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Abstract. One of the major challenges in stereo matching is to handigapa
occlusions. In this paper, we introduce the Outlier ConfigefOC) which dy-

namically measures how likely one pixel is occluded. Thendbclusion infor-

mation is softly incorporated into our model. A global opization is applied to

robustly estimating the disparities for both the occludad mon-occluded pix-
els. Compared to color segmentation with plane fitting wigldibally partitions

the image, our OC model locally infers the possible dispardues for the out-
lier pixels using a reliable color sample refinement scheix@eriments on the
Middlebury dataset show that the proposed two-frame steratching method
performs satisfactorily on the stereo images.

1 Introduction

One useful technique to reduce the matching ambiguity &estimages is to incorpo-
rate the color segmentation into optimization [1-6]. Glasgmentations improve the
disparity estimation in textureless regions; but most efittdo not necessarily preserve
accurate boundaries. We have experimented that, whergt#tiénground truth occlu-
sion information into optimization, very accurate dispadstimation can be achieved.
This shows that partial occlusion is one major source of hiatcerrors. The main
challenge of solving the stereo problems now is the appatgoutlier detection and
handling.

In this paper, we propose a new stereo matching algorithnmgito improve the
disparity estimation. Our algorithm does not assign eaxél @i binary visibility value
indicating whether this pixel is partially occluded or n@t 4, 8], but rather introduces
soft Outlier Confidence (OC) values to reflect how confidentegard one pixel as an
outlier. The OC values, in our method, are used as weighé&nbadg two ways to infer
the disparities. The final energy function is globally optied using Belief Propagation
(BP). Without directly labeling each pixel as “occlusion™aon-occlusion”, our model
has considerable tolerance of errors produced in the doaldgtection process.

Another main contribution of our algorithm is the local dasjty inference for out-
lier pixels, complementary to the global segmentation. @ethod defines the disparity
similarity according to the color distance between pixeld aaturally transforms color
sample selection to a general foreground or background odlrence problem using
image matting. It effectively reduces errors caused bydoeate global color segmen-
tation and gives rise to a reliable inference of the unknoigpatity of the occluded
pixels.



We also enforce the inter-frame disparity consistency aedBP to simultaneously
estimate the disparities of two views. Experimental resuttthe Middlebury dataset [9]
show that our OC model effectively reduces the erroneoysadty estimate due to
outliers.

2 Related Work

A comprehensive survey of the dense two-frame stereo nmagetgorithms was given
in [10]. Evaluations of almost all stereo matching algarithcan be found in [9]. Here
we review previous work dealing with outliers because, rissky, the difficulty of
stereo matching is to handle the ambiguities.

Efforts of dealing with outliers are usually put in threegga in stereo matching
—that is, the cost aggregation, the disparity optimizatsond the disparity refinement.
Most approaches use outlier truncation or other robusttfomg for cost computation
in order to reduce the influence of outliers [2, 11].

Window-based methods aggregate matching cost by summergptbr differences
over a support region. These methods [12, 13] prevent degtimagion from aggre-
gating information across different depth layers usingdbler information. Yoon and
Kweon [14] adjusted the support-weight of a pixel in a giveimdow based on the
CIELab color similarity and its spatial distance to the eerdf the support window.
Zitnick et al. [12] partitioned the input image and grouped the matchirg} coeach
color segment. Leét al. [15] used segmentation to form small regions in a regioa-tre
for further optimization.

In disparity optimization, outliers are handled in two wagsgeneral. One is to
explicitly detect occlusions and model visibility [7, 4, 8unet al. [4] introduced the
visibility constraint by penalizing the occlusions anddkig the smoothness between
the occluded and non-occluded regions. In [8], Stresthel. modeled the occlusion as
a random outlier process and iteratively estimated thehdaptl visibility in an EM
framework in multi-view stereo. Another kind of methods grasses outliers using
extra information, such as pixel colors, in optimization.[16, 6], a color weighted
smoothness term was used to control the message passingHiir&hmuller [17] took
color difference as the weight to penalize large dispatiiffgences and optimized the
disparities using a semi-global approach.

Post-process was also introduced to handle the remainitigrswafter the global or
local optimization. Occluded pixels can be detected usingresistency check, which
validates the disparity correspondences in two views [,10746]. Disparity interpola-
tion [18] infers the disparities for the occluded pixelsrfréhe non-occluded ones by
setting the disparities of the mis-matched pixels to thahefbackground. In [1, 3-6],
color segmentation was employed to partition images ingonsats, each of which is
refined by fitting a 3D disparity plane. Optimization such &dan be further applied
after plane fitting [4—6] to reduce the possible errors.

Several disparity refinement schemes have been proposedvef-view synthe-
sis. Sub-pixel refinement [19] enhances details for syimthesa new view. In [12]
and [20], boundary matting for producing seamless viewpakation was introduced.



These methods only aim to synthesize natural and seamleskviews, and cannot be
directly used in stereo matching to detect or suppresseositli

3  Our Model

Denoting the input stereo imagesiagand/,., and the corresponding disparity maps as
D, andD,. respectively, we define the matching energy as

E(Dy,Dy; 11, 1) = Eq(Dy; It, 1) + Eq(Dy; I, 1) + Es(Dy, Dy), 1)

where E4(Dy; 11, I.) + Eq(D,; 11, I,) is the data term andvs(D;, D,.) defines the

smoothness term that is constructed on the disparity mapsut algorithm, we not

only consider the spatial smoothness within one disparép ut also model the con-
sistency of disparities between frames.

As the occluded pixels influence the disparity estimatibaytshould not be used in
stereo matching. In our algorithm, we do not distinguisiwleein occlusion and image
noise, but rather treat all problematic pixels as outliéngtlier Confidence§OCs) are
computed on these pixels, indicating how confident we regaedpixel as an outlier.
The outlier confidence magsg, andU.,. are constructed on the input image pair. The
confidencel/;(x) or U,(x) on pixelz is a continuous variable with value between 0
and 1. Larger value indicates higher confidence that ond sixan outlier, and vice
versa.

Our model combines an initial disparity map and an OC mapwontiews. In the
following, we first introduce our data and smoothness teffhg. construction of the
OC map will be described in Section 4.2.

3.1 Data Term

In the stereo configuration, pixelin I; corresponds to pixet — d; in I,. by disparity
d;. Similarly, z in I,. corresponds ta: + d,. in I;. All possible disparity values faf;
andd,. are uniformly denoted as sét containing integers betwe@rand N, where N
is the maximum positive disparity value. The color of pixeh I; (or I,.) is denoted as
I;(z) (or I.(x)). We define the data teri, (D;; I;, 1)) on the left image as

fola, dy; I, 1) fi(z, di; Iy)
Q

) + Ui(z)( 3

Ea(Dy; I, 1) = ) (1= Ui(x))( N @)

x

wherea andg are weights o (z, d; I, I,.) denotes the color dissimilarity cost between
two views. f1 (x, d; I;) is the term defined as the local color and disparity discaiitiin
cost in one viewE,(D,; I, I,.) on the right image can be defined in a similar way.

The above two terms, balanced by the outlier confidén¢e), model respectively
two types of processes in disparity computation. CompasesettingU;(x) as a bi-
nary value and assigning pixels to either outliers or isli@ur cost terms are softly
combined, tolerating possible errors in pixel classifiwati

For result comparison, we give two definitionsfgfz, d;; I;, I,.) respectively corre-
sponding to whether the segmentation is incorporated offihetfirst is to use the color



and distance weighted local window [14, 6, 19] to aggregaterdifference between
conjugate pixels:

6V (@, dis I, 1) = min(g (|| (@) — I — di)[1), ¢), 3)

whereg(-) is the aggregate function defined similarly to Equation dBi. We use the
default parameter values (local window siZ&x 33, 5., = 10 for normalizing color
differences;y.,, = 21 for normalizing spatial distancesp). determines the maximum
cost for each pixel, whose value is set as the average ityaigixels in the correlation
volume.

The second definition is given by incorporating the segnteménformation. Specif-
ically, we use the Mean-shift color segmentation [21] witfalilt parameters (spatial
bandwidth 7, color bandwidth 6.5, minimum region size 2@¢oerate color segments.
A plane fitting algorithm using RANSAC (similar to that in [@ then applied to pro-
ducing the regularized disparity méap;. We define

Dy diy 1, 1) = (1= 6) £ (@, d)) + wald — dyg, 4)

wherex is a weight balancing two terms.
fi(z,d;; I;) is defined as the cost of assigning local disparity when orel hias
chance to be an outlier.

frle dis ) = (1 = wilw; )8 (dy — i), (5)

iew

whered(-) is the Dirac function denotes the set of all disparity values betweamd
N andw;(z; I;) is a weight function for measuring how disparityis likely to bei.
We omit subscript in the following discussion ab;(x; I;) since both the left and right
views can use the similar definitions.

For ease of explanation, we first give a general definition&ifWwtw, (z; I'), which,
in the following descriptions, will be slightly modified t@hdle two extreme situations
with values 0 and 1. We define

L(I(z), T'(Wa))
L(I(z), TH(Wy)) + L(I(2), 7 (W)’

wi(w; 1) =1— (6)
where(z) denotes the color of pixet andW,, is a window centered at. Suppose
after initialization, we have collected a set of pixelsdetected as inliers within each
W, (i.e.,U(z') = 0), and have computed disparities for these inliers. We aebypl’
the set of inliers whose disparity values are computed Sanilarly, I7* are the inliers
with the corresponding disparity values not equal t6 is a metric measuring the color
difference betweei(z) and its neighboring pixelE (W) andI#*(W,.). One example
is shown in Figure 1(a) where a windd/, is centered at an outlier pixel. Within
W,, inlier pixels are clustered intb! andI#!. w/ (z; I) is computed according to the
color similarity between: and other pixels in the two clusters.

(6) is a function to assign an outlier pixela disparity value, constrained by the
color similarity between: and the clustered neighboring pixels. By and large, if the
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Fig. 1. Computing disparity weight’. (a) Within a neighborhood windoW’,., inlier pixels are
clustered intdl' andI7. (b)-(d) illustrate the color projection. (b) The projextiof I(x) on
vectorI**) — 17*) is between two ends. (c-d) The projectiond 6f) are out of range, thereby
are considered as extreme situations.

color distance betweenand its inlier neighbors with disparityis small enough com-
pared to the color distance to other inliev$(z; I') should have a large value, indicating
high chance to let; = i in (5).

Now the problem is on how to compute a metfcthat appropriately measures
the color distance between pixels. In our method, we alistalor setsI‘(W,) and
17 (W,,) by two representative&(*) and77*(*) respectively. Thert is simplified to a
color metric between pixels. We adopt the color projectisteshce along vectdr(*) —
I#') and define

L(I(z),¢) = [{I(x) = e, 1" = 7)), (7

where(-, -) denotes the inner product of two color vectors arwn be eithed*™*) or
I71*) We regard ‘) — J#(*) as a projection vector because it measures the absolute
difference between two representative colors, or, egeintdl, the distance between sets
I'(W,) andI7* (W,,).

Projectingl (z) to vectorI*(*) — 1#(*) also makes the assignment of two extreme
values 0 and 1 ta;(x; I) easy. Taking Figure 1 as an example, if the projectiof( of
on vector/**) — [#1(*) js between two ends, its value is obviously between 0 and 1, as
shown in Figure 1 (b). If the projection dfx) is out of one end point, its value should
be 0 if it is close tol*(*) or 1 otherwise (Figure 1 (c) and (d)). To handle the extreme
cases, we define the fina)(z; I) as

0 if (I — I790) i) — [ <
wi(z; I) =41 if <[i(*) _ I,Ii(*) . I7ﬁi(*)> <0
w!(z; T) Otherwise



which is further expressed as

o (I — I7CNT (i) — [#i(%))
w=T ( TEETEZCI T ®)
where
0x<O0
Tx)y=< laz>1 9)
x otherwise

Note that term(I’IT}(,:(?)T}{;T&)"?(*)) defined in (8) is quite similar to an alpha matte
model used in image matting [22, 23] where the represeetatilors/*(*) and 77#(*)
are analogous to the unknown foreground and backgroundscdlbe image matting
problem is solved by color sample collection and optim@atiln our problem, the
color samples are those clustered neighboring piK¢l§, ) andI”* (W,,).

With the above analysis, computing the weightis naturally transformed to an
image matting problem where the representative color seters handled by applying
an optimization algorithm. In our method, we employ the isthuatting with optimal
color sample selection approach [23]. In principl&*) and I7/*) are respectively
selected fron1’ (W, ) andI#*(W,.) based on @ample confidenameasure combining
two criteria. First, eithef’(*) or 1#:(*) should be similar to the color of the outlier pixel
I, which makes weighw,; approach either 0 or 1 and the weight distribution hardly
uniform. Second/ is also expected to be a linear combination/8f) and 77:(*).
This is useful for modeling color blending since outlier glix have chance to be the
interpolation of color samples, especially for those onrdggon boundary.

Using the sample confidence definition, we get two weightsamneighborhood
term, similar to those in [23]. Then we apply the Random Watthmod [24] to com-
pute weighto;. This process is repeated for all's, wherei = 0,--- , N. The main
benefit that we employ this matting method is that it provide®ptimal way to select
representative colors while maintaining spatial smoatkne

3.2 Smoothness Term

TermE,(D;, D,) contains two parts, representing intra-frame disparityatimness and
inter-frame disparity consistency:

T z'eNi(z) A z'eNa(x) v
f3(x, 2!, dy, d; fa(z, 2’ d,
Z (%)4_ Z (M)], (10)
m/€N1(w) w’e./\fz(a:) v

whereN (z) represents th& possible corresponding pixels ofin the other view and
Na(z) denotes the 4-neighborhoodnin the image spacs; is defined as

fo(z,2',d;) = min(|d; (z) — d;i(z"))|,7), i€ {l,r}, (11)



wherer is a threshold set as 2. To define (11), we have also expermevith using
color weighted smoothness and observed that the resultoa@mproved.
We definefs(-) as the disparity correlations between two views:

fa(x, 2, dy,d,) = min(|dy(z) — d-(2")],¢) and
f3(x7 x/a dy, dl) = mln(|d7(a:) - dl(x/”v <) ) (12)

where( is a truncation threshold with value 1. We do not define a umiqeorrespond-
ing to = becauser’ is unknown in the beginning. The other reason is that fetAnd
f3 are the costs for disparity smoothnessfinall neighboring pixels are encoded in
N> thoughd; () is not necessarily similar to all;(z’). So we introducefs with the
similar thought for reducing the disparity noise in globptimization considering the
inter-frame consistency.

4 Implementation

The overview of our framework is given in Algorithm 1, whicbresists of an initial-
ization step and a global optimization step. In the first stepinitialize the disparity
maps by minimizing an energy with the simplified data and simoess terms. Then we
compute the Outlier Confidence (OC) maps. In the second s&globally refine the
disparities by incorporating the OC maps.

Algorithm 1 Overview of our approach
1. Initialization:
1.1 Initialize disparity mafD by settingU = 0 for all pixels.
1.2 Estimate Outlier Confidence méap

2. Global Optimization:
2.1 Compute data terms using the estimated outlier confederaps.
2.2 Global optimization using BP.

4.1 Disparity Initialization

To initialize disparities, we simply set all valuesiiih andU,. to zeros and optimize the
objective function combining (2) and (10):

5 fo(x,dz)zfo(xvdr)pr E.(D,,D,). (13)

Because of introducing the inter-frame disparity consisyan (12), our Markov Ran-
dom Field (MRF) based on the defined energy is slightly déffeéfrom the regular-grid
MRFs proposed in other stereo approaches [2, 25]. In oufftaroe configuration, the
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Fig. 2. In our dual view configurationgy (marked with the cross) is not only connected to 4
neighbors in one image, but also relatedMgossible corresponding pixels in the other image.
The total number of neighbors afis4 + N.

MRF is built on two images witl{4 + N) neighboring sites for each nod¥. is the
total number of the disparity levels. One illustration isegi in Figure 2 where a pixel
2 in I; not only connects to its 4 neighbors in the image space, bata@nnects to all
possible corresponding pixels In.

We minimize the energy defined in (13) using Belief Propagyatihe inter-frame
consistency constraint makes the estimated disparity roap&in less noise in two
frames. We show in Figure 3(a) the initialized disparityutesising the standard 4-
connected MRF without definings in (10). (b) shows the result using ot + N)-
connected MRF. The background disparity noise is reduced.

Depending on using”él) in (3) or féQ) in (4) in the data term definition, we obtain
two sets of initializations using and without using globalar segmentation. We shall
compare in the results how applying our OC models in the ¥atig global optimiza-
tion improves both of the disparity maps.

4.2 Outlier Confidence Estimation

We estimate the outlier confidence midpon the initial disparity maps. Our following
discussion focuses on estimatitigon the left view. The right view can be handled in
a similar way. The outlier confidences, in our algorithm,@eéned as

1 jdy(x) — dy(x — di(2))] >
Ui(w) = T(H)b(d*bwdl() d(z—dx N=0 (14
0 Otherwise

considering 2 cases.

Case 1: Our MRF enforces the disparity consistency betweeniews. After dis-
parity initialization, the remaining pixels with incontsit disparities are likely to be
occlusions. So we first set the outlier confidebger) = 1 for pixel z if the inter-frame
consistency is violated, i.€d;(z) — d,.(z — d;(x))| > 1.

Case 2: Besides the disparity inconsistency, pixel matphith large matching cost
is also unreliable. In our method, since we use BP to intttathe disparity maps, the
matching cost is embedded in the output disparity beéli¢f) for each pixel:. Here,
we introduce some simple operations to manipulate it. Fivst extractb,.(d*), i.e
the smallest belief, for each pixel If b,(d*) < ¢, wheret is a threshold, the pixel
should be regarded as an inlier given the small matching 8estond, a variable, is
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Fig. 3. Intermediate results for the “Tsukuba” example. (a) angiowv our initial disparity maps
by the 4-connected and + N)-connected MRFs respectively without using segmentafibe.
disparity noise in (b) is reduced for the background. (c) €strmated OC map. (d) A disparity
map constructed by combining the inlier and outlier infotiora The disparities for the outlier
pixels are set as the maximum weight The inlier pixels are with initially computed disparity
values.

computed as the average of the minimal beliefs regardingcaluded pixels detected
inCase 1,i.eo = >, (,)=1 b=(d")/K whereK is the total number of the occluded
pixels. Finally, we computé,,;, as the average of top% minimal beliefs among all
pixels.n is set to 10 in our experiments.

Using the computed, (d*), b,, andb,,;,, we estimatel/;(z) for pixels neither
detected as occlusions nor treated as inliers by setting

o (ba(d®) = by
G(®) ‘T( oo~ B ) (13)

where7 is the function defined in (9), making the confidence valuaitge[0, 1]. (15)
indicates if the smallest beliéf.(d*) of pixel x is equal to or larger than the average
smallest belief of the occluded pixels detected in Case€l ptitlier confidence of
will be high, and vice versa.

Figure 3(c) shows the estimated outlier coefficient mapHer‘tsukuba” example.
The pure black pixels represent inliers whéigz) = 0. Generally, the region consist-
ing of pixels withU;(z) > 0 is wider than the ground truth occluded region. This is
allowed in our algorithm becaugé (z) is only a weight balancing pixel matching and
color smoothness. Even if pixelis mistakenly labeled as an outlier, the disparity esti-
mation in our algorithm will not be largely influenced becalesrgelU, (x) only makes
the disparity estimation af rely more on neighboring pixel information, by whidfx)
still has a large chance to be correctly inferred.

To illustrate the efficacy of our OC scheme, we show in Figuid & disparity
map directly constructed with the following setting. Eanhar pixel is with initially
computed disparity value and each outlier pixel is with tlspdrity: corresponding to
the maximum weighw; among alkw;'s, wherej = 0,--- , N. It can be observed that
even without any further global optimization, this simpleximum-weight disparity
calculation already makes the object boundary smooth atdala



4.3 Global Optimization

With the estimated OC maps, we are ready to use global ogtinizto compute the
final disparity maps combining costs (2) and (10) in (1). Twonis of fy(-) ((3) and
(4)) are independently applied in our experiments for tesuinparison.

The computation off; (z,d; I) in (5) is based on the estimated OC maps and the
initial disparities for the inlier pixels, which are obtaithin the aforementioned steps.
To computew; for outlier pixelz with U;(z) > 0, robust matting [23] is performed
as described in Section 3.1 for each disparity level. Thelimd color sampling is
performed in each local window with sif® x 60. Finally, the smoothness terms are
embedded in the message passing of BP. An accelerationdisiagce transform [25]
is adopted to construct the messages.

5 Experiments

Parameterse 8 « v A ¢ 7 ( t
value ¢ 0.8 0.3 5.0 &% ¢ 2.0 1.0 0.9,.in,

Table 1. The parameter values used in our experimeNtss the number of the disparity levels.
¢ is the average of the correlation volunbg,;,, is introduced in (15).

In experiments, we compare the results using and withoagusie Outlier Confi-
dence maps. The performance is evaluated using the Midylelataset [10]. All pa-
rameters used in implementation are listed in Table 1 wherfeandx are the weights
defined in the data termy.and\ are for intra-frame smoothness and inter-frame consis-
tency respectivelyp, 7, and¢ are the truncation thresholds for different energy terms.
is the threshold for selecting possible outliers. As we radize the messages after each
message passing iteration by subtracting the mean of theages, the beligf,,,;,, is
negative, making = 0.90,,; > binin-

Avg. Tsukuba Venus Teddy Cones
Algorithm  |RanK nonocc all disgnonocc all dismonocc all disponocc all disg
Adap.BP[5] | 2.3 |1.11 1.37 5.790.10 0.21 1.444.22 7.06 11.82.48 7.92 7.32
Our method | 3.6 | 0.88 1.43 4.74|0.18 0.26 2.405.01 9.12 12.82.78 8.57 6.99
DoubleBP [6]| 3.7 | 0.88 1.29 4.76|0.14 0.60 2.003.55 8.719.70(2.90 9.24 7.80

SPDou.BP [19] 4.6 | 1.24 1.76 5.990.12 0.46 1.743.45 8.38 10.02.93 8.73 7.91

SymBP+occ [4] 8.8 | 0.97 1.75 5.090.16 0.33 2.196.47 10.7 17.04.79 10.7 10.9

Table 2. Algorithm evaluation on the Midellbury data set. Our metlamtiieves overall rank 2 at
the time of data submission.



Overall Tsukuba Venus Teddy Cones
Algorithm | Rank |nonocc all disgnonocc all dispmonocc all dismonocc all dis
COLOR 16 |1.12 3.29 5.920.49 1.48 6.7810.5 16.9 21.13.42 12.1 8.2¢

COLOR+OCQ 5 [0.83 1.41 4.45/0.25 0.31 3.2210.1 14.6 19.93.22 9.82 7.4

SEG 4 (097 1.75 5.280.30 0.70 3.985.56 9.99 13.63.04 8.90 7.6
SEG+0OC 2 10.88 1.43 4.74/0.18 0.26 2.405.01 9.12 12.82.78 8.57 6.99

SO

Table 3.Result comparison on the Middlebury dataset using (1st eshcb8vs) and without using
(2nd and 4th rows) OC Maps. The segmentation informationbleas incorporated for the last
two rows.

A comparison of the state-of-the-art stereo matching élywoss is shown in Table
2 extracted from the Middlebury website [9]. In the followinve give detailed expla-
nations.

5.1 Results Without Using Segmentation

In the first part of our experiments, we do not use the segrtientaformation. So data
termfél) defined in (3) is used in our depth estimation.

We show in the first row of Table 3 (denoted as “COLOR”) theistias of the
initial disparities. The algorithm is detailed in Sectiod AVe setU (z) = 0 for all x's
and minimize the energy defined in (13). Then we estimate Ber@aps based on the
initial disparities and minimize the energy defined in (1 Wénote the final results as
“COLOR+OC” in the second row of Table 3.

Comparing the two sets of results, one can observe thatpocating the outlier in-
formation significantly improves the quality of the estim@tisparity maps. The over-
all rank jumps from initial No. 16 to No. 5, which is the highessition for all results
produced by the stereo matching algorithms without incafiog segmentation.

In analysis, for the “Teddy” example, however, our final disty estimate does not
gain large improvement over the initial one. It is because the remaining errors are
mostly caused by matching large textureless regions, wtaohbe addressed by color
segmentation.

5.2 Results Using Segmentation

In this part of the experiments, we incorporate the segntientanformation by using
the data ternféz) defined in (4). Our initial disparities are denoted as “SEQUr final
results obtained by applying the global optimization inpmating the Outlier Confi-
dences are denoted as “SEG+0OC”. We show in the third and fowhk of Table 3 the
error statistics of the initial disparity maps and our redimesults. The average rank
rises from 6.9 to 3.6 and the overall rank jumps from No. 4 to RloThe improve-
ment validates the effectiveness of our approach in hagdiirtliers and its nature of
complementarity to color segmentation.
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Fig. 4. Disparity result comparison. (a) Disparity results of “SHEB) Our final disparity results
using the Outlier Confidence model (“SEG+0C”).

The computed disparity maps are shown in Figure 4, wheren@jta respectively
show the results of “SEG” and “SEG+OC”. A comparison of diffyeerrors is demon-
strated in Figure 5 using the “Cones” example. The magnifadies extracted from
the error maps are shown in (b). The comparison shows thatpproach can primarily
improve the disparity estimation for outlier pixels.

Finally, the framework of our algorithm is general. Many @ttrexisting stereo
matching methods can be incorporated into the outlier cenfid scheme by chang-
ing fy to other energy functions.

6 Conclusion

In this paper, we have proposed an Outlier-Confidence-bstezdo matching algo-

rithm. In this algorithm, the Outlier Confidence is introédcto measure how likely

that one pixel is an outlier. A model using the local colooimhation is proposed for

inferring the disparities of possible outliers and is softtmbined with other data terms
to dynamically adjust the disparity estimate. Complemsrtaglobal color segmenta-

tion, our algorithm locally gathers color samples and oftés them using the matting
techniques in order to reliably measure how one outlierlgiar be assigned a disparity
value. Experimental results on the Middlebury data set sthatvour proposed method
is rather effective in disparity estimation.
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Fig. 5. Error comparison on the “Cones” example. (a) shows the digpgarror maps for “SEG”
and “SEG+O0C” respectively. (b) Comparison of three magdifiatches extracted from (a). The
“SEG+OC” results are shown on the right of each patch pair.
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