ENGG 1100 Introduction to Engineering Design

Lecture 2: Engineering Design & Management + Quiz Information

Dr. Dorbin Ng, tbng@se.cuhk.edu.hk

Department of Systems Engineering & Engineering Management

Acknowledgements

Most of the slides were previously developed by Prof. Ken Ma (EE Dept) for the EE design course and by Prof. C.H. Cheng & Prof. K.P. Lam (SEEM Dept) for ENGG 1100 (2013-2014), with inputs from Prof. K.H. Lee (CSE Dept) and Prof. Douglas Yung (EE Dept)

September 16, 2013

Recommended Reading

 Clive L. Dym, Patrick Little, Elizabeth J. Orwin, and R. Erik Spjut, "Engineering Design: A Project-Based Introduction", Third Edition, Wiley, 2009.

 Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, and Matthew W. Ohland, *"Thinking Like an Engineer: An Active Learning Approach"*, Pearson, 2012.

Engineering design is a systematic, intelligent process in which designers generate, evaluate and specify designs for devices, systems or processes whose form(s) and function(s) achieve client's objectives and users' needs while satisfying a specific set of constraints.

History of Design

- People have been designing things for a long time
- Examples of great designs from the past
 - Great Pyramids in Egypt
 - Mayan Cities and Temples
 - Great Wall of China
- Basic design method in the past > Trial and Error

Design Evolution

Mastaba

Step Pyramid

Bent Pyramid

- Scientists see things as they are and ask, WHY?
- Engineers see things as they could be and ask, WHY NOT?
- Essence of new design
 - Less expensive
 - Faster
 - Better

Mac Computer Evolution

Mobile Phone Evolution

Designs Can Be Different – Variation in Usage

A Variety of Possibilities for Designing a Ladder

From Design to Manufacture

Designer-Client-User Triangle

- Client: person or group or company that wants a design conceived
- User: The person who will actually use whatever is being designed
- **Designer:** As its name implies

Engineering Design Addresses Hard Problems

 Design problems are ill structured — their solutions cannot normally be found by applying math. formulas, methods, and procedures in a routine way.

 Design problems are open-ended — they typically have several acceptable solutions.

Design Process as a Process of Questioning

- Suppose your client wants you to "design a safe ladder".
- There will be a lot of questions arising:
 - Why do you want another ladder?
 - How will it be used?
 - How much can it cost?
 - What do you mean by "safe"?
 -
- Similar sets of questions arise if I simply ask you to "design an automated guided vehicle (AGV)", without further specifications.
- The designer's first task is to clarify what the client wants so as to be able translate wishes into meaningful objectives and constraints.

Example: Design a Safe Ladder

- Questions like
 - Why do you want another ladder?
 - How will it be used?
 - How much can it cost?
 - help clarify and establish the client's objective.
- Questions like
 - What does "safe" mean?
 - What's the most you're willing to spend?
 - ➔ help identify the constraints that govern the design.

Example: Design a Safe Ladder

- Questions like
 - Can the ladder lean against a supporting surface?
 - Must the ladder support someone carrying something?
 - → help establish functions that the design must perform and suggests means by which those functions can be performed.
- Questions like
 - How much weight should a safe ladder support?
 - How high should someone on the ladder be able to reach?
 - → help establish **requirements** for the design.
- Can you think about these questions for your design?

Definition of Terms

- **Objective:** something toward which effort is directed
- **Constraint:** strict limits that a design must meet to be acceptable
- Function: things the designed device or system is supposed to do
- Form: the shape or structure of something
- Means: method used to attain an end
- Metric: a standard of measurement; e.g., for a car, speed, in km/hr is a metric.

Five-Stage Descriptive Model of the Design Process

Describing the Design Process

- Problem definition: a pre-processing stage that frames the problem by clarifying the client's original problem statement
- Conceptual design: different concepts are generated to achieve the client's objective
 - For the ladder project, conceptual designs might be an extension ladder, a stepladder, and a rope.
 - May produce two or more schemes to compete later
- **Preliminary design**: examine preliminary choices of schemes
 - For the ladder project, we may size the side rails and steps, and perhaps decide on how the steps are to be fastened to the side rails.
- **Detailed design**: refine the choices we made in preliminary design
- **Design communication**: a post-processing phase that identifies the work done to collect, organize, present the final design

Specific Tasks of the Design Process

Design Process is Iterative

- A design process is not linear or sequential.
- We revise or modify the process from time to time.

Problem Definition – Example: Design a Safe Ladder

- Ladder should be useful
- Used to maintain and repair outlets in high places
- Used to replace light bulbs and fixtures
- Could be a stepladder or short extension ladder
- Could be made of wood or fiberglass, but not aluminum
- Step deflections should be less than 0.5 inch
- Must support weight of an average worker
- Must be safe
- Must not conduct electricity
- Should be relatively inexpensive
- Must be portable between job sites
- Should be light
- Must be durable
- Need not be attractive or stylish

Means Function Constraint Objective Objective

Constraint

Example: Design a Safe Ladder

Design a Building: Sagrada Família, Barcelona, Spain

Basilica and Expiatory Church of the Holy Family Designed by Architect Antoni Gaudí (1852–1926) http://en.wikipedia.org/wiki/Sagrada_Familia An On-going Engineering Design Process Started in 1883, Expected to be done in 2026 Already a UNESCO World Heritage Site Reverse Model of Strings and Bag, http://www.sagradafamilia.cat/sf-eng/docs_instit/estructura3.php

How engineering design can help different clients (art designers, architects, and even movie producers)?

- Digital materials and multi-material 3D printing
- Constraints of the design to be tackled by new material and processing methods, mathematics & software
- What will be the engineering design solutions for a 3D printer to fabricate the design?

Alternatives in engineering design of 3D printers

- Different users and markets
- The use of different technologies in digital fabrication

3D Printing

Some selected videos:

- Digital materials and multi-material 3D printing
- Alternatives in engineering design of 3D printers:
 - HP 3D printers
 - <u>Objet</u>
 - <u>uPrint</u>

Clothing

Managing the Design Process

- Project definition: picking your project, and determining what the "client" wants for the project
- **Project framework**: determining the specific tasks to be done, and organizing a team
- **Project scheduling**: assigning tasks and reaching agreement on when they must be accomplished.
- Project tracking, evaluation and control: monitoring the project to insure that deadlines are met, tasks accomplished, and resources used appropriately.

Managing the Design Process – 3S

- Scope: Clearly understanding what must be done for the project to succeed
- Schedule: Determining when each activity must be completed for the entire project to be completed on time
- Spending: Managing all the resources that can be spent on a project
 - In commercial settings, this is often translated into dollars.
 - For students, time is the resource to be most closely managed.

Project Management Tools

- Scope tools:
 - Work breakdown structure (WBS): A hierarchical decomposition of all the tasks to be completed for a project to be done.
 - Linear responsibility chart (LRC): show the responsibilities of each team member in terms of the tasks and subtasks to be completed.

Project Management Tools

- Schedule tools: team calendar, activity network (logical relationship), or Gantt chart (timeline)
- Spending tool: budget

🛿 GanttProject [HouseBuildingSample.gan]													
Project Edit View Iasks Resources Help													
■ * 10 1 * + + × 1 # 9 9 2 h 14 - ADTT													
TE Gantt (0) Resources													
GANTT project		>	January	/ 2006			Febr	uary 2006	;		Marc	h 2006	_
Name	Begin date	End date	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 1	o w
- Architectural design	09/01/06	14/02/06		_	_	_	_	_	-				
-Create draft of architec	09/01/06	21/01/06				1							
Prepare construction do	23/01/06	11/02/06				-	_		1				
Agreement on architect	13/02/06	14/02/06							∔ _				
 Interior design 	23/01/06	04/02/06				<u> </u>	_	_		-	_	-	_
- Pre-design	23/01/06	28/01/06				<u></u>	1						
-Furniture selection	30/01/06	04/02/06											
Equipment planning	30/01/06	04/02/06					<u> </u>						
 Construction phase 	15/02/06	01/06/06							-	_	_	_	_
-Foundation building	15/02/06	08/03/06							Ľ			<u>_</u>	
-Ground Floor building	08/03/06	05/04/06										Ľ.	
-First Floor building	05/04/06	03/05/06											
Roof	03/05/06	17/05/06											
-Connect to communicati	18/05/06	01/06/06											
Construction completed	17/05/06	18/05/06											
 Decoration phase 	18/05/06	02/06/06											
Walls	18/05/06	25/05/06											
Furniture	25/05/06	30/05/06											
Bring your family here	01/06/06	02/06/06											
I								Task	s:19 Res	sources : 7			

• Gantt chart

- It enumerates the activities to be performed (on the vertical axis) versus the corresponding duration (on the horizontal time axis)
- Precedence logic between activities, early or late start schedules

• Critical path analysis

- Critical path methods (CPM) are often used on Gantt chart to depict the critical activities (black bars) with no slacks, and to evaluate the longest and shortest critical paths.
- Mathematical analysis is often necessary to perform CPM, such as network approach and linear programming approach.
- Reference: A. Shtub, et al., Project Management, Prentice Hall, 1994

Budget and resource planning

• Time value of money (TVM):

- Capital budgets are essential for supporting project activities over the project duration; but the value of money changes with time (because of interest/discount rates) with the concepts of present value (PV), future value (FV), and discounted cash flow.
- The starting time and finishing time of a scheduled project activity can have a significant impact on budget planning
- Net present value (NPV)
 - NPV (as derived from TVM) becomes an essential financial planning tool in engineering management when dealing with present worth (PW) analysis
 - IRR (Internal Rate Return) is a complementary method of NPV
- Reference: C.S. Park, Contemporary Engineering Economics, Prentice Hall, 2002

When Bad Things Happen to Good Projects

- Definition of Failure:
 - Inability of a component, structure, or facility to perform its intended function.
- Types of Failures:
 - Safety Failure: involves death, injury, or placing people at risk.
 - Function Failure: involves compromise of intended usage of structure or facility.
 - Ancillary Failure: includes factors that perversely affect schedules, cost, or intended use.

Causes of Failure

•	Insufficient of knowledge	36%
•	Underestimation of knowledge	16%
•	Ignorance, carelessness, negligence	14%
•	Forgetfulness, error	13%
•	Relying upon others without sufficient control	9%
•	Objectively unknown situation	7%
•	Imprecise definition of responsibilities	1%
•	Choice of bad quality	1%
•	Other	3%

Source: Department of Materials Science and Engineering, State University of New York at Stony Brook, Engineering Disasters and Learning from Failure

Project Presentation (1)

- Preplanning (5Ws and 1H)
 - Who is my audience?
 - What is my purpose?
 - Where is all the equipment I need?
 - When am I on the program agenda?
 - Why am I giving this talk?
 - How long should I speak?
- Verbal Elements (4S)
 - Short
 - Simple
 - Strength
 - Sincerity

Background, Expectation Message to Deliver Means to Communicate Context Importance Level of Details

Project Presentation (2)

- Three Structural Parts
 - Introduction: purpose, what, etc.
 - Body: main content
 - Conclusion
- Visual Aids
- Rehearse your presentation

Communicating Design/End Results to Client

- We need to write good reports to tell others
 - What you have done
 - Why decisions are taken
 - Lessons learned
 - Future opportunities
- Useful references
 - IET publication: a guide to technical report writing, written by Joan van Emden

- No universal rules since not all projects are the same
- Easy to recognise
 - Precise & informative title
 - Well organized layout & formats
- Pleasurable to read
 - Accurate, fluent & concise
 - Appropriate headings
 - Suitable diagrams, charts & graphs

- Keep report as short as possible
- Organise for the convenience of the users
- Write accurately, concisely & unobtrusively
- Use appropriate diagram with right label at the right place
- Provide summaries which will give the whole picture, in miniature
- Include correct references
- Check technical errors, typing errors & inconsistency

- Broad definition and expectations on students:
 - Do not plagiarize assignments or course works
 - Do not cheat in tests and exams
- What is *plagiarism*?
 - Plagiarism is an attempt to pass off the works (in particular the writing of others*) as one's own
- University Policies and Guidelines:

– <u>http://www.cuhk.edu.hk/policy/academichonesty/</u>

Citing the Source Material in Your Report

 Setting the relevant text apart by quotation marks, or in some cases by using a separate indented paragraph

Karl Marx said "Religion is the opiate of the masses." [1]

- A reference to the original source
- A **bibliography**, giving the list of references
 - This is usually given at the end of the article/paper, but may sometimes be given at the end of each page.

Example:

http://www.cuhk.edu.hk/policy/academichonesty/p02.htm

Quiz Information

	Quiz 1 – 15	minutes	Quiz 2 – 15 minutes				
Date/Time	Oct 7, 2013	3, 11:30-11:45am	Oct 28, 2013, 11:30-11:45am				
Venue	Same arrangement for both quizzes						
	Class	ENGG1100A	ENGG1100B				
	Location	 3 Labs: ENGG1100AL-01 - ERB1103 ENGG1100AL-02 - SHB114 ENGG1100AL-03 - SHB102 	 Lecture Theatre 5, Lee Shau Kee Building (LSK LT5) ENGG1100BL-01 ENGG1100BL-02 				
Lecture Coverage	Lectures 1- 1. Mechae 2. Enginee 3. Basic El Instrum 4. Sensing	4: nical Drawing ering Design & Management ectronic Circuits and nentation g and actuator	Lectures 5-7:5. Digital Logic (1)6. Digital Logic (2)7. Digital Logic (3)				
Format	12 multiple	e choice (MC) questions	12 MC questions				