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Abstract—Inserting synthetic objects into video sequences has 
gained much interest in recent years. Fast and robust vision-
based algorithms are necessary to make such an application 
possible. Traditional pose tracking schemes using recursive 
structure from motion techniques adopt one Kalman filter and 
thus only favour a certain type of camera motion. We propose a 
robust simultaneous pose tracking and structure recovery 
algorithm using the Interacting Multiple Model (IMM) to 
improve performance. In particular, a set of three extended 
Kalman filters (EKFs), each describing a frequently occurring 
camera motion in real situations (general, pure translation, pure 
rotation), is applied within the IMM framework to track the 
pose of a scene. Another set of EKFs, one filter for each model 
point, is used to refine the positions of the model features in the 
3-D space. The filters for pose tracking and structure refinement 
are executed in an interleaved manner. The results are used for 
inserting virtual objects into the original video footage. The 
performance of the algorithm is demonstrated with both 
synthetic and real data. Comparisons with different approaches 
have been performed and show that our method is more 
efficient and accurate. 
 

Index Terms: Augmented Reality, Pose Tracking, Interacting 
Multiple Model, Kalman filtering 

 

I. INTRODUCTION 
odern movie makers are interested in integrating 
cartoon characters into real scenes. Originally, 
producing these types of videos involves tedious work 

and requires experienced photo editors. With the aid of 
computers, this process can be automated. The process of 
mixing synthetically generated objects with image sequences 
in real-time is known as augmented reality or mixed reality. 
To produce augmented reality videos, the orientation of the 
scene with respect to the camera, i.e. the pose information, 
together with the structure of the scene, should be known. 
With knowledge of the structure, the virtual object can be 
placed anywhere in the scene and the pose information 
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allows the motion of the object to be consistent with the 
background. 

A. Previous work 
General pose acquisition methods for inserting synthetic 

objects into images are based on the techniques in structure 
from motion (SFM) in computer vision [21]. SFM algorithms 
can estimate both the pose and 3-D structure from a sequence 
of 2-D images. Popular approaches include multiple view 
geometry [11] [12] and factorization [2] [13]. Bundle 
adjustment is also an effective method to recover the motion 
and model [4]. Its idea is to minimize the re-projection error 
between the estimated model and the image measurements. 
The minimization procedure is done in batch by the 
Newton’s method. A branch of bundle adjustments is the 
interleaved bundle adjustment method [4] [14]. It breaks up 
the minimization problem into two steps so as to reduce the 
size of the Jacobian involved, resulting in speeding up the 
algorithm.  

The method mentioned previously tackles the problem in a 
batch, in which the structure and motion are optimized for all 
the images at one time. In an interactive application like 
augmented reality, new measurements from images are 
acquired continuously from time to time and immediate 
reactions are required. Recursive techniques that recover the 
structure and motion sequentially with the images are highly 
useful, with which image measurements can be processed 
causally in real-time to give better performance. Most of the 
recursive approaches are based on Kalman filtering [15]. The 
series of methods in [5] [6] [7] [8] [20] recover both the 
structure and motion simultaneously using Kalman filters. 
The method in [7] is the seminal work in this series of 
researches. The authors applied a single full covariance 
iterated extended Kalman filter (IEKF) to recover the 
structure and pose of an object. Azarbayejani and Pentland 
described a method in [6] that has significant improvements 
over [7], where EKF is used as a substitute of IEKF. An 
extension is made to recover the focal length of the camera in 
addition to the pose and structure information. In other words, 
partial auto-calibration is possible. The pointwise structure is 
represented by one parameter per point with which the degree 
of freedom for motion, camera and structure becomes 
(6+1+N), where N is the number of point features. Since 
there are 2N measurement constraints plus one arbitrary scale 
constraint in each frame, the computation of parameters can 
be over-determined when the number of features in each 
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frame is larger than 7. Such an overdetermination results in 
better convergence and stability of the filter. The most recent 
work of recursive structure recovery is by Yu et al [20] [23]. 
One EKF is used to compute the motion of the scene while a 
set of EKFs, each corresponding to a feature point in the 3-D 
space, is applied to estimate the scene structure. The object 
motion and 3-D structure are calculated in an interleaved 
manner. Using this method of decoupling, the computation 
efficiency is increased as a tradeoff in accuracy. This 
algorithm has been applied to reconstruct 3-D models from 2-
D images and insert synthetic objects into video sequences.  

B. Our contributions 
The Interacting Multiple Model based (IMM-based) 

method presented in this paper aims to track the pose 
sequence in videos using the techniques in SFM. In short, the 
Interacting Multiple Model (IMM) algorithm [10] is a 
suboptimal hybrid state filter that has been widely used as a 
tool for tracking maneuvering targets in RADAR [18] and 
vision-based systems [19]. The idea of applying the IMM 
algorithm to the SFM problem was inspired by the fact that 
accuracy can be increased if prior information about the 
structure or motion is utilized [9]. In the pose estimation step 
of our algorithm, three EKFs, each describing a unique 
motion dynamic, are adopted. They represent those 
frequently occurring camera motions (i.e. general, pure 
translation and pure rotation) in real situations. Intuitively, 
the IMM provides a mechanism to “select” suitable filters 
automatically in order to set constraints on the camera motion 
if prior information is available. With these constraints, the 
total number of parameters to be estimated is reduced and the 
accuracy can be improved. In addition, the problem of 
motion discontinuity in real images can be handled properly 
with the IMM framework. 

Our structure and motion algorithm consists of a total of 
N+3 small EKFs, where N is the number of point features in 
the scene. With such an arrangement, the time complexity of 
the algorithm is lower than those traditional approaches that 
use a single full covariance EKF. This is necessary since the 
computation speed is crucial for augmented reality 
applications. Although each point in the 3-D space is updated 
by a separate EKF, the rigidity of the scene structure under 
reconstruction is maintained in our algorithm and is achieved 
by expressing the coordinates of the 3-D points in terms of 
their corresponding 2-D coordinates in the images. 

C. Organization of the paper 
The rest of this paper is organized as follows. Our 

geometric setup is introduced in Section II. The overview of 
our robust algorithm is then described in Section III. In 
Sections IV and V the detailed formulas for the IMM 
algorithm, the EKFs for pose estimation and structure 
refinement, are presented. In Section VI, the handling of the 
changeable set of feature points in our implementation is 
discussed. In Section VII, a computation comparison among 
our IMM-based approach and other existing algorithms [6] 
[14] [20] is made. In Section VIII, experiments with real and 
synthetic data are performed and the results from the four 

approaches are analyzed. In addition, the proposed algorithm 
has been applied to insert a synthetic object into a real image 
sequence. 

II. GEOMETRIC SETUP OF THE SYSTEM 

 
Fig. 1.  The geometric setup of our system. 

Fig. 1 shows the geometric setup of our system. Xm 
represents the mth model point in the 3-D space. 
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where tR  is a 3x3 rotation matrix. It represents the object-
centered rotation. tT  is a 3x1 translation vector. TC is a 3x1 
vector that brings the model structure from the world frame 
to the camera frame. It is a constant and regarded as a system 
parameter that can be measured during calibration. 
Knowledge of TC is necessary if we recover the structure and 
motion of an object on a turntable. When TC =03x3, the 
position of the world center is equal to the camera center. 
Equation (1) becomes 
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, which is the 

traditional expression of rigid transformation.  
Parameters tR  and tT  compose of the pose sequence. The 

camera is calibrated with fixed focal length f. The camera 
model is full perspective and the projection can be expressed 
as: 
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The problem of simultaneous recovery of structure and 
motion in our system is to compute the coordinates of model 
point O

mX in the object coordinate frame and the pose 
sequence of the scene, i.e. the rotation 

tR  and translation 
tT , 

with respect to the views at each time-step.  
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Fig. 2.  The flowchart of the proposed IMM-based algorithm. 

III. OVERVIEW OF THE ALGORITHM 

The system can be divided into three parts: feature 
extraction and tracking, model initialization, pose estimation 
and structure updating. An illustration of the flow of the 
proposed algorithm is shown in Fig. 2. 

A. Feature extraction and tracking 
The Kanade-Lucas-Tomasi (KLT) tracker described in [3] 

is used to extract feature points from the scene and track 
them in the image sequence. In our work, it is assumed that 
the problem of feature tracking has been solved and point 
matches from the tracker are reliable enough for pose 
estimation and structure recovery. 

B. Model initialization 
The model is assumed to be a static rigid body. The 

initialization is achieved by letting the projection of the first 
image in the sequence be weak perspective. Perspective 
projection is assumed for the remaining frames so that our 
algorithm can deal with perspective images. The weak 
perspective projection is expressed mathematically as: 
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where zinit is the distance between the model structure and 
camera center. It is a parameter given by the user of the 
system and can be approximated easily. To obtain the initial 
model, features in the first image are back-projected from the 
image plane to the camera coordinate frame according to (3). 
The resulting initial structure, represented by parameter 

1,'mX , 

is a planar model located at a distance zinit from the camera. 
Such an initialization is fast but has a limitation. The depths 
of the object features should not vary too much to ensure 
proper convergence of the filters. Actually, other 
initialization procedures, such as the use of epipolar 
geometry plus the RANSAC robust estimator, can be 
employed despite of the computation speed. 

C. Structure and pose updating 
The initial model and the second image are fed to the first 

step of the main loop for pose estimation. Three extended 
Kalman filters (EKFs), each representing a unique motion 
dynamic, are adopted. These three filters interact with one 

another using the Interacting Multiple Model (IMM) [10]. 
The recovered pose tw  is a mixture of the outputs of the 
three filters and is then passed to the second step for structure 
updating.  

The second step consists of a set of N EKFs, where N is 
the number of point features. Each EKF corresponds to one 
feature point in the recovered 3-D structure. With the 
observations and the pose recovered for the current image 
frame, the parameter 

tmX ,'  representing the coordinates of 

each feature point is updated. The algorithm alternates 
between step 1 and 2 until all images in the sequence are used.  

IV. STEP 1: POSE ESTIMATION 
The pose estimation step consists of three EKFs embedded 

within the IMM framework. Each of the three EKFs 
describes frequently occurring motion dynamics in real 
situations. The IMM algorithm provides a probability 
framework for filter switching.  

A. Design of the individual EKFs 
The three EKFs describing three different motion 

dynamics are defined as follows: 
1) The General Motion Filter (GMF): GMF is designed to 

handle arbitrary object motion with unrestricted rotation and 
translation. Constant velocity is assumed for the GMF.  

2) The Pure Translation Motion Filter (TMF): TMF is 
designed for tracking the objects with zero rotation motion. 

3) The Pure Rotation Motion Filter (RMF): RMF is 
dedicated to tackle the objects with pure rotation around the 
y-axis (i.e. non-zero Pitch angle). 

The state vector )(iwt  of the ith motion filter is: 

[ ]Tzzyyxxt ttttttiw γγββαα=)(  

where tx, ty, and tz are the translation parameters of the 
object along the x, y and z axis, respectively. 

zyx ttt ,,  are 

their corresponding velocities. γβα ,,  are respectively the 
Yaw, Pitch and Roll angle with γβα ,,  as their 
corresponding angular velocities. As there are three filters in 
the IMM algorithm, i ranges from 1 to 3. The state transition 
and measurement equation for the filters are: 

)(')()()( 1 iiwiAiw ttt η+= −
       (4) 

)('))((' iviwg tttt +=ε         (5) 
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where )(' itη and )(' itν  are zero-mean Gaussian noise. t'ε
 is a 2Nx1 column vector representing the measurements from 

the images. ))(( iwg tt  is the 2Nx1-output image projection 
function. C

tmX ,
 is computed by (1) and the rotation matrix tR  

and translation vector tT  are evaluated with the parameters 
encoded in the column vector )(iwt . A(i) is a 12x12 block 
diagonal state transition matrix. A(i) is different for the 3 
EKFs and is defined as follows: 
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where sT  is the sampling period.  From the above 

dynamic system and measurement model, the four core 
Kalman filtering equations for pose estimation can be derived. 
The prediction equations for calculating the optimal estimates 
are: 

)(ˆ)()(ˆ 1,11, iwiAiw tttt −−− =        (7) 

)(')()()()( 1,11, iQiAiPiAiP t
T

tttt += −−−
                (8) 

The update equations for the corrections of estimates are: 
)))(ˆ(')(()(ˆ)(ˆ 1,1,, iwgiKiwiw tttttttt −− −+= ε            (9) 

)()()()( 1,)(1,, iPgiKiPiP ttiwtttt −− ∇−=               (10) 
1
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)(ˆ 1, iw tt −
 and )(ˆ , iw tt

 are the estimates of state )(iwt  after the 

prediction and update, respectively. )(1, iP tt −
 and )(, iP tt

 are 

12x12 matrices and are the covariances of )(ˆ 1, iw tt −
 and 

)(ˆ , iw tt
, respectively. K(i) is the 12x2N Kalman gain matrix 

for the filter. 
)(iwg∇  is the Jacobian of the non-linear 

observation equation ))(( iwg tt  evaluated at )(ˆ 1, iw tt −
. )(' iQt  

and )(' iC t  are the covariances of the noise terms )(' itη  and 

)(' iv t  , respectively. 
The error covariances in EKFs are design parameters and 

can be tuned according to specific applications to obtain 
optimal performance. In practice, it is assumed that the noise 
of each parameter is uncorrelated. So the covariance matrices 

)(' iQt  and )(' iC t  are chosen to be block diagonal. The error 
covariance of the measurement model )(' iC t  can first be set 
in accordance with the accuracy of the imaging device and 
feature tracker used. Then the error covarinace of the object 

motion )(' iQt  is tuned such that the innovation process of the 
EKF becomes white. The value of )(' iQt  controls the degree 
of smoothness allowed for the object motion. These 
covariances are required to be set only once and are fixed in 
the Kalman filtering cycle.  

EKF can be applied safely to our problem. Given that the 
frame rate of a video sequence is sufficiently high, the 
motion of the scene between successive images becomes 
small. In this case, the KLT tracker is reliable and we can 
assume that the tracker, together with the image sensor, only 
introduce Gaussian noise to the positions of the point features. 
The EKF is stable and effective under this condition. 

B. The Interacting Multiple Model Algorithm 
The IMM algorithm is a sub-optimal filter originally 

proposed by Blom [17]. It is regarded as one of most cost-
effective hybrid state estimation schemes. It achieves an 
excellent compromise between performance and complexity. 
The algorithm adopted in the system is the baseline IMM in 
[10].  
 

 
Fig. 3.  The flowchart of the baseline IMM algorithm. The terms TMF, GMF 
and RMF are the short forms of the pure translation motion filter, the general 
motion filter and the pure rotation motion filter, respectively. The exact 
definitions can be found in Section IV.A. 
 

 
Fig. 4.  The switching of motion filters in the IMM algorithm. 
 

The basic IMM algorithm consists of several steps, which 
can be visualized in Fig. 3. Firstly, the likelihood of each 
filter ut-1(i) is updated according to the 3x3 switching matrix 
J(i,j): 

∑ −=
j

tt jujiJiu )(),()( 1
*        (11) 

where )(* iut
 is the likelihood probability of the filter after 
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interacting with the switching matrix J(i,j). Notation j, in 
addition to i, is another index to the 3 EKFs for pose 
estimation. ),( jiJ  denotes the probability of switching from 
filter i to filter j. In our implementation, the initial likelihood 
of the filters is equal. The switching matrix is set by 
assuming that the model under reconstruction continues with 
a single motion for an extended period of time with an 
occasional transition to another motion model. The diagonal 
entries of ),( iiJ  is slightly less than 1 with off-diagonal 
entries 2/)),(1(),( iiJjiJ −= . Fig. 4 shows the switching 
process of the three EKFs in our system. 

Secondly, the state estimates and their corresponding 
covariances of the previous time-step are mixed: 
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where )(ˆ *
1,1 iw tt −−

 and )(*
1,1 iP tt −−

 are the state estimates and its 

covariance of filter i after the interaction with the switching 
matrix J(i,j), respectively. They are then passed to the EKFs 
for prediction and smoothing with the measurements in the 
current time-step. The outputs of the ith filter after the 
prediction phase are )(ˆ 1, iw tt −

 and )(1, iP tt −
 while that of the 

smoothing phase are )(ˆ , iw tt
 and )(, iP tt

. After the Kalman 

filtering cycle, the likelihood of each filter )(iut  is updated 
with regard to the innovation vector vt(i) and its 
corresponding residual covariance St(i) of the filters: 
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where κ  is a normalization factor such that 1)( =∑
i

t iu . 

)(iut
 is computed according to an n-dimension zero-mean 

normal distribution function. In our system, a random sample 
of model features, having a size of n, is chosen to compute 
the innovation vectors and residual covariances for the 
calculation of the above normal distribution function. 
Experimentally, n is set to 10 to reduce the computation 
complexity. 

Lastly, the usable output state vector 
ttw ,ˆ and covariance 

matrix 
ttP ,
 at the current time-step t are generated with the 

following equations: 
)(ˆ)(ˆ ,, iwiuw tt

i
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The final output of the system, i.e. 
ttt ww ,ˆ= , is a linear 

sum of the smoothed state and covariance estimates of each 
filter weighted by the corresponding updated filter likelihood. 
With the IMM algorithm and three EKFs, the pose of the 
model can be estimated. 

V. STEP 2: STRUCTURE UPDATING 
The structure updating step consists of N identical 

extended Kalman filters (EKFs), each corresponding to one 
model point in the 3-D space. For simplicity, one filter is 
considered in the discussion. The model is assumed to be 
static. The dynamic model of a 3-D point and its 
measurement equations are:  
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where tη and tν are the zero-mean Gaussian noise. 
tm ,ε
 
is 

the real measurement from the image sequence. )'( ,tmt Xh  is 

the projection function, in which C
tmX ,

 is obtained by 

substituting suitable values into (22) and (1). 
tmX ,'  is a scalar 

that represents a model point: 
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Each model point is represented by a single parameter. 
Such a representation is made under the assumption that the 
measurements acquired by the camera are non-biased. 
Intuitively, the 3-D coordinates of the points are expressed in 
terms of the first images that the features appear. Detailed 
discussions on the advantages arising from this structure 
representation and the method to handle biased measurement 
can be found in [6]. 

With the dynamic system and measurement model, the 
required equations for the EKF, which are similar to those in  
(7) – (10), can be derived. Due to limited space, readers 
please refer to [15] for further details.  

VI. HANDLING THE CHANGEABLE SET OF FEATURE POINTS 
The set of active feature points is changing due to 

occlusion. Extra treatments are needed in the structure 
acquisition process.  

New model points in the structure are initialized when new 
point features appear in the image sequence. This is obtained 
by assuming the projection of that point on its first appeared 
image, say on the frame at time-step t, is weak perspective. 
The initial position, expressed in the camera coordinate frame, 
is computed according to (3). The structure parameter for that 
point is now expressed in terms of its image coordinates at 
time-step t. The relationship between the structure parameter 

tmX ,'  and object coordinate frame is: 
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TABLE I 
THE AVERAGE ERROR OF EACH POSE PARAMETER 

Symbol Roll Pitch Yaw tx  ty tz 
Total  

rotation 
Total 

translation 
Our approach 0.4055 0.2411 0.0257 0.0750 0.2196 0.1867 0.3356 0.32055 
Azarbayejani's EKF 1.0467 0.5496 0.0205 0.1102 0.2732 0.2172 0.6669 0.38894 
Yu’s EKF 3.7069 3.3599 0.3487 0.2 0.4 1.2 3.7747 1.4 
The interleaved bundle 
adjustment method 

2.6789 1.3259 0.1141 0.1 0.2 1.4 1.3405 1.5 

A table showing the average errors of each pose parameter per frame of the 4 algorithms in the experiment. Note that the angular errors (i.e. the total rotation, 
the Roll, Pitch and Yaw angle error) are in degrees and the translational errors (i.e. the total translation, tx, ty and tz error) are in meters. 
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A new EKF, as described in Section V, is set up to refine 
its position in its camera coordinate frame with parameter 

tmX ,' . The final position can be obtained by calculating its 

coordinates in the object frame using (23).  
When a point feature vanishes from the image sequence, 

the filter that corresponds to the point is removed and the 3-D 
position of that feature will no longer be updated.  

VII. EXPERIMENTS AND RESULTS 

A. Experiments with synthetic data 
The first set of experiments was conducted with synthetic 

data. A synthetic structure with 300 random feature points in 
3-D within a cube of volume of 0.13m3, centered at a place 
0.33m away from the viewing camera, was generated. The 
camera motion was composed of three different segments, a 
pure translation section, a pure rotation section and a general 
motion section. The motion parameters were generated 
randomly from 0.05 to 0.15 degrees per frame for Yaw, Pitch, 
Row angle and 0.0005 to 0.0015 meters per frame for tx, ty 
and tz. The length of each synthetic sequence was 99 frames. 
A total of 20 independent tests were carried out. Our IMM-
based algorithm was implemented in Matlab and tested with 
the data. The interleaved bundle adjustment method [14], the 
EKF by Azarbayejani and Pentland [6] and the 2-step EKF 
by Yu et al [20] were also implemented in the same platform 
and tested with the same set of data for comparison. 

Table I shows the average pose parameter errors per frame 
for the four algorithms under the 20 test cases. The total 
rotations of the actual and recovered structure were 
calculated using the axis-angle representation to reduce the 
Yaw, Pitch, Roll angle into a single angle. The difference 
between these two values is the error. The total translation 
error was computed by subtracting the recovered translation 
vector from the actual one and the magnitude was taken. The 
errors per frame are equal to dividing the summation of errors 
by the number of frames. You can see that our approach 
achieved the lowest total rotation and translation error per 
frame.  

Fig. 4 shows the time for the four algorithms to optimize 
the image residual error of the back-projected model. For the 
plots in Figs. 4 and 5, the lines with an asterisk (*), triangle 
( ), circle ( ), square ( ) are for our IMM-based approach, 
the interleaved bundle adjustment method, the EKF by 
Azarbayejani and Pentland and the 2-step EKF by Yu et al, 
respectively. From Fig. 4, the error of our algorithm falls to a 
low value at the earliest time among the four methods. The 

final residual error is the second lowest in the comparison. It 
is reasonable that the interleaved bundle adjustment method 
(a batch processing method) had a lower error than ours, 
since our recursive algorithm could not optimize the structure 
and pose error for all the images in the sequence 
simultaneously. However, the interleaved bundle adjustment 
method is ranked the third in pose accuracy (see Table I). The 
solutions found by their algorithm overfit the data.  

Fig. 5 shows the time needed to reconstruct a model when 
extra frames were added sequentially to the image sequence. 
Our algorithm took 0.79 seconds to update the structure and 
pose for every extra frame. It outperformed the EKF by 
Azarbayejani and Pentland and the interleaved adjustment 
method, which needed 2.60 and at least 4.55 seconds, 
respectively. The 2-step EKF by Yu et al took 0.42 seconds 
to process an extra frame. However, experimental results 
show that the 2-step EKF resulted in a total rotation and 
translation error that were ten and four times larger than our 
approach, respectively. It shows that our IMM-based 
approach was a better tradeoff between time and accuracy 
since a little addition of computation cost could cause a 
significant improvement on the resulting errors. 

 
Fig. 4.  The relationship between the CPU time and the image residual error. 
Note that the algorithms were implemented in Matlab with a Pentium III 
1GHz machine. 

 
Fig. 5.  A graph showing the time needed for the 4 algorithms to reconstruct 
the model and pose when extra frames were added to the image sequence. 

B. Experiments with real images 
An experiment using real scene images was also performed. 

The sequence was taken in the laboratory. The images were 
captured while the camera was translating sideway on a rig. 
The length of the image sequence was 100 frames. To ensure 
the algorithm would achieve high accuracy and stability, the 
camera motion between successive image frames could not 
be too large. Otherwise, drifting of pose may occur due to the 
limitation of the KLT feature tracker. The KLT tracker 
assumes that the 2-D motion of a feature point is not large. In 
real situations, the motion can be virtually slowed down 
given that the frame rate of the image sequence is sufficiently 
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high.  
 

 
Fig. 6.  Results of inserting an artificial object into the test scene using our 
IMM-based approach. First row: The first and the last image of the test 
sequence. Second row: A synthetic car, which was drawn by wire-frames, 
was put into the real scene. More results can be found at 
http://www.cse.cuhk.edu.hk/~khwong/demo/ 

 

 
Fig. 7.  The pose sequences recovered from the test sequence with our IMM-
based approach (the top two plots) and with the 2-step EKF by Yu et al (the 
bottom two plots).  

 
Fig. 8.  A plot showing the most probable EKF for pose estimation against 
frame number resulting from the test image sequence. 
 

Our IMM-based algorithm was applied to track the pose 
sequence from the video while reconstructing the scene 
structure. The recovered pose was used to produce an 

augmented reality video, in which a synthetic car was 
inserted into the scene. 

Fig. 6 represents the result. The orientation of the synthetic 
car is consistent with the real scene in the whole video 
sequence. To show the significance of using the IMM 
algorithm, a comparison between our IMM-based approach 
and the 2-step EKF by Yu et al [20] in this real image 
experiment was made. The latter algorithm was chosen as a 
control since it is similar to our approach in a way that the 
recovery of pose and structure in the Kalman filtering 
computation is decoupled. The major differences between 
these two approaches are the structure representation and the 
use of the IMM algorithm in pose estimation.  

Fig. 7 shows the resulting pose sequences acquired with 
the two algorithms. The pose recovered with our IMM-based 
algorithm was smooth with no ambiguities among the Yaw 
and Pitch angle. The small jump in the rotation angles at the 
76th frame was due to the small vibration of the camera. On 
the other hand, the rotation parameters recovered using the 2-
step EKF fluctuated even if the camera motion was almost 
pure translation.  

Fig. 8 shows the switching of the three EKFs for pose 
estimation in our IMM-based approach. The filter was 
regarded as “switched to” (in-use) if it had the highest 
likelihood among the three filters. You can see that the IMM 
algorithm detected the camera motion correctly. Our system 
used the pure translation motion filter (TMF) most of the 
time in this test case, which reflected the actual motion of the 
camera. It switched to the other two filters, i.e. the general 
motion filter (GMF) and the pure rotation motion filter 
(RMF), from the 69th to the 75th frame. This was due to the 
fact the camera was vibrating. After that, our system switched 
back to TMF. 

VIII. CONCLUSION 
A recursive algorithm that targets to track the camera 

motion and recover the 3-D structure simultaneously has 
been proposed and tested in this paper. The Interacting 
Model Multiple Model (IMM) has been applied to solve the 
problem in association with the extended Kalman filters 
(EKFs). With the IMM, the ambiguities among the pose 
parameters and recovered structure have been resolved 
successfully, resulting in a higher accuracy on the recovered 
pose sequence. The required computation time is kept to a 
minimum by breaking up pose estimation and structure 
acquisition into two steps and each corresponding point in the 
3-D model is decoupled in the EKF implementation. At the 
same instance, a special structure representation has been 
adopted to maintain the rigidity of the 3-D model, thus 
minimizing the effects of decoupling the EKF. The proposed 
algorithm attains an optimal tradeoff between speed and 
accuracy. Also, a scheme on handling the changeable set of 
point features has been devised. These advantages make our 
approach best suit for the augmented reality applications of 
marker-less video sequences. 

Theoretically, the number of EKFs embedded in the IMM 
algorithm is not limited. If an additional EKF is able to 
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describe the system dynamics of a particular application, it 
can be incorporated into the algorithm to improve the 
accuracy. The addition of the filter does not affect the speed 
significantly if the algorithm is implemented on a parallel 
processing system as the filters can run concurrently. To 
proceed further, we can apply or formulate some 
sophisticated dynamic systems as described in [22] to make 
the algorithm more robust under a wider range of conditions 
with the minimum number of EKFs. 
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