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Abstract From lyrics-display on electronic music play-
ers and Karaoke videos to surtitles for live Chinese opera
performance, one feature is common to all these everyday
functionalities: temporal synchronization of the written
text and its corresponding musical phrase. Our goal is
to automate the process of lyrics alignment, a procedure
which, to date, is still handled manually in the Cantonese
popular song (Cantopop) industry.

In our system, a vocal signal enhancement algorithm
is developed to extract vocal signals from a CD recording
in order to detect the onsets of the syllables sung and
to determine the corresponding pitches. The proposed
system is specifically designed for Cantonese, in which
the contour of the musical melody and the tonal contour
of the lyrics must match perfectly. With this prerequisite,
we use a dynamic time warping algorithm to align the
lyrics. The robustness of this approach is supported by
experiment results. The system was evaluated with 70
twenty-second music segments and most samples have
their lyrics aligned correctly.

1 Introduction

Many popular song listeners find following lyrics in their
written form when a song is being played an enjoyable
experience. Many music players, including both hard-
ware (e.g. Apple iPod) and software (e.g. Microsoft Me-
dia Player), feature sentence-by-sentence lyrics-display
function. Besides, it is usual for Karaoke (a popular form
of entertainment in Asia since 1980s) singers (and view-
ers as well) to expect lyrics to appear on screen at exactly
the same moment as it is to be sung. Furthermore, sur-
titles1 in a live Chinese opera performance have to be
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1 Surtitles are the translations of opera libretto projected
on screen above stage during performance [14]. During a live

displayed accurately at the correct time positions. This
is a challenging application, as lyrics display has to be
executed in real-time and the singing speed is entirely at
the performer’s own discretion; the system has to be fast,
adaptive and thus, user-centered. All these demands are
related to one thing: temporal synchronization of writ-
ten texts and their corresponding musical phrases. It has
been a slow and costly procedure in the music indus-
try because all synchronizations are done manually. The
system proposed here is our response to this problem
(called lyrics alignment below) for Cantonese popular
songs (Cantopop).

Cantonese is a major dialect in Southern China, in
which about 120 million people use it daily. An impor-
tant characteristic, which helps to automate the Can-
topop lyrics alignment process, is that Cantonese is a
tone language. “In well over half of the languages of the
world, it is possible to change the meaning of a word
simply by changing the pitch level at which it is spoken.
Languages that allow this are known as tone languages,
and the distinctive pitch levels are known as tones or
tonemes... Cantonese Chinese has six [tones]” [8].

In analyzing the relationship between tone and melody,
Marjorie categorized these 6 tones to three groups: high,
mid and low, and showed that the lyrics were written to
match the melodic contour of the musical phrase [5]. For
example, if the lyrics consist of two Chinese characters:
lou syu��(meaning “rat”)2 in which a mid-pitch sylla-
ble is followed by a high-pitch syllable, and each syllable
matches a musical note, the musical interval (pitch dis-
tance) of these two notes must be a ascending major 2nd
(whole tone) such as “DO”-“RE”, “RE”-“MI”, etc. If the
songwriter writes “FA”-“RE” (a descending minor 3rd),
the lyrics become �W(meaning “old tree”). Therefore,
in order to convey the meaning of the lyrics accurately,
the contour of the melody and that of the lyrics must

Cantonese opera performance in Hong Kong, the Chinese li-
bretto is projected on screen instead of a translation.

2 We transcribe the vowel(s) and consonant(s) of a Can-
tonese syllable by using the transcription system of Linguistic
Society of Hong Kong (LSHK) [21].
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match each other. We made use of this characteristic as
one of the features of the lyrics in the lyrics alignment
problem.

To align the lyrics with the accurate timings, the
singing parts of the popular music need to be detected
first. The singing part of the commercial popular mu-
sic is defined as the vocal segment. It consists of the
singing voice and other musical instruments such as gui-
tar, keyboard and bass guitar. The non-vocal segment
defines that the segment consists of musical instruments
only. Since the vocal segment consists of both singing
voice and musical instruments, it is difficult to determine
whether the segment is vocal or not. Furthermore, the
traditional automatic speech recognition system cannot
be applied directly because the “background noise” from
musical instruments is relatively high and the behaviour
of singing is very different from that of speech, for ex-
ample the voiced/unvoiced ratio [17] is increased signif-
icantly from speech to singing and the pace of singing
is not steady. Therefore, processing commercial popular
music signals is a challenging task.

Given a commercially available CD recording and the
Cantonese lyrics of the corresponding song, our proposed
system aligns the lyrics of each sentence (line) for a sec-
tion (verse). A sentence3 defines one input line of the
Cantonese lyrics. Typically, a section consists of 4-10 sen-
tences while a sentence contains 4-10 characters. In other
words, our system finds the start time and the end time
of each lyrics sentence. Since our system is designed for
commercial popular music rather than the synthesized
audio or pure singing audio signals, our proposed sys-
tem should be a practical and useful tool.

The major contributions of this paper are:
– We have extended and integrated existing techniques

to form the following modules: (1) vocal signal en-
hancement module, (2) the onset detection module
and (3) non-vocal pruning module. They have been
applied to commercially available Cantonpop CDs,
all contain a mixture of vocal and musical instrument
signals, and the onsets and pitches are accurately de-
tected.

– We made use of the tonal characteristic of Cantonese
to develop an important feature for lyrics alignment.
That is the contour of the musical melody and pitches
of the lyrics must match each other. A dynamic time
warping algorithm has been successfully applied to
align the lyrics with the music signal.

As far as we know, this is the first lyrics alignment system
for Cantonpop.

The flow of our system is depicted in figure 1 and the
organization of the paper is as follows.
1. Our proposed vocal signal enhancement algorithm is

used to suppress the signals of musical instruments
and enhance the signal of the singing voice. (Section
3)

3 “line” in [29] is equivalent to “sentence” in this paper.

2. The start times/onsets of the syllables sung are de-
tected by a onset detection method. (Section 4)

3. The non-vocal onsets are pruned by a singing voice
detection classifier which classifies an onset whether
is vocal or not. (Section 5)

4. The proposed features are extracted from the lyrics
and the audio signal. The features extracted from
the lyrics are called lyrics features while the features
extracted from the audio signal are called signal fea-
tures. (Section 6)

5. The start time and the end time of each lyrics sen-
tence are obtained by the dynamic time warping al-
gorithm which is an alignment algorithm to align an
input sequence to a reference sequence. The reference
sequence in our system is the lyrics features while the
input sequence in our system is the signal features.
(Section 7)

After inputting the Cantonese lyrics and the song to our
system, the start time and the end time of each lyrics
sentence are extracted. Experiments were performed to
evaluated the system and the results will be shown in
section 8. After that, a conclusion is given in section 9.
Before describing the details of the system, a literature
review on the addressed problem and some related sys-
tems are presented in the next section.

Vocal Signal Enhancement

Onset Detection

Lyrics Feature Extraction

Dynamic Time Warping

Vocal Enhancement Signal

Event times

Signal Features

Stereo Signals

Alignment Result

Lyrics Features

Non-Vocal Pruning

Pruned onset times

Lyrics

Fig. 1 The block diagram of our proposed system, it con-
sists of five modules including vocal signal enhancement, on-
set detection, non-vocal pruning, lyrics feature extraction and
dynamic time warping.
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2 Literature Review

The lyrics alignment problem for Cantonpop is divided
into certain subproblems, namely singing voice detec-
tion and singing transcription. Previous work on these
aspects is reviewed here.

2.1 LyricAlly

LyricAlly [29] by Wang et al. is probably the first En-
glish lyrics sentence-level alignment system for aligning
the textual lyrics to the music signals for a specific struc-
ture of popular songs. It first finds the beat of the music
in the measure (bar) level and searches for the rough
starting point and ending point of each section. Wang et
al. defines the five different structural elements of pop-
ular music as sections, they are Intro(I), Verse(V), Cho-
rus(C), Bridge(B) and Outro(O). LyricAlly also detects
the presence of vocals in the song by using a singing
voice detection technique and computes the estimated
duration of each sentence of the lyrics by analyzing the
duration of each phoneme. Lastly, LyricAlly combines
all the information to align each sentence of the lyrics to
the song by grouping or partitioning the detected vocal
segments to match the estimated duration of each sen-
tence. The current version of LyricAlly is limited to the
songs with a specific structure “V-C-V-C-B-O” which
covers nearly 40% of all popular songs by observation,
and the meter of the songs is limited to 4/4 time signa-
ture. Moreover, the authors also point out that the sec-
tion and vocal detectors are not good enough to handle
real-life popular music. A crucial step in LyricAlly is to
use the sum of the duration distribution of each phoneme
in a sentence to predict the duration of the correspond-
ing sentence being sung. In speech, each phoneme has a
certain distribution of duration. However, the durations
of phonemes in singing are different. They also depend
on the time values of musical notes they belong to, and
also the current tempo of the song. Therefore, the dura-
tion of a phoneme can vary considerably that may make
it unreliable for lyrics alignment.

2.2 Singing Voice Detection

A singing voice detection method is to determine whether
an input signal segment contains a singing voice or not.
In the work of Adam and Ellis[3], they tried to esti-
mate the music and the vocal segments for the popular
music by using posterior probability features with the
classifier based on Gaussian mixture model. Namunu et
al. [19] proposed twice-iterated composite Fourier trans-
form (TICFT) to detect the singing voice. Tat-Wan et al.
[16] make use of the perceptual linear predictive coding
(PLP) and the generalized likelihood ratio (GLR) dis-
tance to detect the singing voice boundaries, ICA-FX to

reduce the dimension of the features and Support Vector
Machine to classify whether the segment is vocal or not.
In [20], Tin et al. proposed to use the combination of
harmonic content attenuation log frequency power coef-
ficients (HA-LFPC) with HMM to do the classification.
The system assumes that the key of the song is known.

2.3 Singing Transcription System

A singing transcription system is to estimate the MIDI
pitches of the singing voice from the audio signals. In [7],
Clarisse et al. performed a series of experiments to iden-
tify the problems of current transcription systems and
proposed to use an auditory model based pitch detector
called AMPEX (Auditory Model based Pitch Extrac-
tor) to transcribe the singing voice. Experiments show
that the systems perform better for the melodies sung by
hamming than sung with lyrics. Another work, in [24],
Matti and Klapuri used the fundamental frequency esti-
mator called “YIN” algorithm, which was invented by de
Cheveigné and Kawaharain in [9], to extract the pitches
and voicing. They also used Hidden Markov Model (HMM)
to model the note events (note transient, sustain and si-
lence) and musicological model to track pitches of the
singing voice. Note that in both systems, the input au-
dio is a pure singing voice signal for query-by-humming
(QBH) system to search and retrieve the music from the
database, thus they cannot be applied directly on the
real-life popular music as in our case. The difficulty on
transcribing the singing voice from the popular music is
the complexity of the song which includes different kinds
of sounds such as the singing voice, the guitar and the
drum. This problem will be addressed by the first module
in the proposed system.

3 Vocal Signal Enhancement

The first module in our system is the vocal signal en-
hancement module. Given the stereo signals from a CD
recording of a popular song, its objective is to suppress
the signals of the musical instruments and to enhance
the signal of the singing voice. The operating principle
of this module is based on the mixing practice in popular
music industry. In a popular song, the singing voice and
the musical instruments are usually recorded separately
into different tracks. Then, the music mixer adds dif-
ferent tracks together to become the final product. The
industry has a common practice to mix the vocal track
and some leading musical instrument tracks at the center
position. “The center is obvious in that the most promi-
nent music element (usually the lead vocal) is panned
there, as well as the kick drum, bass guitar and even the
snare drum.” [22] Mixing the track at the center position
means that the signal is exactly the same for the left and
right channels. Typically, there are only two channels in
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an audio CD. Figure 2 shows an example of the record-
ing setting. The singing voice and the drum signals are
mixed at the center (sc(t)) while the guitar and the vi-
olin are mixed at non-center (sc̄,l(t) and sc̄,r(t)). The
left channel sl(t) and the right channel sr(t) signals are
defined as the following:

sl(t) = sc(t) + sc̄,l(t) (1)

and

sr(t) = sc(t) + sc̄,r(t) (2)

where t is the time variable, sc(t) is the center signal,
sc̄,l(t) and sc̄,r(t) are the left channel and the right chan-
nel of non-center signal respectively. Typically, the singing
voice belongs to the center signal sc(t).

sc(t)

sĉ,l(t) sĉ,r(t)sc(t) sc(t)

Fig. 2 Recording setting example: the singing voice and the
drum signals are at the center while the guitar and the violin
are the non-center signal.

Based on the above practice, a vocal signal enhance-
ment algorithm method was proposed to enhance the
vocal signal from the stereo recordings. Figure 3 shows
the overall idea of enhancing the vocal signal. The “non-
center estimation” and “center estimation” were used to
extract the center-padded signal. The “bass and drum
reduction” was used to enhance the vocal signal by re-
ducing other center-padded musical instrument signals.

3.1 Non-center Signal Estimation

For the stereo signal, the left channel sl(t) and the right
channel sr(t) signals have been defined as equations 1
and 2. Then by simple subtraction, the estimated non-
center signal ŝc̄(t) is obtained:

ŝc̄(t) = sl(t)− sr(t) = sc̄,l(t) + (−sc̄,r(t)) (3)

Obviously, the center signal sc(t) is eliminated by simple
subtraction. In fact, it is a common method in many
commercial software and hardware such as Goldwave[13]
to obtain the reduced vocal channel for a simple Karaoke
system.

Non-center Estimation

Center Estimation

Estimated Non-center Signal

Estimated Center Signal

Stereo Signal

Bass and Drum Reduction

Estimated Vocal Signal

Fig. 3 Vocal signal enhancement block diagram. The algo-
rithm is divided into three parts, they are non-center estima-
tion, center estimation and bass and drum reduction.

3.2 Center Signal Estimation

We found that time domain methods cannot extract the
center signal sc(t) from sl(t) and sr(t). Thus, non-linear
spectral subtraction (NLSS) [28] is introduced to extract
the center signal. The subtraction of the NLSS is oper-
ated in the magnitude spectrum domain. In the litera-
ture, NLSS is used to reduce the noise for speech recog-
nition [4] by subtracting the magnitude spectrum of the
signal from the average magnitude spectrum of the sig-
nal. In this work, we used the concept of the NLSS in
which the subtraction is executed in the magnitude spec-
trum domain. For extracting the center signal, the sys-
tem subtracts the magnitude spectrum of the original
signal s(t) from the magnitude spectrum of the estimated
non-center which is obtained in the previous section (sec-
tion 3.1).

By applying short-time Fourier transform F on the
non-center signal (equation 3) and the both channels of
original signal, we get

F{ŝc̄(t)} = Ŝc̄(w) = Sc̄,l(w) + (−Sc̄,r(w)) (4)

F{sl(t)} = Sl(w) = Sc(w) + Sc̄,l(w) (5)

F{sr(t)} = Sr(w) = Sc(w) + Sc̄,r(w) (6)

where w is the frequency variable, Ŝc̄(w) is the spec-
trum of estimated non-center signal, Sl(w) and Sr(w)
are the spectrums of the left and right channels respec-
tively. In this paper, the window size is set to 125ms with
88% overlapping. Then by taking the absolute and ap-
proximation of both sides of equations 4, 5 and 6, the
equations become

|Ŝc̄(w)| ≈ |Sc̄,l(w)|+ |Sc̄,r(w)| (7)

|Sl(w)| ≈ |Sc(w)|+ |Sc̄,l(w)| (8)

|Sr(w)| ≈ |Sc(w)|+ |Sc̄,r(w)| (9)

where |Ŝc̄(w)| is the magnitude spectrum of the esti-
mated non-center signal, |Sl(w)| and |Sr(w)| are the mag-
nitude spectrums of left and right channels respectively.
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Next, we mix the spectrums of left and right channels
as the following:

|S(w)| = 2|Sc(w)|+ (|Sc̄,l(w)|+ |Sc̄,r(w)|) (10)

where |S(w)| is the magnitude spectrum of the mixed
signal.

By the method of spectral subtraction, the estimated
modulus of the center signal can be obtained by sub-
tracting the mixed signal from the estimated non-center
signal in frequency domain:

|Ŝc(w)| = 1
2 |S(w)| − 1

2 |Ŝc̄(w)|
≈ 1

2 (2|Sc(w)|+ |Sc̄,l(w)|+ |Sc̄,r(w)|)
− 1

2 (|Sc̄,l(w)|+ |Sc̄,r(w)|)
= |Sc(w)|

(11)

where |Ŝc(w)| is the magnitude spectrum of the esti-
mated center signal. Then by applying the inverse Fourier
transform with magnitude |Ŝc(w)| and the original phase
of the signal sl(t), i.e. ∠F{sl(t)}, we can obtain the es-
timated center signal ŝc(t).

3.3 Bass and Drum Reduction

In pop music, besides the vocal, the center signal sc(t)
also consists of some other lead musical instruments such
as the bass guitar and drum. These two instruments usu-
ally are more the less stationary in a short period in the
frequency domain while the vocal part is not.

Therefore, we segment ŝc(t) into N segments with
period T . Within each segment i (typically 2s), the aver-
age spectrum |S̄i(w)| can be computed by averaging the
frequency components in that segment. Then, we apply
the method of spectral subtraction again to each segment
i which is subtracted by the average spectrum |S̄i(w)|.
Lastly, a highpass filter is used to filter the frequency
components of the bass guitar. After that, we obtain the
estimated vocal signal ŝv(t).

4 Onset Detection

Onset Detection or Event Detection is to detect the start
time of each event. For music transcription, onset detec-
tion detects the start time of each note played by the
performer. For this system, the start time of each lyrics
character located in the signal is found by analyzing the
enhanced vocal signal ŝv(t). The onset detection algo-
rithm presented here is similar to the algorithm proposed
by Scheirer [27] and Klapuri [15] but some modifications
and post-processing are introduced. The algorithm is di-
vided into three parts as shown in figure 4. First, the
amplitude envelope of the signal is extracted. Then, a
relative difference function [15] is used as a cue to detect
the onsets. Lastly, simple peak picking operation, thresh-
olding and omitting window operation are introduced in
the post-processing module to extract the onsets.

Envelope Extraction

Relative Difference Function

Envelope

Possible Onsets

Vocal Enhanced Signal

Post Processing

Onsets

Fig. 4 Onset detection block diagram. The algorithm is di-
vided into three parts, they are envelope extraction, relative
difference function and post processing.

4.1 Envelope Extraction

Amplitude envelope is one of the cues to detect changes
for human auditory system. The input signal is first rec-
tified (by taking the absolute value), then the envelope is
calculated by averaging the value with an onset window
size wonset as the following:

Ej =
1

wonset

tj+wonset−1∑
t=tj

|s(t)| (12)

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.05

0.1

0.15

0.2
(a) Original amplitude envelope

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.01

0.02

0.03

0.04
(b) First order difference function

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.2

0.4

0.6

0.8

1
(c) Relative difference function

time(s)

Fig. 5 (a) Original amplitude envelope, (b) first order differ-
ence function and (c) relative difference function. The vertical
lines are the manually input onsets. The peak of the relative
difference function has faster response than that of the first
order difference function.



6 Chi Hang Wong et al.

4.2 Relative Difference Function

Scheirer used the first order difference function δEj to
detect the changes for the envelope.

∆Ej = Ej+1 − Ej (13)

However, there are two problems that are described in
Klapuri’s master thesis [15]. First, the amplitude may
need some time to increase to its maximum point but this
point is too late from the start time of the event (shown
in figure 5). Second, the signal may not always increase
monotonically, so there are several local maximum values
exist at the same event (shown in figure 5). So Klapuri
proposed a method called first order relative difference
function δEj to handle these problems. It is calculated
by ∆Ej divided by its original envelope value Ej . By
simple mathematical manipulation, it is the same as the
first order difference of the logarithm of the amplitude
envelope (ds(t)

dt /s(t) = dlog(s(t))
dt ). The first order relative

difference function is defined as following:

δEj = log Ej+1 − log Ej (14)

As shown in figure 5, the peak value is much closer
the start time of the event and the global maximum can
be clearly distinguished from other local maxima. So,
the benefit of using the relative difference function is
significant. For our system, just the positive value of the
difference function is considered because the start time
is just caused by the positive changes.

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
0

0.05

0.1

0.15

0.2
(a) Original amplitude envelope

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
0

0.2

0.4

0.6

0.8

1
(b) Relative difference function

time(s)

peak 

threshold 

Fig. 6 Demonstration of peak picking operation (circle) and
thresholding (horizontal line) in post processing. The figure
shows (a) the original amplitude envelope and (b) the relative
difference function and the operations in post processing. The
algorithm finds the peaks first. Then the peaks below the
threshold are pruned.

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Relative difference function

time(s)

omitted window 

pruned onsets 

Fig. 7 Demonstration of omitting window operation. Within
the omitting window (the region between two vertical lines),
the lower value onset (cross) is pruned.

4.3 Post-Processing

Next, there are three more steps applying on the relative
difference signal for extracting the onsets. First, a simple
peak picking operation is applied to the relative differ-
ence signal. The peak picking operation picks all points
that are larger than its neighbors as shown in figure 6.
After applying the peak picking operation, all the points
greater than a threshold εonset are considered as poten-
tial onsets as shown in figure 6. Lastly, if the potential
onsets are too close with each other, the lower value on-
set(s) will be pruned because in reality the singer cannot
sing too fast. The omitted window size womit is used to
prune the onsets as shown in figure 7. Then ˆEventT imek

is the time of onset k. For optimal performance, the omit-
ting window size, onset window size, and threshold are
set to 150ms, 50ms and 0.05 respectively4.

5 Non-vocal Pruning

After applying onset detection, most onset times of singing
words are extracted. However, there are some extracted
onset times which are in fact not vocal. So, pruning non-
vocal onsets are necessary in order to enhance the perfor-
mance of the system. For pruning non-vocal onsets, we
need a classifier to determine whether the onset is vocal
or not. Six different types of features are chosen for vo-
cal classification. We used these features as the inputs
to a multiple-layer perceptron (MLP) neural network [2]
to classify whether a segment is vocal or not. The six
different types of features are explained below:

Spectrum flux Spectrum flux [18] is to measure the change
of the spectrums between two consecutive frames. It
is useful for vocal/non-vocal classification because vo-
cal signals usually have greater changes between two

4 Due to limited space, the experimental result is put
in the appendix available at http://www.cse.cuhk.edu.hk/

~khwong/demo/lyricsalign/demo.htm
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consecutive frames. Spectrum flux is defined as the
2-norm of their spectrum difference. Besides the orig-
inal spectrum flux, the variance of the spectrum flux
is also used as another feature for our system.

Harmonic coefficient For the voicing part of speech, the
harmonics, which is measured by the energy of inte-
ger multiple of the fundamental frequency, are very
rich. In [6], Chou showed that harmonic coefficients
can capture this phenomenon. Given a discrete signal,
harmonic coefficient is the maximum of the sum of its
temporal autocorrelation sequence and its spectral
autocorrelation sequence. Typically, vocal segments
with a voicing part are relatively high in harmonic
coefficients because the harmonic content is rich in
the voicing part.

Zero crossing rate Three variations of zero crossing rate
[26] are used as our features including the delta zero
crossing rate, variance of delta zero crossing rate, and
high zero crossing rate ratio [18].

Amplitude envelope The log amplitude envelope is dis-
cussed in the section 4.1. In addition to log amplitude
envelope, our system uses the first and second order
difference of the amplitude envelope as features. The
amplitude envelope is used to differentiate silence and
non-silence segments.

Mel-frequency cepstral coefficients (MFCC) Mel-frequency
cepstral coefficients (MFCC) [6,12] and the first dif-
ference of MFCC are used as the features.

4-Hz modulation energy 4-Hz modulation energy [23] is
a characteristic energy measure of speech signals. In
[6], Chou stated that the 4-Hz modulation energy
is effective for singing detection. For computing the
4-Hz modulation energy, energies of 40 perceptual
channels of mel-frequency are first extracted. Discrete
fourier transform with 1-Hz frequency resolution is
applied on each channel. Then the summation of the
channel energies of the 4-Hz is extracted to be the 4-
Hz modulation energy feature. The 4-Hz modulation
energy is relatively higher in the vocal segments.

Vocal segments and non-vocal segments probably have
their distinguishable regions in the space of these fea-
tures. In order to find the mapping between the feature
space and the class labels (vocal/non-vocal), these fea-
tures are inputted to MLP neural network. The network
used in this paper has one hidden layers. The ‘tanh’ func-
tion is used as the activation function of the hidden nodes
of the networks in the experiments. And the activation
function of the output nodes is sigmoid function. The
number of hidden units is chosen to be 9 after testing.

6 Lyrics Feature Extraction

In this section, we propose and describe the features
which are to be used in the Dynamic Time Warping
(DTW) algorithm to be introduced in the next section
(section 7). These features are relative pitch features and

time distance features. The DTW algorithm uses them
to align the lyrics with the correct timings.

Figure 8 shows the inputs and outputs of lyrics fea-
ture extraction module. The inputs are the lyrics, the
event times which are obtained from the non-vocal prun-
ing module described in section 5, and the vocal en-
hanced signal which is extracted by the vocal signal en-
hancement algorithm described in section 3. The outputs
of the module are lyrics features and signal features. The
lyrics features are the features extracted from the input
lyrics while the signal features are extracted from the
vocal enhanced signal and the event times. Then, the
DTW algorithm aligns the signal feature vector to the
lyrics feature vector.

Lyrics Feature Extraction

Lyrics Event times Signal

Lyrics Features Signal Features

Fig. 8 Input-output diagram of lyrics feature extraction
module. The lyrics features and the signal features are ex-
tracted by this module.

6.1 Features

6.1.1 Relative Pitch Feature

As described in section 1, in order to convey the meaning
of the lyrics accurately, the contour of the melody and
that of the lyrics must match each other. Therefore, the
relative pitch feature of Cantonese syllables is significant
for lyrics alignment. Figure 9 shows the idea of the rela-
tive pitch matching of a Cantonese song. In our system,
we follow the categorization of 6 tones of Cantonese into
3 groups in [5]: high, mid and low pitches. Each group is
called lyrics pitch LP .

For calculating the relative pitch feature of the lyrics
feature vector (which contains the features extracted from
the input lyrics), we can assign the pitch class to get the
lyrics pitch LPl (larger number, higher pitch) for each
lyrics character l. Then the relative pitch feature of lyrics
features LRPl is calculated by applying a simple first or-
der difference function except for the starting character
of each sentence.

LRP l =
{

0, if starting word
LP l − LP l−1, otherwise (15)

Figure 10 shows the block diagram of calculating the
relative pitch feature of the signal features. First, the
pitch extraction process is to extract the fundamental
frequency of each event of the signal. This will be pre-
sented in section 6.2. After that, all the pitches (fqk) of
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Fig. 9 The idea of relative pitch matching of the melody.
Each lyrics character is denoted by the circle. The graph
shows that the lyrics pitch is higher when the melodic pitch
is higher.

Pitch Extraction

SignalEvent times

Frequencies

Frequency to MIDI number

MIDI numbers

First order difference

Relative pitch feature

Fig. 10 Block diagram of calculating the relative pitch fea-
ture of the signal features. Pitch Recognition Algorithm is
applied to extract the pitches from the signal according to
the event times first. Then the frequencies are converted to
MIDI number. Lastly, the first order difference is applied to
get the relative pitch feature.

each event time are recognized. Then the frequencies are
converted into MIDI numbers by the following equation:

MIDIk = 69 + 12 ∗ log2(fqk/440) (16)

where MIDIk is the MIDI number of event k, 69 is the
MIDI number of A4 note and 440Hz is the fundamental
frequency of A4 note.

Lastly, the first order difference is applied to the MIDI
numbers to get the relative pitch feature of the signal:

SRPk =
{

0, if êvk − êvk−1 > εtime

MIDIk −MIDIk−1, otherwise (17)

where SRPk and êvk are the relative signal pitch feature
of event k and estimated event time k, respectively. εtime

is the time threshold to separate the sentences. In this
work, we chose 500ms as the time threshold.

6.1.2 Time Distance Feature

The time distance feature is another metric for the DTW
algorithm. The rationale of using time distance feature
is that the time distance between the last character of
a sentence and the first character of the following sen-
tence is generally longer than the time distance of the
characters within a sentence. Therefore, the time dis-
tance feature is also an important measure for the DTW
algorithm for time alignment.

The time distance feature of the lyrics feature and
signal feature can be obtained directly by the following
equations:

LDl =
{

4, if starting word
1, otherwise (18)

where LDl is the time distance feature of the lth char-
acter of the lyrics. The number 4 is chosen because the
maximum difference between two relative pitches is also
4 (the relative pitch can be -2, -1, 0, 1 and 2).

SDk =
{

4, if êvk − êvk−1 > εtime

1, otherwise (19)

where SDk and evk are the time distance feature of event
k and estimated event time k, respectively. And εtime is
the threshold to separate the sentences.

Finally, the relative pitch and the distance features
are grouped together to become the lyrics features(L)
and the signal features(S):

Ll = (LRP l, LDl) (20)

Sk = (SRP k, SDk) (21)

6.2 Pitch Extraction

There are two steps to extract the pitch from the signal
and the event times. First, the fundamental frequency
(f0) detection algorithm called YIN in [9] is applied on
each of successive frames to obtain the preliminary re-
sult. Then, a simple post-processing algorithm is pro-
posed here to produce the final f0 frequencies because
f0 detected by YIN algorithm may have octave errors.
Two musical note is in octave if the f0 of the upper note
is double that of the lower note. The goal of the simple
post-processing method is to overcome this problem. In
pop music, the pitches of the melodies seldom change
significantly for more than an octave. For example the
melodic change from A4 (440Hz) to B5 (988Hz) is greater
than an octave. So, if the pitch difference between two
consecutive pitches is more than an octave, the detected
pitch of the latter one needs to be modified to the pitch
with an octave to the direction of the former one so that
the pitch difference is below an octave. Then the octave
error of YIN algorithm can be solved. For example, if two
consecutive detected pitches are C4 and G5, then they
become C4 and G4 after post-processing. If the melodic
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change is actually greater than an octave, which rarely
occurs in Cantopop, this post-processing step will cause
two errors at maximum in the feature vector. The exper-
iments in the section 8.2.3 showed that the alignment al-
gorithm was robust to such kind of errors. Furthermore,
to improve the performance of the algorithm, 5 consec-
utive windows (80% overlapping) were used instead of
1 window for extracting the pitch. The pitch with best
voicing value within 5 consecutive windows was chosen
as the recognized pitch. The voicing value, which is an
output from YIN algorithm, is a confidence indicator of
the reliability of the fundamental frequency estimate.

7 Lyrics Alignment

7.1 Dynamic Time Warping

Dynamic Time Warping (DTW) has been used widely
in the area of automatic speech recognition [25,1]. The
DTW algorithm is a robust algorithm for aligning two
sequences by evaluating the error function. In this work,
the DTW algorithm is used to align the lyrics feature
sequence (L, equation 20) to the signal feature sequence
(S, equation 21) in order to find the optimum time align-
ments of the provided lyrics. Figure 11 shows the idea of
the alignments from the DTW algorithm.

In DTW, the error matrix(Edtw) between two se-
quence is computed first.

Edtw
i,j = Distance(Li, Sj) (22)

where Distance(v1,v2) is the distance function between
two vectors, and L and S are the lyrics features and
signal features, respectively. In this work, the distance
metric is chosen to be the city block distance:

Distance(v1,v2) =
N∑

i=1

(|v1(i)− v2(i)|) (23)

where N is the dimension of the vector v and v(i) de-
notes the ith dimension value of vector v. In our case,
N is equal to 2. Then the accumulated error matrix
(EAdtw) is calculated by:

EAdtw
1,1 = Edtw

1,1 (24)

EAdtw
i,j = min( EAdtw

i,j−1 + Edtw
i,j + wdtw,

EAdtw
i−1,j + Edtw

i,j + wdtw,

EAdtw
i−1,j−1 + Edtw

i,j +
√

2wdtw)
(25)

where wdtw is the weighting factor against the feature
vectors and it is set to 4, and the value

√
2 is to com-

pensate the distance from the diagonal direction.
The accumulated error matrix is obtained from the

minimum of three directions including left, bottom and
bottom-left. For example, given the signal feature se-
quence S = 〈(0, 4), (0, 4), (0, 4), (0, 4)〉 and the lyrics fea-
ture sequence L = 〈(0, 4), (0, 1), (0, 1)〉, we calculate the
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Fig. 11 (a) Detected f0 frequencies of the signal, (b) relative
pitch features of the signal and (c) relative pitch features of
the lyrics. The f0 frequencies of the signal are detected by
the f0 detection algorithm described in section 6. The relative
pitch features of the signal are computed by equations 16 and
17. The relative pitch features of the lyrics are obtained from
equation 15. The DTW algorithm aligns the relative pitch
features of the lyrics to that of the signal as shown by the
lines. Although there are spurious onsets (onset indexes 34-
56 and 81-95), the DTW algorithm aligns the lyrics robustly
for all three sentences.

accumulated error matrix (EAdtw) and the direction ma-
trix as shown in figures 12(a) and (b) respectively. The
direction matrix indicates that the direction gives the
minimum accumulated error in each entry of the accu-
mulated error matrix. Then, we backtrack the accumu-
lated error matrix from the end to the starting point by
the reverse direction of the direction matrix (the entries
bracketed with “( )” in figure 12(a)). Lastly, we choose
the first hit of the lyrics feature in the backtracked path
as the alignment between a lyrics feature and a signal
feature (the entries bracketed with “[ ]” in figure 12(a)).
The start time of a lyrics character is the onset of the
signal feature which is aligned with the lyrics feature of
that character. For example, if the onsets of the signal
features in figure 12(a) are at the time 656ms, 1356ms,
1881ms, and 2394ms, the start time of the three corre-
sponding lyrics characters of the lyrics feature sequence
is 656ms, 1881ms, and 2394ms.

8 Experiments

8.1 Experimental Setup

To evaluate the accuracy of our system, experiments
were performed on 14 different songs in 7 different al-
bums as shown in table 1. All the albums are sung by
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(a)

Lyrics\Signal (0,4) (0,4) (0,4) (0,4)
(0,4) [(0)] (4) 8 12
(0,1) 7 8.66 [(12.66)] 16.66
(0,1) 14 15.66 17.31 [(21.31)]

(b)

Lyrics\Signal (0,4) (0,4) (0,4) (0,4)
(0,4) - 3 3 3
(0,1) 2 1 1 1
(0,1) 2 1 1 1

Fig. 12 DTW example with the signal feature sequence
S = 〈(0, 4), (0, 4), (0, 4), (0, 4)〉 and the lyrics feature sequence
L = 〈(0, 4), (0, 1), (0, 1)〉. (a) The accumulated error matrix
(EAdtw). Backtracked DTW path contains the entries brack-
eted with “( )”. The alignment between a lyrics feature and
a signal feature is an entry bracketed with “[ ]”. (b) The di-
rection matrix. The numbers “1”, “2” and “3” correspond to
the diagonal, vertical and horizontal directions respectively.

different singers. The tempos of the songs vary from 56 to
160 beats per minute (bpm). Before performing the ex-
periments, the songs were re-sampled from 44,100Hz to
8,000Hz by the software Goldwave [13]. The wave format
is 8,000Hz sampling rate, 16-bit and stereo. There were
70 segments with 20 seconds long (total 1400 seconds).
The total number of syllables sung was 2670.

Album Singer Tempo Tempo
(Song 1) (Song 2)

Real Feeling Jacky 89 94
(1992) Cheung

Beyond Life Beyond 69 76
(1996)

Can’t Relax Sammi 56 88
(1996) Cheng

Hacken Best 17 Hacken 74 68
(1997) Lee

Bliss (1999) Eason 70 92
Chan

Being (2004) Paul 91 160
Wong

Picassa’s Horse Steve 106 75
(2004) Wong

Table 1 Albums used in our experiment. The tempos of the
songs are varying from 56 to 160 in the unit of beats per
minute (bpm). There are 70 testing 20-second segments and
2670 syllables sung in total.

The lyrics were entered sentence by sentence manu-
ally and then lyrics pitch of each character was obtained
automatically from the online Cantonese dictionary5 in
[11]. The lyrics features were computed by equation 20.

5 Given a Chinese character, the dictionary returns one of
the six Cantonese tones denoted by the integers from 1 to 6
specified by the transcription system of LSHK [21]. According

To evaluate the non-vocal pruning classifier, we trained
the neural network classifier by the cross-validation train-
ing method to avoid overfitting. First, we marked all the
vocal and non-vocal segments manually on the 70 seg-
ments. The training set, the validation set and the test
set contained 35 segments, 25 segments and 20 segments
respectively. All the three sets were disjointed in the song
level, i.e. a song could only be either in the training set,
the test set or the validation set. And also, within the
set, number of vocal segments and number of non-vocal
segments were the same in order to train the neural net-
work fairly. The neural network classifier was trained and
tested 50 times in order to obtain more accurate result
since the weights of the networks were chosen randomly
before training.

Before discussing the results, two metrics of accuracy
are defined below. A sentence defines a group of charac-
ters which is segmented by the distance feature equal to
4. Assume (Ss

i , Se
i ) is the time range of actual duration

in the songs of the ith sentence. (Ŝs
i , Ŝe

i ) is the estimated
time range of the ith sentence by the system. The start
time Ŝs

i is the onset of the first character in the sentence
i. The end time Ŝe

i is set to the start time of the sen-
tence i + 1 because it is probably acceptable that the
lyrics of the ith sentence is still being displayed during
the gap between the ith and the (i + 1)th sentences. The
end time of the last sentence is set to the end time of its
corresponding segment.

Two types of accuracy are defined to evaluate the
system. The first type is “In-Range Accuracy”:

AR
i =

Range((Ss
i , Se

i )
⋂

(Ŝs
i , Ŝe

i ))
Range((Ss

i , Se
i ))

× 100% (26)

where AR
i is “In-Range Accuracy” of ith sentence and

Range(x, y) = y − x. The rationale of the “In-Range
Accuracy” is that the particular lyrics must be displayed
when the singer is singing that lyrics. For example, if
the duration of a sentence is 4 seconds (which is the
typical duration), 80% In-Range Accuracy means that
3.2 seconds of the lyrics sentence is displayed when the
singer is singing that 4-second sentence.

The second type of accuracy is “Duration Accuracy”:

AD
i =

Range((Ss
i , Se

i )
⋂

(Ŝs
i , Ŝe

i ))
Range((Ss

i , Se
i )

⋃
(Ŝs

i , Ŝe
i ))

× 100% (27)

where AD
i is “Duration Accuracy” of ith sentence and

Range(x, y) = y−x. The rationale of the “Duration Ac-
curacy” is that the duration of particular lyrics displayed
must be the same as the duration of the lyrics the singer
sung.

Figure 13 shows the graphical explanation of both
accuracies. The numerators of both accuracies, which
is the intersection region, are the same (figure 13(a)).

to [5], tone numbers 1 and 2 belong to high pitch, 3 and 5
belong to mid pitch, and 4 and 6 belong to low pitch.
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The difference between both accuracies is the denomina-
tors. The denominator of “In-Range Accuracy” is the ac-
tual interval (figure 13(b)). This accuracy measures how
much the estimated interval is correct during the singer
singing that sentence. On the other hand, the denomi-
nator of “Duration Accuracy” is the union region (figure
13(c)). This accuracy shows how much the system esti-
mates the duration of the actual time range correctly.

Using both “In-Range Accuracy” and “Duration Ac-
curacy is to ensure the system can be evaluated properly.
According to Figure 13, “Duration Accuracy” is always
smaller than or equal to “In-Range Accuracy”. At first
glance, it seems that “In-Range Accuracy” is unneces-
sary. However, as mentioned before, it is probably ac-
ceptable that the lyrics of the current sentence is still
being displayed during the gap between the current and
the next sentences so the start time of the next sentence
is used as the end time of the current sentence in the
system. As a result, the end time of each sentence is not
estimated accurately and it is usually greater than the
actual end time. The performance of the system would
be underestimated if only “Duration Accuracy” is used.
On the other hand, “In-Range Accuracy” can settle this
issue but if the estimated interval is wider than the ac-
tual interval of a lyrics sentence, its “In-Range Accu-
racy” is 100%. However, it is very unlikely that such case
will cause the overall “In-Range Accuracy” to be over-
estimated because this wide estimated interval probably
shortens its adjacent estimated intervals and the gap be-
tween two sentences is usually short. Thus, 100% accu-
racy for this particular sentence certainly decreases the
accuracy its adjacent sentences. To take the advantages
of both metrics, both “In-Range Accuracy” and “Dura-
tion Accuracy” are included in evaluation.

8.2 Results and Discussion

8.2.1 Performance of vocal signal enhancement, onset
detection, and non-vocal pruning

Comparing to the manually found onsets, the onset de-
tection module performed with the hit rate (number of
true onsets detected / number of true onsets) 89%, and
the false alarm rate (number of onsets spuriously de-
tected / number of onsets detected) 56%. The reason
for the high false alarm rate is that the vocal enhance-
ment method could not remove all the non-vocal instru-
ments, thus there were many non-vocal onsets. There-
fore, non-vocal pruning was introduced to handle this
issue. The classification accuracy of the non-vocal prun-
ing classifier is about 80% (75% for non-vocal segments,
81% for vocal segments) after vocal signal enhancement.
The network classified vocal segments better than non-
vocal segments because the variation between non-vocal
segments (silence, guitar, bass, drum, etc.) is larger than
that between vocal segments. Result also showed that

Fig. 13 Graphical explanation of In-Range Accuracy AR

and Duration Accuracy AD. (a) The numerators of both accu-
racies are the duration of the intersection region of the actual
interval and the estimated interval. On the other hand, (b)
the denominator of the In-Range Accuracy is the duration of
the actual interval while (c) that of the Duration Accuracy is
the duration of the union interval of the actual interval and
the estimated interval.

the classification accuracy using the vocal enhanced sig-
nals was (about 3%) better than that using the original
signals. Since the vocal enhancement algorithm reduced
the non-vocal signals significantly and maintained the
level of vocal signals, the vocal enhancement algorithm
was effectively acted as the preprocessing step before ap-
plying the classifier.

8.2.2 Benchmark performance of DTW

To evaluate the benchmark performance of the system,
the manually found onsets and pitches were used. Ac-
cording to equation 21, the system computed the bench-
mark signal features S from all these onsets and pitches.
The lyrics features L and the benchmark signal features
S were applied on the dynamic time warping algorithm.

Table 2 shows the benchmark performance of the sys-
tem. The average of “In-Range Accuracy” was about
94%, the system could not align perfectly(100%) because
relative pitch features were used in both of the lyrics fea-
tures and the signal features. In some cases, for exam-
ple, the two successive characters in the lyrics match the
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musical interval “DO”-“RE” in the melody, if there is
“RE”-“MI” nearby, DTW may incorrectly match these
two characters to “RE”-“MI” because both “DO”-“RE”
and “RE”-“MI” are ascending major 2nds and have the
same relative pitch feature.

The average of “Duration Accuracy” was about 75%.
It was much lower than “In-Range Accuracy” because
the system used the start time of the next sentence as
the end time of the current sentence so the end time
of each sentence was not estimated accurately. In real
application, the system is acceptable if it can align the
lyrics about 80% in “In-Range Accuracy”.

In-Range Duration
Accuracy Accuracy

AR(%) AD(%)
mean 94.30 75.38
min 67.09 49.56
max 99.75 93.51

standard deviation 7.43 9.28

Table 2 Alignment accuracy of the benchmark performance.

8.2.3 Robustness of the DTW algorithm

To evaluate the robustness of the DTW algorithm, three
kinds of noises were added to the benchmark signal fea-
tures, the noises were “semitone noise”, “extra onset
noise” and “pruning onset noise”.

The “semitone noise” defines adding some semitone er-
rors probabilistically to the benchmark signal features.
For example, the MIDI number of the first onset is 69
originally, then ±1, ±2 or ±3 semitone(s) error is added
probabilistically, thus the MIDI number becomes either
66, 67, 68, 70, 71 or 72. The “semitone noise” was used
to simulate the pitch detection error and observe the be-
haviour of the DTW algorithm. The experiments were
performed with different probability to add the “semi-
tone noise” from 0.05 to 0.5. For example, if the proba-
bility is 0.5, there is 50% chance adding ±1, ±2 or ±3
semitone(s) to an onset. For each probability value, we
tested the DTW algorithm 50 times to find the average
performance of each song in order to get a more accurate
result.

Figure 14 shows the “In-Range Accuracy” and the
Duration Accuracy after adding the “semitone noise”.
The DTW algorithm aligned the lyrics robustly. The re-
sult was similar to the benchmark performance of the
system, thus the DTW algorithm could tolerate the er-
rors which were introduced in the pitch detection module
of the system.

The “spurious onset noise” defines adding spurious on-
sets to the benchmark signal features. For example, there
were 40 original onsets in the benchmark signal features,
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Fig. 14 Alignment accuracy (a)In-Range Accuracy AR and
(b)Duration Accuracy AD of adding semitone noise.

4 spurious onsets (10% noise ratio) are added randomly
while the pitches of these spurious onsets are chosen as
the same as the previous onsets. For instance, a spuri-
ous onset is added between the 3rd and 4th onsets, the
pitch of this spurious onset is the same as that of 3rd one.
The “spurious onset noise” was used to simulate the false
alarm errors which were introduced from the onset de-
tection algorithm. Similar to the previous experiments,
the experiments were performed with different noise ra-
tios from 0.05 to 0.5. For example, if the probability is
0.1 and the number of onsets is 40, 40 × 0.1=4 spuri-
ous onsets would be added. For each noise ratio, we also
tested the DTW algorithm 50 times.

Figure 15 shows the “In-Range Accuracy” and the
Duration Accuracy after adding the spurious onsets. The
DTW algorithm could align the lyrics robustly even the
noise ratio was 1, i.e. 20 spurious onsets with 40 origi-
nal onsets. The accuracy dropped from 93% to 88%, 5%
dropped after 50% spurious onsets, thus the DTW al-
gorithm could compensate the false alarm errors which
were introduced from the onset detection algorithm of
the system.

The “pruning onset noise” defines pruning the onsets
from the benchmark signal features. For example, there
were 40 original onsets in the benchmark signal features,
4 onsets (10% noise ratio) are deleted from the bench-
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Fig. 15 Alignment accuracy (a)In-Range Accuracy AR and
(b)Duration Accuracy AD of adding spurious onset noise.

mark signal features randomly. The “pruning onset noise”
was used to simulate the missing onset errors from the
onset detection algorithm. Similar to all previous exper-
iments, the experiments were performed with different
noise ratios from 0.05 to 0.5. We also tested the DTW
algorithm 50 times for each noise ratio.

Figure 16 shows the “In-Range Accuracy” and the
Duration Accuracy after pruning the onsets. The DTW
algorithm could align the lyrics robustly (about 80% ac-
curacy) if the noise ratio was not too large (≤ 0.25), but
the alignments were bad when the noise ratio was larger
than 0.25. The accuracy dropped from 91% to 58%, 33%
dropped after pruning 50% onsets.

To conclude, the DTW algorithm could align the
lyrics robustly even if the pitch detection module con-
tains some semitone errors, the onset detection module
contains some false alarm errors but not too many miss-
ing onset errors.

8.2.4 Overall Performance

Two data sets were applied on the proposed system. Data
set A contains 20 segments which were not used in train-
ing the non-vocal pruning classifier in Section 8.1. These
20 segments are from the 4 songs in the albums “Beyond
Life” and “Bliss” in Table 1. The range of the song tempo
is from 69 to 92. In addition to these 20 segments, data
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Fig. 16 Alignment accuracy (a)In-Range Accuracy AR and
(b)Duration Accuracy AD of pruning onset noise.

set B includes the 50 segments in the training and valida-
tion sets for training the non-vocal pruning classifier so
there are 70 segments in set B. The range of the tempo
in set B is from 56 to 160. The system first enhanced
the vocal signal by applying the vocal enhancement al-
gorithm. Next, the potential onsets were detected by the
onset detection algorithm. By using the non-vocal prun-
ing module, some non-vocal onsets were pruned from the
pool of the potential onsets. Lastly, the signal features S
were obtained from the lyrics feature extraction module.
Applying the signal features S (automatically computed
by the system) and lyrics features (automatically com-
puted by using the input lyrics) on the DTW algorithm,
the overall alignment result was obtained.

Tables 3 and 4 show the overall alignment result of
our system without and with non-vocal pruning mod-
ule respectively. The “In-Range Accuracy” of the system
without non-vocal pruning module was 82.36% for set A
and 73.51% for set B (table 3) while that of the system
with non-vocal pruning module was 85.76% for set A and
80.24% for set B (table 4). The accuracy was increased
3.4% for set A and 6.73% for set B. Thus the non-vocal
pruning module was able to boost the performance of the
system. The increase in the accuracy in set B was more
significant than that in set A because set B includes the
segments used in training the non-vocal pruning classi-
fier. Moreover, we found that the system could not align
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the fast songs well so the accuracy for set A was greater
than that for set B (e.g. song 2 in the album “Being”
in table 1) because the time distance between two con-
secutive sentences were very short which violated the as-
sumption of our time distance feature, and the relative
pitch matching criteria (mentioned in section 1) may be
lost for fast-pace songs [5]. But in general, most of the
songs are not that fast (160bpm).

In-Range Duration
Accuracy Accuracy

AR(%) AD(%)
Set A Set B Set A Set B

mean 82.36 73.51 60.93 51.83
min 49.81 33.15 33.64 17.86
max 99.85 100.00 77.44 81.23

standard deviation 14.29 17.28 12.79 15.68

Table 3 Alignment accuracy of the overall performance in
which the system did not apply the non-vocal pruning mod-
ule. Set A contains 20 segments which were not used in train-
ing the non-vocal pruning classifier. Set B contains 70 seg-
ments which include all segments in set A and 50 segments
used in training the classifier.

In-Range Duration
Accuracy Accuracy

AR(%) AD(%)
Set A Set B Set A Set B

mean 85.76 80.24 64.63 58.26
min 63.01 40.51 39.00 22.70
max 99.42 100.00 81.51 81.68

standard deviation 11.70 14.78 11.46 14.57

Table 4 Alignment accuracy of the overall performance. Set
A contains 20 segments which were not used in training
the non-vocal pruning classifier. Set B contains 70 segments
which include all segments in set A and 50 segments used in
training the classifier.

9 Conclusion

We built a system to align the lyrics of Cantonese pop-
ular music. Firstly, our proposed system enhances the
vocal part in commercial CD recordings to estimate the
pure vocal signals by our proposed vocal signal enhance-
ment algorithm. Then the start times/onsets of the char-
acters sung are detected by the onset detection method.
Since many non-vocal onsets are detected, they are pruned
by the singing voice detection classifier which classifies
an onset whether it is vocal or not. After that, the pro-
posed features are extracted from the lyrics and the au-
dio signals. Lastly, the start time and the end time of
each lyrics sentence are obtained by the dynamic time
warping algorithm.

Analysis of the modules was performed in depth to
find the bottlenecks of the system. Onset detection was

very sensitive that it was able to detect most vocal on-
sets. However, it also detected many non-vocal onsets
(false alarms), thus non-vocal pruning module was in-
troduced to tackle this problem. The performance of the
singing voice detector in the non-vocal pruning mod-
ule was satisfactory (about 80% accuracy). The result
showed that the non-vocal pruning module was effective
to boost the performance of the system and the pro-
posed features (time distance and relative pitch feature)
were effective to align the lyrics. To evaluate the DTW
algorithm and find the critical issue affecting the over-
all system performance, simulations of different kinds of
noises including missing vocal onsets, spurious vocal on-
sets and incorrect pitches were carried out. The error
of missing vocal onsets was critical (10% miss deducted
6.5% performance), the effect of the spurious vocal onsets
was smaller (10% false alarms deducted 1% performance)
and the incorrect pitches had smallest effect (nearly no
performance deduction for 50% of the incorrect pitches),
thus we concluded that the DTW algorithm was robust
to tackle the lyrics alignment problem. Lastly, the overall
performance of the system was also measured. The sys-
tem was able to align the lyrics with about 80% In-Range
Accuracy. This accuracy measures the ratio between the
duration of lyrics sentence displayed during the lyrics
sentence being sung and the actual duration of the sen-
tence. The demonstrations of our system can be avail-
able at http://www.cse.cuhk.edu.hk/~khwong/demo/
lyricsalign/demo.htm.

The proposed system can be probably applied to the
lyrics alignment problem of other tone languages such
as Mandarin if the lyricist has to write lyrics to match
the relative pitches of melodies. But the proposed system
is limited to one singing voice, thus the system cannot
work with duets. Also, the input lyrics are assumed to
be segmented line by line thus the system cannot work
with unsegmented lyrics. Some Chinese characters can
be pronounced in Cantonese with different tones which
depend on their meanings, but the proposed system does
not encounter this type of characters. If the lyrics of a
song are written in English, the system cannot determine
the relative pitches of these lyrics.

There are several directions for improving the sys-
tem. Our system was limited to signal segments (about
20 seconds) of which the duration is as long as a sec-
tion defined in [29]. The section detection method in [29]
could be used to apply to the song and the lyrics. So,
the song and the lyrics are divided into different sections.
Since the duration of a section is as long as a segment,
the proposed system can be used to align the lyrics to
each section and the lyrics of the complete song can be
aligned. Thus, the segment limitation can be overcome.

Another improvement is that it is possible to apply
the beat detector so that the time distance features can
be adapted to the speed of the song. And also, singing
voice detection can be improved by using more high-level
information such as the key of the song and the beat of



the song. Those high-level information can be obtained
automatically by some existing beat detection systems
and key detection systems. Moreover, the alignment re-
sult and the result of the singing voice detection can be
combined to estimate the end time of each sentence to
increase the Duration Accuracy.

Our system aligned the lyrics sentence by sentence ac-
curately. It is extensible to align the lyrics character by
character rather than sentence by sentence with a semi-
automatic method described as follows. First, our system
aligns the lyrics sentence by sentence. Then the user ad-
justs the boundaries of each sentence manually. Lastly,
the DTW algorithm can be applied to each sentence with
our proposed lyrics features to align each character. An-
other extension is the real-time/online lyrics alignment
which adapts to the singer’s performance. It is essential
for the application of surtitles in Cantonese operas. All
modules in our system can be performed in online mode
except the DTW module. An online DTW algorithm
such as [10] should replace the offline DTW algorithm
used in this paper in order to align lyrics in real-time.
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