visualization for neighboring pixels is
much more important in visual perception than strictly keep-
ing the intensity order, which contrarily could be ambigu-
ous by nature. To validate the bimodal function, we also
show results produced by replacing the bimodal function by
a single-model one in Fig. 10.

7.2.1 COLOR250 Dataset

The dataset produced in Cadík (2008) contains 24 images,
most of which are synthesized. To validate our method on
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Fig. 7 Effect of non-local
contrast preserving. a Color
inputs. b Results only using the
local contrast constraint. c Our
results produced from the new
model

more natural images usable for different applications, we
introduce a much larger dataset to test decolorization perfor-
mance. It contains natural images, as well as digital charts,
logos, and illustrations, which are ubiquitous in document
printing.

There are two packages in our dataset. One is 200
nature images selected from the Berkeley Segmentation
Dataset (BSD) (Martin et al. 2001) and saliency detec-
tion dataset (SD) (Achanta et al. 2009). Although these
datasets are designed for other purposes, the contained
images are natural with foreground and background. We
manually select 100 most colorful images from BSD and
SD separately and get a total of 200 natural images
based on the fact that decolorization methods
perform similarly on colorless or grayish images in
general.

We also add five main types of chart images in our dataset,
which include pie, curve, and bar charts, logos and maps.
They are used most often in document printing. We show in
Fig. 11 a few examples and compare our results with others.
The difference is clear.

7.3 Quantitative Evaluation

Decolorization lacks quantitative evaluation for understand-
ing the performance of different methods. We thus contribute
perceptually motivated quantitative evaluation. Two basic
metrics are proposed, measuring respectively the color con-
trast preserving and content similarity to the color input.
They are motivated by the fundamental requirement of color-
to-gray conversion to maintain as much as possible color
change, meanwhile not generating new edges that do not
find any correspondences in the original color images.

Our final measure combines the two metrics to form an
E-score, similar to the widely used F-measure for “precision-
recall” in the area of statistics. We perform quantitative eval-
uation using the user study data (Cadík 2008), which contain
human labeled information from various subjects.

7.3.1 Color Contrast Preserving Ratio (CCPR)

One metric is based on the phenomenon of color perception—
that is, when the Euclidean distance of two colors in the
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Fig. 8 Comparison with other decolorization methods

Lab space δ is smaller than a certain value τ , the difference
is generally invisible in human visual system.1 The task of
contrast-preserving decolorization is therefore to only main-
tain color contrast that is perceivable by human. Considering
the set containing all pixel pairs in the image P , we define
the color contrast preserving ratio (CCPR) as

1 It is suggested in Chen and Wang (2004) that τ < 6 makes structures
imperceivable to human visual system.

CCPR = #{(x, y)|(x, y) ∈ Ω, |gx − gy | ≥ τ }
‖Ω‖ , (18)

where Ω ⊆ P is the sub-pixel pair set with δx,y ≥
τ . ‖Ω‖ denotes the number of pixel pairs in Ω . Here,
#{(x, y)|(x, y) ∈ Ω, |gx − gy | ≥ τ } is the number of pixel
pairs in Ω that are still distinct after decolorization.

As P contains Z2 pixel pairs. Exhaustive search for CCPR
is time consuming. We resort to random sampling (following
a uniform distribution) from set P to calculate CCPR. 10Z
pairs are sampled in practice for the sake of efficiency. To
increase robustness, we repeat evaluation for 15 times and
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Fig. 9 Comparison with other decolorization methods

Fig. 10 Using bimodal and non-bimodal functions. a Inputs. b Results
from the one-model function. c Our results

compute the mean CCPR, which should be close to the true
value as illustrated in Table 3, where the variances of CCPR
are small enough.

7.3.2 Color Content Fidelity Ratio (CCFR)

CCPR is effective to measure the contrast loss after color-to-
gray conversion. It, however, does not tell how the grayscale
image is faithful to the color input in terms of structures. A

special case is that a noise map shown in Fig. 12b could have
a large CCPR. To complement it, similar to the recall mea-
sure in statistics that measures whether the relevant instances
are retrieved or not, we propose a color content fidelity ratio
(CCFR) to incorporate this type of information. It is simi-
larly important to quantitatively measure decolorization. The
structure inconsistency presented in Fig. 13 can be detected
and reflected in CCFR.

We define the CCFR metric complementary to CCPR as

CCFR = 1− #{(x, y)|(x, y) ∈ �, δx,y ≤ τ }
‖�‖ , (19)

where � is the set containing pixel pairs with |gx − gy | > τ ,
corresponding to structures with the least contrast. If the
original pixel difference is small, i.e., δx,y ≤ τ , the ratio
#{(x, y)|(x, y) ∈ �, δx,y ≤ τ }/‖�‖ measures the occur-
rence of unwanted “artifacts” in the result.

7.3.3 E-score

We introduce the E-score to jointly consider CCPR and
CCFR. It is the harmonic mean of the two measures, sim-
ilar to the F-measure in statistics. It is written as

E−score = 2 · CCPR · CCFR

CCPR + CCFR
. (20)

Figure 12 lists the CCPR, CCFR and E-score beneath each
result generated by state-of-the-arts. It is noticeable that the
E-score basically complies with human perception. Ideally,
the highest E-score is achieved when all the color contrast
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Fig. 11 Comparison with other decolorization methods on COLOR250

Table 3 Verification of the sampling strategy to compute CCPR

Image no. 1 2 3 4 5 6 7 8 9 10

CCPR (all pairs) 0.8900 0.9868 0.8618 0.9174 0.9373 0.9298 0.9156 0.9387 0.8322 0.8664
CCPR (sampling pairs) 0.8902 0.9868 0.8618 0.9178 0.9375 0.9297 0.9153 0.9388 0.8321 0.8665
Variance (sampling pairs)×10−4 6.0938 1.5914 5.6992 4.8793 5.7371 2.1276 12.6871 9.0362 6.0970 4.8001

The first ten images in dataset Cadík (2008) are used. “CCPR (all pairs)” refers to the ground truth CCPR computed using all pixel pairs. “CCPR
(sampling pairs)” is the mean CCPR of 15 rounds of random sampling. The last row shows the variance of the 15 runs
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CCPR = NA CCPR = 0.9028 CCPR = 0.5228 CCPR = 0.8627 CCPR = 0.3618 CCPR = 0.9853
CCFR = NA CCFR = 0.0933 CCFR = 0.5701 CCFR = 0.4862 CCFR = 1.0000 CCFR = 0.9954
E-score = NA E-score= 0.1691 E-score = 0.5454 E-score = 0.6219 E-score = 0.5314 E-score = 0.9903

(a) (b) (c) (d) (e) (f)

Fig. 12 CCPR, CCFR, and E-score with τ = 5 for different grayscale results. a Input image. b A noise map. c–d Results of Bala and Eschbach
(2004) and Smith et al. (2008) respectively. e Output from the MATLAB rgb2gray function. f Our result

(a) (b)

Fig. 13 Inconsistent edges may be generated in the grayscale image
(b) given the input (a)
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Fig. 14 Kendall correction w.r.t. τ

is preserved while no new edge is created in the grayscale
result, which make both the CCPR and CCFR equal to one.

7.3.4 Perceptual Validation

Cadík (2008) evaluated seven main color-to-gray methods
on 168 images. The preference scores are obtained from 119
subjects with 20,328 responses, which can be used also to
validate the usefulness and correctness of the E-score. Ide-
ally, if a preference score is high, the corresponding E-score
should be large. Given several results that are produced by
different methods, we rank them respectively according to
the E-score and preference scores. The two sets of ranks give
a correlation to measure if similar ranks are obtained. To sta-
tistically estimate the similarly, we adopt the Kendall rank
correlation coefficient (Nelsen 2001).

Let ei be the E-score for the result produced by the i th
method and pi be the preference score for the same result. If

two pairs (ei , e j ) and (pi , p j ) are with the same order (i.e.,
(ei − e j )(pi − p j ) > 0), the pair (i, j) is concordant. Other-
wise, it is discordant. Kendall rank correction coefficient is
accordingly defined as

R = #{concordant pair} − #{discordant pair}
1
2 n(n − 1)

, (21)

where n denotes the number of results to rank for each exam-
ple. Because we evaluate seven methods, including CIELab
and the methods of (Smith et al. 2008; Gooch et al. 2005;
Bala and Eschbach 2004; Neumann et al. 2007; Rasche et
al. 2005; Grundland and Dodgson 2007), n is set to 7 in our
case. #{·} is the operator to return the set size. R ranges in
[−1, 1]. If two rankings primarily agree with each other, we
get R > 0 (R = 1 refers to the situation that the orders are
exactly the same). Otherwise, R < 0. When R = 0, the ranks
can be treated as independent from the statistics perspective.

We plot the Kendall correction coefficients for the E-score
and preference score ranks under different τ in Fig. 14. The
coefficient R is positive for all τ we tested, indicating that the
ranks are mostly similar. Empirically, R > 0.4 means that
the two sets of ranks are positively related with sufficient
significance.

In the experiments described in Cadík (2008), there is a
u score, which follows the Thurstone law to describe the
subjects’ agreement degree for each case. When the decol-
orization results have an obvious quality order, u is high. We
show two examples in Figs. 15 and 16. They are with large
and small u scores respectively. They indicate when human
subjects cannot agree on the result orders, the preference
scores are not quite meaningful.

Thus for the example in Fig. 15, human can easily know
which result looks good. Our E-scores are close to the pref-
erence scores. For the one in Fig. 16, subjects tend to chose
their preference in a nearly random order. It explains why the
Kendall correction is low for this example. There is basically
no correct order suggested by human subjects.

By selecting images from the 24 image dataset with the
highest u scores, we compute Kendall correction. Scores with
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Fig. 15 Example with a large subject agreement score (u = 0.5670). a
Our E-scores versus preference scores. They are primarily correspond-
ing. i Input image. b–h Results of 7 methods shown according to the

preference scores in an ascending order. j–p Results of 7 methods shown
according to E-scores in an ascending order
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Fig. 16 Example with a small subject agreement score (u = 0.103). a E-score versus preference scores. They are not consistent for this example.
b Input image. c–i Results of seven methods shown according to the preference scores in an ascending order

different image subsets that contain 4–24 images are listed
in Table 4. We also evaluate consistency of E-scores and
accuracy scores provided by Cadík (2008) with the same
setting. The results are listed in Table 5. The quantities are
large for subsets containing a few images with the highest u,
manifesting similar human preference for these examples. E-
scores are consistent with both the accuracy and preference
scores. This validates the usefulness of the E-score measure
in decolorization.

7.3.5 Evaluation based on CCPR, CCFR, and E-score

We quantitatively evaluate our results based on CCPR, CCFR
and the E-score on the 24-image dataset (Cadík 2008) and
COLOR250 dataset.

We plot the scores on the 24 images in Fig. 17. It implies
that content-independent decolorization, such CIE Y chan-
nel, in general yields low CCPR. A few local approaches, on
the other hand, could generate unwanted artifacts or overly
enhance color edges, which lead to low CCFR. It is notewor-
thy that a higher CCPR or CCFR does not necessarily cor-

respond to a better result. Only the harmonic mean of them,
i.e. the E-score, determines the final quality. CCPR, CCFR,
and E-score with τ = 5 for different grayscale results of Fig.
8 are listed in Table 6.

We show in Fig. 18 the score plots on the COLOR250
set. The statistics also indicate that our method can achieve
satisfactory decolorization performance in terms of the E-
score measure.

7.3.6 User Study

A user study is carried out using the metrics of Cadík (2008).
We invited 57 observers (30 males and 27 females) to join
our user study. Following the setting of (Cadík 2008), we
compute the accuracy and preference scores. Twenty-nine
participants performed the accuracy experiment and 28 sub-
jects took part in the preference experiment. We randomly
select 30 images from our COLOR250 dataset as testing data.
Six methods with codes or executable available online are
evaluated. They are CIE Y, Grundland and Dodgson (2007),
Smith et al. (2008), Gooch et al. (2005), Lu et al. (2012), and
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Table 4 Average Kendall correction (with preference scores) for examples with the highest u scores

# 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

τ = 4 0.42 0.42 0.42 0.43 0.43 0.44 0.44 0.46 0.46 0.49 0.48 0.50 0.50 0.52 0.54 0.59 0.63 0.66 0.63 0.66 0.69

τ = 5 0.42 0.43 0.43 0.44 0.43 0.44 0.44 0.46 0.46 0.48 0.48 0.49 0.50 0.52 0.55 0.61 0.65 0.67 0.65 0.68 0.71

τ = 6 0.40 0.41 0.41 0.42 0.41 0.42 0.42 0.43 0.43 0.44 0.44 0.46 0.45 0.47 0.50 0.57 0.62 0.63 0.60 0.60 0.64

τ = 7 0.42 0.43 0.43 0.44 0.44 0.44 0.44 0.46 0.46 0.47 0.47 0.49 0.48 0.51 0.51 0.59 0.64 0.65 0.66 0.67 0.67

τ = 8 0.41 0.43 0.43 0.43 0.43 0.43 0.43 0.45 0.45 0.47 0.48 0.49 0.50 0.53 0.54 0.61 0.67 0.69 0.67 0.68 0.69

τ = 9 0.40 0.40 0.40 0.41 0.40 0.40 0.41 0.43 0.43 0.46 0.47 0.49 0.49 0.54 0.55 0.62 0.68 0.70 0.68 0.70 0.70

The number of images # varies from 4 to 24. We set τ ∈ {4, 5, 6, 7, 8, 9} for robustness

Table 5 Average Kendall correction (with accuracy scores) for examples with the highest u scores

# 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

τ = 4 0.40 0.40 0.41 0.42 0.42 0.42 0.43 0.44 0.45 0.46 0.47 0.49 0.49 0.51 0.52 0.58 0.61 0.63 0.64 0.65 0.69

τ = 5 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.45 0.45 0.45 0.46 0.48 0.48 0.50 0.54 0.58 0.62 0.65 0.65 0.65 0.69

τ = 6 0.38 0.40 0.40 0.40 0.40 0.41 0.41 0.42 0.42 0.42 0.42 0.45 0.45 0.46 0.48 0.56 0.61 0.62 0.62 0.62 0.62

τ = 7 0.40 0.40 0.40 0.41 0.43 0.43 0.43 0.43 0.45 0.46 0.47 0.47 0.48 0.48 0.49 0.57 0.61 0.64 0.64 0.64 0.66

τ = 8 0.38 0.40 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.45 0.46 0.46 0.48 0.52 0.53 0.59 0.65 0.66 0.66 0.66 0.67

τ = 9 0.38 0.39 0.39 0.39 0.39 0.39 0.40 0.41 0.42 0.44 0.44 0.46 0.47 0.53 0.53 0.59 0.66 0.69 0.69 0.69 0.70
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Fig. 17 CCPR, CCFR, and E-score plots on the 24-image dataset (x-axis: τ value; y-axis: CCPR, CCFR, and E-score)

the proposed method. We required each observer to perform
180 trials (pair-wise comparison), which is an acceptable
quantity for one observer without experiencing exhaustion
and loss of concentration. A total of 57 observers completed
10260 human responses. The overall accuracy and prefer-
ence scores are listed in Table 7. Our accuracy and prefer-
ence scores are large, proving that our grayscale result can
represent color inputs nicely. For our new E-score metric,
we show its kendall correction with accuracy and preference
scores in Table 8. They indicate that ranks of E-score and
user labels are positively related with sufficient significance.

8 Concluding Remarks

We have presented a new decolorization method that can well
maintain the original color contrast. We leverage a weak color

constraint to allow for very flexible and optimal grayscale
representation, based on the fact that human perception has
limited ability to determine ordering of color with respect
to brightness. So rather than intuitively defining the sign of
grayscale difference, we propose a bimodal objective func-
tion to increase the search space in optimization. This strategy
enables automatically finding suitable grayscales to best pre-
serve significant color change. Our contribution also includes
incorporating local and non-color color pairs for contrast
maintenance and a new COLOR250 image dataset for decol-
orization evaluation.

It is also notable that we have proposed a well-motivated
E-score metric to quantitatively evaluate the decolorization
results, in compliance with human perception. Both the quan-
titative and qualitative experiments on the two datasets vali-
date the effectiveness of the proposed method.
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Fig. 18 CCPR, CCFR, and E-score plots on the COLOR250 dataset (x-axis: τ value; y-axis: CCPR, CCFR, and E-score)

Table 7 Overall accuracy and preference scores.

CIE Y Gooch et al. (2005) Smith et al. (2008) Grundland and Dodgson (2007) Lu et al. (2012) ours

Accuracy −0.87 −0.27 −0.19 0.26 0.49 0.58

Preference −0.79 −0.35 −0.17 0.40 0.44 0.46

Table 8 Average Kendall correction

τ 4 5 6 7 8 9

Accuracy 0.69 0.69 0.70 0.71 0.71 0.71

Preference 0.67 0.67 0.67 0.68 0.69 0.69

First row: average Kendall correction between accuracy score and E-
score. Second row: average Kendall correction between preference
score and E-score. We set τ ∈ {4, 5, 6, 7, 8, 9} to evaluate the robustness
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