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Pose Estimation for Augmented Reality

Applications Using Genetic Algorithm

Ying Kin Yu*, Kin Hong Wong and Michael Ming Yuen Chang

Abstract

This paper describes a genetic algorithm that tackles the pose estimation problem in the field of computer

vision. Our genetic algorithm can find the rotation and translation of an object accurately when the 3D structure of

the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected

point features of the object. Instead of only searching for the pose of the object as in many of the existing work,

our algorithm at the same time searches for a set containing the most reliable feature points in the process. This

mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches

and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The

accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe’s

method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, our

algorithm has been used to estimate the pose of a real object, which is applicable to augmented reality applications.

For example, the pose obtained was used for inserting artificial objects into an augmented reality movie in this

paper.

Index Terms

Pose Estimation, Genetic Algorithms, Augmented Reality.

I. I NTRODUCTION

T HE research work presented in this paper falls into the category of pose estimation in the field of

computer vision. The goal is to estimate the pose (Row, Pitch, Yaw rotation angles and thetx, ty,

tz translation parameters) of an object in the 3D space given its structure. Pose estimation is important
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because it is one of the two essential steps in the alternative bundle adjustment scheme for the structure

from motion problem [17]. With a better pose estimation algorithm, the recovered structure can reach a

higher accuracy. The pose estimation technique is also crucial in producing augmented reality movies,

in which the artificial objects can be mixed with the images of the real scene. Currently, there are two

major approaches in computing the pose for augmented reality. One is the marker-based technique [15]

[25], in which the scene for processing must contain a special pattern for pose estimation and camera

calibration. Another is the vision-based technique [16] [24], in which no special pattern is required to

compute the pose. This approach is more general and can be applied to most natural scenes. Here we

present an approach that is suitable for the latter problem.

A. Previous work

There are various techniques to deal with the vision-based pose estimation problem. Early work makes

use of smaller number of point features in the scene. Fishler and Bolles [18] took three feature points

with the ”Random Sample Consensus” method to compute the pose of an object. Horaud, Conio and

Leboulleux [19] estimated the pose of an object using four non-coplanar points. The solution is computed

by solving biquadratic polynomial equations of one unknown with geometric constraints. Another four-

point algorithm was proposed by Liu and Wong [26].

The iterative method [23] [27] [6] is also a common approach to solve the pose estimation problem. It is

an iterative steepest descent method which computes the best pose to fit the image data. The residual error

between the predicted and real image positions of the point features are used to form a better prediction in

the next iteration by a nonlinear optimization scheme such as Newton’s method. The algorithm is executed

iteratively until the residual error is finally minimized.

Another approach is to tackle the problem of pose tracking by Kalman filtering. In short, Kalman filter

is an estimator for the linear-quadratic-gaussian problem. It is a problem of estimating the instantaneous

state of a linear dynamic system perturbed by Gaussian white noise by using measurements linearly

related to the state, but corrupted by Gaussian white noise [9]. Lippiello, Siciliano and Villaniworks [12]

[13] used extended Kalman filter for motion estimation. This work finds the pose of the object based on

a known CAD model from stereo images. The position and orientation of the camera are recovered in

realtime and the results are applied to visual servoing of robot manipulators. Wong, Or and Chang [8]

applied the CONDESATION framework to track the pose of an object for the construction of a virtual

walk-through environment.
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Genetic algorithm is an alternative to the traditional solutions. Most of the existing methods [2] [4] [5]

model the problem as a camera calibration procedure. Hati and Sengupta [2] used the genetic algorithm

framework to estimate the extrinsic parameters of a camera. Real number representation is adopted to

encode the translation and rotation parameters in the chromosomes. Gaussian mutator and Blend crossover

are used as the genetic operators in their genetic algorithm. The work by Ji and Zhang [4] is quite similar

to [2] but the authors applied a genetic algorithm to search for both the intrinsic and extrinsic parameters

of a camera. They incorporated a time dependent function for the adjustment of the step size into the

mutation operator to facilitate the convergence of the fitness value. Cerveri, Pedotti and Borghese described

an approach in [5] that calibrates a stereo camera system with the enhanced evolutionary search. The only

work that directly addresses the pose estimation problem with genetic algorithm is by Toyama, Shoji

and Miyamochi [3]. The inputs to their algorithm are the edge images instead of point features. They

adopted the phenotypic forking genetic algorithm [10] to perform the search. This strategy combines the

advantages of conventional genetic algorithm and steepest descent method such that the solution can be

found within a smaller number of generations.

B. Our contributions

The algorithm proposed in this paper is based on the work by Hati and Sengupta [2]. We also use real

numbers to represent pose in the chromosomes. Our improvement is on incorporating a feature searching

strategy into our algorithm. That means while searching for the pose of an object, our algorithm also

searches for the set containing the most reliable features among all the available model points in the

process. To achieve this, indexes of the reliable feature points are encoded in the chromosomes. The

chromosome now comprises two sections: 1) One section encodes the translation and rotation parameters

2) The other section encodes the indexes to the selected point features. The genetic operators are also

modified to cope with this new encoding scheme. It is shown in the experiment that our new algorithm

is less susceptible to the presence of point mismatches and outliers than the original version by Hati and

Sengupta. Such a robustness has also been demonstrated in the experiment in which a virtual chair was

successfully put onto the rotating turntable in the real scene.

The major advantage of our genetic algorithm is that it avoids locking into a local optimum, which is

a common problem in traditional steepest descent methods. As reported in the literature [4], there exist

several local extrema in the landscape of the three rotation parameters when the image measurements are
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used as the objective function. Our genetic search can calculate a better pose than Lowe’s method in a

theoretical sense.

C. Organization of the paper

The rest of this paper is organized as follows. The modeling of the pose estimation problem is first

introduced in Section II. In section III, the design and implementation of our genetic algorithm are

described. In section IV, the results of the synthetic and real image experiments are demonstrated. In the

first experiment, the settings of genetic algorithm parameters, together with the robustness of our algorithm

to the presence of point mismatches and outliers are analyzed. An empirical comparison among our

approach, the traditional Lowe’s method, the genetic algorithm by Hati and Sengupta and a conventional

genetic algorithm plus a RANSAC robust estimator is made. In the second experiment, the accuracy of

the recovered pose is demonstrated by producing an augmented reality video, in which a virtual chair is

put into the real scene. In section V, possible improvements and future work are discussed.

II. PROBLEM MODELLING

Fig. 1. The geometric model used in the paper.

Figure 1 describes the geometry of our system.XO
i = [xO

i , yO
i , zO

i ]T denotes the coordinates of the point

Xi with respect to the object coordinate frame. The notationXC
i = [xC

i , yC
i , zC

i ]T represents the coordinates

of point Xi in the camera coordinate frame. A point on the image plane is denoted bypi = [ui, vi]
T . The
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object for pose estimation is centered at the originOo of the object coordinate frame. The relationship

between the object frame and the camera frame can be described by the following equation:

XC
i = (RXO

i + T ) + TC (1)

R is a 3 × 3 rotation matrix andT is a 3 × 1 translation matrix. BothR and T are recovered with

reference to the object frame in the process of pose estimation.TC is a3×1 translation matrix that brings

the object in the object coordinate frame to the camera coordinate frame. It is a constant in the pose

estimation process.

For the rotation matrixR, a parameterization called the rotation around the coordinate axes is adopted.

The entries ofR can be written as:

R(α, β, γ) =




cos β cos γ − cos β cos γ sin β

sin α cos β cos γ + cos α sin γ − sin α sin β cos γ + cos α sin γ − sin α cos β

− cos α sin β cos γ + cos α sin β cos α sin β sin γ + sin α cos γ cos α cos γ




(2)

The camera used in the system is calibrated and its focal length is assumed fixed. The camera model

is full perspective and the projection can be mathematically represented as:




ui

vi


 =

f

zC
i




xC
i

yC
i


 (3)

wheref is the focal length of the camera. The problem of pose estimation is to compute the rotation

anglesα, β, γ around each axis and the translation parameterstx, ty andtz of the object for the 2D image

in each time-step. In the computation, the back-projection error (BE), which is defined as:

BE =
N∑

j=1

d2
j (4)

is to be optimized. In the equation,dj is the difference in distance between a real image point and its

corresponding back-projected point given the computed pose.

III. T HE GENETIC ALGORITHM IMPLEMENTATION

A. Overview of the algorithm

Our implementation of the genetic algorithm follows the framework of the conventional genetic method-

ology as described in [1]. Starting with an initial pool of population produced randomly, the chromosomes
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in the current population have a certain chance to reproduce their offsprings. Fitter chromosomes have a

higher chance to be selected for reproduction using the roulette wheel proportionate selection. An offspring

is reproduced either by mutation of one chromosome or crossover between two chromosomes. We adopt

the concept of overlapping population in creating the next generation of chromosomes. The population

of the next generation consists of a certain portion of the chromosomes from the parent generation and

some from their offsprings. The proportion between two types of chromosomes in the new generation is

defined by the probability of replacement. The algorithm stops until the fitness of the best chromosome

converges to a desired value. The overview of our genetic algorithm can be outlined as follows.

1) Generate a random population consisting ofn chromosomes.

2) Calculate the fitness value of each chromosome.

3) Choose the parents from the current population using the roulette wheel proportionate selection for

reproduction.

4) Create a temporary population of offsprings by the mutation or crossover of the parents according

to the corresponding probabilities.

5) Select, with the roulette wheel proportionate selection, the chromosomes into the next generation

from the pool of the offsprings and current generation according to the probability of replacement.

6) Repeat Step 1) to Step 5) until one or more of the following conditions has been reached: i) The

fitness of the best chromosome has reached a desired value. ii) It has no further improvements. iii) The

time limit exceeds.

B. Chromosome encoding

The chromosomes of our genetic algorithm consists ofn + 6 elements, wheren is the number of

selected point features. The chromosome vectorqt
i is defined as:

qt
i = (pt

1i, p
t
2i) (5)

pt
1i = (α, β γ, tx, ty, tz)

pt
2i = (k1, k2, ..., kn)

The notationqt
i refers to an individual chromosome at thetth generation. It is actually a composite

chromosome that is a fusion of two different types of chromosomes.pt
1i encodes the pose of an object.

Its elements comprise the first section of the chromosome. The encoding of this section follows exactly
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Fig. 2. An illustration of the structure of the composite chromosome.

the work of Hati and Sengupta described in [2]. Real number representation, together with an appropriate

upper and lower, are adopted for each field inpt
1i. The termpt

2i encodes the indexes of the feature points

selected for pose estimation. Its elements comprise the second section of the chromosome. Each field in

pt
2i stores the index to the selected model feature. Integer representation is adopted. The valuen in our

implementation is equal to20, which is chosen experimentally as described in section IV A 1). Intuitively,

our search attempts to find (select), using the genetic algorithm methodology, a set containing the 20 most

reliable point features in the search and relies on them for pose estimation.

C. The genetic operators

1) Mutation: The mutation operation of the first sectionpt
1i and the second sectionpt

2i of the chromo-

somes are defined differently due to their differences in their physical meanings. For the first sectionpt
1i,

a Gaussian mutator, similar to that in [2], is adopted.

pt+1
1i = pt

1i + U(λt
1)S(t) (6)

U(λt
1) is a Gaussian function which generates values with Gaussian distribution according toλt

1, which

is the variance ofpt
1. S(t) is a time dependent function that controls the step size of the mutation. It is

defined as:

S(t) = 1− r × exp(1− t

r′T
) (7)

r andr′ are two real constants that respectively lie in the interval[0, 1] and [1, 1.5]. T is the expected

total number of iterations. With that, the convergence time of the genetic algorithm is shortened. The

mutation of the second sectionpt
2i is trivial. In this section, the genes of the parent are copied to their

offspring. The content of this section is preserved in the mutation operation.

pt+1
2i = pt

2i (8)
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2) Crossover:Similar to the mutation operation, the crossover operation of the first sectionpt
1i and

the second sectionpt
2i of the chromosomes are different. For the first section, the Blend crossover [1] is

adopted. In Blend crossover, a new value between two chromosomes is generated based on the interval

between the two parents. The offspring has the properties inherited from both of its parents. The Blend

crossover can be expressed mathematically as:

pt+1
1i = Ipt

1i + (1− I)pt
1j (9)

I is a real number that ranges within [0,1]. For the second sectionpt
2i of the chromosome, the crossover

is done by combining two sections of chromosomes of the parents. To be more precise, the operation can

be expressed mathematically as:

pt+1
2i = (ki1, ki2, ..., kih, kj(h+1), kj(h+2), ..., kjn) (10)

pt
2i = (ki1, ki2, ..., kin)

pt
2j = (kj1, kj2, ..., kjn)

h is an integer that ranges within [1,n]. This random numberh defines the point of crossover of the

two parent chromosomes.

D. Fitness evaluation

To evaluate the fitness of each chromosome, the first sectionpt
1i is decoded to get the pose represented

by it. Then the second partpt
2i is decoded to get the 3D coordinates of the selected model features. These

selected model features are back-projected to the image plane with the pose decoded frompt
1i to calculate

the back-projection error (BE) as defined in equation (4). It is reasonable to use only the selected point

features to evaluate the fitness function. The point features that are not selected are probably outliers in

the image and may lead to a local optimum in the search. At the same time, the initial values of the

second section of the composite chromosome are random combination of all available point features in

the model and thus the whole set of point features are fully utilized.

Since it is originally a minimization problem, the fitness calculation is needed to be changed. The

fitness value of the chromosomei is equal to:

fi(BE) = C −BE (11)
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C is a constant chosen to be10000. The problem is reformulated to be a maximization problem as in

the conventional genetic search problem.

E. The roulette wheel proportionate selection

The roulette wheel proportionate selection [1] is adopted for selecting the chromosomes from the current

population to the mating pool for reproduction. The concept of roulette wheel proportionate selection is

simple. The chromosomes that have higher fitness values will have a higher probability to be selected. It

simulates natural selection in the real world.

To perform roulette wheel proportionate selection in the implementation, we need to further scale the

fitness function to suit the purpose. This is achieved by applying a sigma-truncated scaling to the fitness

value in equation (11). Mathematically, sigma truncation is defined as:

f ′i = fi − (f − C ′σ) (12)

f =
1

n

n∑

j=1

fj (13)

f ′i is the scaled fitness.f is the mean fitness of all the chromosomes in the population.σ is the standard

deviation of the fitness of all chromosomes.C ′ is a real constant which can be chosen such thatC ′σ

is a reasonable multiple of the population’s standard deviation.C ′ is equal to 3 in our implementation.

If f ′i is negative, it is truncated to zero. With the scaled fitness, then the probability of choosing theith

chromosome for reproduction is:

f ′i
f ′1 + f ′2 + ... + f ′n

(14)

IV. EXPERIMENTS AND RESULTS

A. Experiments with synthetic data

1) The genetic algorithm parameters:The table in figure 3 summarizes the settings of the algorithm

parameters used in the experiment. The population size and the number of selected point features were

determined experimentally as follows. A synthetic object with 100 random feature points in 3D space

within a cube of volume of0.13m3, centered at a place 0.33m away from the viewing camera, was first

generated. The camera has a focal length of 6mm. The sensor of the camera is assumed to be not perfect.

It imposes a 2D zero mean Gaussian noise with standard deviation 0.1 pixels on the image captured. Since
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Parameters Values
Population size 150
Probability of mutation 0.4
Probability of crossover 0.6
Probability of replacement 0.7
Number of selected ponit features 20
Number of chromosome generations130
Search range of [Yaw Pitch Roll] 0-5 degrees
Search range of [tx ty tz] 0-5 millimeters

Fig. 3. A table showing the genetic algorithm parameters

the point correspondences between the 3D model and the 2D image may not be correct, the resulting

image was made to contain 30 percents of outliers, which is assumed to be the worst condition in real

cases. The object was placed randomly with a pose from[0, 0, 0] to [1, 1, 1] degrees for [Yaw Pitch Row]

and [0, 0, 0] to [0.0005, 0.0005, 0.0005] meters for[tx, ty, tz] with reference to the camera respectively.

Initially, each chromosome contains a randomly generated pose vector within the parameter bounds and

a random combination of selected feature points.
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Fig. 4. A figure showing the errors of the rotation and translation parameters versus the population size. The plot on the left illustrates the
translation parameter errors. The bolded solid line is the average error of the 3 translation parameters. The dash dotted line, dotted line and
the dash line correspond totx, ty andtz respectively. The plot on the right illustrates the rotation parameter errors. The bolded solid line is
the average error of the 3 rotation angles. The dash dotted line, dotted line and the dash line correspond to the Yaw, Pitch and Roll angle
respectively.

The proposed algorithm was applied to estimate the pose of the synthetic object with different population

sizes and numbers of selected point features. Figures 4 and 5 show the results, which are the averages

from 50 independent data sets. From figure 4, it is found that both the rotation and translation error drop

significantly when the population size increases from50 to 150. The improvement on the accuracy becomes
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Fig. 5. A figure showing the errors of the rotation and translation parameters versus the number of selected point features. The plot on the
left illustrates the translation parameter errors. The bolded solid line is the average error of the 3 translation parameters. The dash dotted
line, dotted line and the dash line correspond totx, ty and tz respectively. The plot on the right illustrates the rotation parameter errors.
The bolded solid line is the average error of the 3 rotation angles. The dash dotted line, dotted line and the dash line correspond to the Yaw,
Pitch and Roll angle respectively.

steady when the population size is larger than150. Since the population size is inversely proportional to

the algorithm speed, the optimal size should be the minimum one that can cause the greatest reduction

in error, i.e.150, in the graph. From figure 5, you can see that the errors are increasing for the number

of selected point features greater than20. One reason for the deterioration of algorithm’s convergence is

that perturbed point features may increase the difficulty in searching for a fit set of parameter in such a

large solution space, which is actually growing as the number of selected point features increases. This

result more or less coincides with the one discussed in literature [4]. So, the optimal value20 is chosen.

The convergence of the pose parameters of our algorithm was also investigated, which is shown in

figure 6. The translation errors converge at about the75th generation while the rotation errors falls to a

steady value at round the125th generation. The former one converges earlier since thetx andty parameter

are more observable from the image measurements and thus easier to be optimized. Overall, our proposed

algorithm converges at the130th generation.

Regarding the speed performance of the proposed algorithm, it takes about 0.15 seconds to compute

and evaluate a generation of chromosomes, given that the proposed algorithm is implemented in Matlab

and run on a Pentium 2GHz machine. Assume we cut off at the130th generation, it takes about 19.5

seconds to estimate the pose of an image frame. Since the algorithm involves quite a lot of loops, the

speed could be at least double if it is implemented in C language. Moreover, the algorithm can be further

parallelized. Due to the fact that genetic algorithm is a group search, the computation of each chromosome
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Fig. 6. A figure showing the convergence of the rotation and translation parameters. The plot on the left illustrates the translation errors
versus the number of generations. The bolded solid line is the average error of the 3 translation parameters. The dash dotted line, dotted
line and the dash line correspond totx, ty and tz respectively. The plot on the right illustrates the rotation errors versus the number of
generations. The bolded solid line is the average error of the 3 rotation angles. The dash dotted line, dotted line and the dash line correspond
to the Yaw, Pitch and Roll angle respectively.

can be performed in an individual microprocessor. It means that a maximum of 150 times of speedup

can be achieved with 150 processors since the population size is 150. So, it is believed that the proposed

approach is applicable to augmented reality.

2) Pose tracking with our genetic algorithm:Our genetic algorithm was used to track the pose of an

object in a synthetic image sequence. In the sequence, the object was moving with a steady motion at a

rate of [0, 1, 1] degrees and[0.0005, 0.0005, 0.0005] meters per frame for [Yaw Pitch Row] and[tx, ty, tz]

respectively. Random noise of 0.2 degrees was added to each rotation angle and a noise of 0.0001 meters

was added to each translation parameter. The aim of adding random noises is to simulate the non-smooth

motion of the movement. The total number of frames in the sequence is 50. For each frame in the

sequence, a single search was applied.

Figure 7 shows the results of pose tracking with our algorithm. You can see that the performance is

quite good under the conditions that 30 percents of outliers are present. A larger part of the error comes

from the Yaw angle, Pitch angle andtz translation parameter. This kind of ambiguities is due to the fact

that these three pose parameters are less observable than the others.

3) Studying the robustness of the algorithm:This experiment aims to show the robustness of our

algorithm. To do this, we tested our algorithm with the presence of point mismatches and outliers. The

results were compared with the genetic algorithm by Hati and Sengupta [2], the traditional Lowe’s method

described in [23] and a conventional genetic algorithm plus the RANSAC robust estimator. For fairness,
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Fig. 7. A figure showing the error of the pose parameters versus frame number in the experiment. The plot on the top shows the rotation
errors. The dash line, the dotted line and dash dotted line are the errors of the Roll, Pitch and Yaw angle respectively. The plot at the bottom
shows the translation errors. The dash dotted line, dotted line and the dash line are the errors oftx, ty and tz respectively.

these methods were re-implemented using Matlab to ensure that they were compared under the same

conditions. The sampling size of the RANSAC estimator is 20 feature points.

The data used in this experiment is synthetic. The specification of the synthetic object and camera

settings are described in Section IV A 1) except that special conditions such as point mismatches were

added to each test. The test for each condition was repeated 50 times with independent data sets.

a) Effects of point mismatches:In a real situation, it is quite common that some features are

mistracked, resulting in wrong point correspondences between the model points and the image points.

This experiment is to simulate the problem in such a situation. The point mismatches in the experiment

were generated as follows. A number of point pairs were selected randomly from the model features.

Their correspondences with the points in the 2D image were swapped. The relationship between the pose

errors and the number of point mismatches was studied.

Figure 8 shows the effects of point mismatches to our algorithm. You can see that the pose errors of

our algorithm do not depend on the percentage of mismatches. When the feature mismatch percentage

is low, say smaller than 20%, the overall performance of our algorithm remains unchanged. The plots

in figure 9 show a direct comparison of the four methods under the presence of point mismatches. It is

obvious that our algorithm outperformed the other methods. For the rotation error, our algorithm achieves
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Fig. 8. Graphs showing the effects of point mismatches to our genetic algorithm. The left one shows the translation errors against the
number of point mismatches. The solid line with markers ’X’ is the average translation error. The dash dotted line, dotted line and the dash
line are the errors oftx, ty and tz respectively. The right one shows the rotation errors. The solid line with markers ’X’ is the average
rotation error of the 3 angles. The dash line, the dotted line and dash dotted line are the errors of the Roll, Pitch and Yaw angle respectively.
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Fig. 9. Graphs showing the comparisons of the accuracy among the four algorithms with the presence of point mismatches. The left plot
shows the translation errors while the right one shows the rotation errors. The lines with markers ’X’, ’O’, ’[]’ and ’4’ are the results of
our approach, the GA by Hati and Sengupta, Lowe’s method and a conventional GA plus the RANSAC robust estimator respectively.

an error approximately 0.03 degrees even for 20 percents of mismatches. The other algorithms have error

more than 0.5 degrees even for 2 percents of mismatches. For translation error, our algorithm has only

0.05mm error while the others have errors more than 0.19mm. You may also notice that the pose errors

increase with the addition of the percentage of wrong correspondences for both the genetic algorithm by

Hati and Sengupta [2] and Lowe’s method [23].

b) Effects of outliers:Occlusion and disocclusion of a point feature in the image sequence or

extracting a point feature from a reflective surface by feature trackers may cause the presence of incorrect
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Fig. 10. Graphs showing the effects of outliers to our genetic algorithm. The left one shows the translation errors against the percentage of
outliers present. The solid line with markers ’X’ is the average translation error. The dash dotted line, dotted line and the dash lines are the
errors oftx, ty and tz respectively. The right one shows the rotation errors. The solid line with markers ’X’ is the average rotation error of
the 3 angles. The dash line, dotted line and dash dotted line and are the errors of the Roll, Pitch and Yaw angle respectively.
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Fig. 11. Graphs showing the comparisons of the accuracy among the three algorithms with the presence of outliers. The left plot shows the
translation errors while the right one shows the rotation errors. The lines with markers ’X’, ’O’, ’[]’ and ’4’ are the results of our approach,
the GA by Hati and Sengupta, Lowe’s method and a conventional GA plus the RANSAC robust estimator respectively.

point features in the images. This results in an inaccurate estimation of the object’s pose. The relationship

of the pose error and the percentage of outliers present in the images was studied in this experiment.

The outliers in the experiment were generated by randomly choosing a number of model features and a

high level of random noise was added to their corresponding points in the images. The noise deviates

randomly from the range within 100 pixels along the x and y axis on the image plane.

Figure 11 shows the effects of outliers to our algorithm. It is shown that our algorithm has a lower

error in estimating both the rotation and translation parameters than the other algorithms. The average
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angular error of our algorithm falls below 0.02 degrees for different percentage of outliers but the errors

of the other methods are higher than 0.09 degrees even for 1 percent of outliers. The average translation

error of our approach is below 0.1mm while the other two algorithms have errors more than 0.1mm. The

estimation errors of our algorithm remain approximately the same with the increase in the percentage

of outliers. Besides, the incorporation of the RANSAC robust estimator into the conventional genetic

algorithm does not have a definite advantage in gaining the accuracy of recovered pose. It is because the

algorithm can only make use of a small number of point features in the 3D model.

c) Summary:From the previous experiments, we see that our algorithm outperformed the other

algorithms under the presence of point mismatches and outliers. Even the percentages of mismatches or

outliers are small (2% out 100 points), the proposed approach also has a lower error than the others.

If the point correspondences are all correct, which is very rare in real situations, our algorithm should

have a similar performance as the algorithm by Hati and Sengupta, except the computation overhead in

processing the second section of the composite chromosome. Since our approach could converge with

a population size of 150, which is half of the value of Hati’s approach, the computation speed of our

algorithm is much higher than that of Hati.

Apart from the algorithm’s accuracy, the major disadvantage of the RANSAC-based conventional genetic

algorithm is the long computation time. It takes several hundreds random samples from the group of

available point features in order to remove the outliers. This means it needs to repeat the genetic search

for more than a hundred times. It requires much more computation resources than our algorithm. Among

the three genetic algorithm approaches, our algorithm achieves the highest speed. This is probably due to

the design of the composite chromosome, which allows the simultaneous search of pose parameters and

reliable point features.

B. Experiments with real images

An experiment using real scene images was also performed. Our algorithm has been applied to estimate

the pose of an object in a real image sequence. The accuracy of the recovered pose is demonstrated by

putting a synthetic chair into the real scene, which is an interesting application of augmented reality.

The procedure of the experiment is as follows. The test image sequence was taken while a grid pattern

was on a rotating turntable. This pattern was drawn by an imaging software such that its exact dimension

is known. Images were captured using a commercial web camera at a constant time interval. The camera

has a fixed focal length and was calibrated using the tool in [22]. The length of the image sequence is
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30 frames. The KLT tracker described in [21] was used to extract feature points and track them in the

image sequence. With the tracker, features are selected as described by Tomasi and Kanade [20] and

points between two frames are matched on a 2D basis. In our experiment, it is assumed that the problem

of feature tracking has been solved.

With the known dimension of the pattern and the tracked point features, our genetic algorithm was

applied to trace its pose in the image sequence. To place the virtual object into the scene, three feature

points on the pattern in the first image were selected to define a plane. With that, the synthetic chair could

be placed on this plane using the pose sequence computed by our algorithm.

The results of the experiment are shown in figure 12, 13 and 14. To see the demonstration video, you can

refer to the attachment “demomovie.mpeg” or the URL http://www.cse.cuhk.edu.hk/∼vision/demo/posega/.

Figure 13 shows the pictures that a synthetic chair, which is drawn in a blue wire-frame, was put on the

top of the turntable using our genetic algorithm. You can see that in the video the motion of the virtual

chair is consistent with the grid pattern. Figure 14 shows the recovered pose parameters. The results are

reasonable. You may notice that the lines for translation parameters are relatively flat. This is due to the

fact that the grid pattern mainly underwent a rotation motion.

V. FUTURE WORK

One direction for further development is to extend the current algorithm to deal with the structure from

motion problem. Both the 3D model and the pose of the object is recovered from 2D images without

any a prior knowledge of the object structure. We can extend our genetic algorithm to search for both

the structure and the pose of the object. The structure from motion problem suffers from shape and pose

ambiguities [7] with many of the greatest descent searches. Genetic algorithm is useful to deal with this

problem as it can avoid locking into a local optimum.

VI. CONCLUSION

A new method for computing the pose of an object based on the genetic algorithm framework is

proposed in this paper. In our method, we search for the set containing the most reliable feature points of

an object in addition to the its pose in the image sequence. Our approach has the advantage of avoiding

the local optimal solutions compared to the traditional greatest descent methods. Our algorithm is also

efficient in excluding outliers and point mismatches.
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Fig. 12. The1st, 15th and30th image (from top to down) in the original image sequence in the real scene experiment.
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Fig. 13. The results of putting the synthetic chair into the image sequence in the real image experiment. The top, the middle and the bottom
picture are the1st, 15th and30th image in the processed sequence respectively. To see the video in the above demonstration, please refer
to the attachment “demomovie.mpeg”. It can be also be found at http://www.cse.cuhk.edu.hk/∼vision/demo/posega/
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Fig. 14. Graphs showing the pose parameters recovered in the real scene experiment. The plot on the left shows the translation parameters
recovered in meters. The lines with markers ’X’, ’O’ and ’[]’ correspond totx, ty and tz respectively. The plot on the right shows the
rotation parameters recovered in degrees. The lines with markers ’X’, ’O’ and ’[]’ correspond to the Yaw, Pitch and Roll angle respectively.

Experimental results show that there is a significant improvement on the pose estimation accuracy

with our feature searching strategy. Our genetic algorithm outperformed three other approaches under the

presence of point mismatches and outliers. Real image experiment has been performed and our algorithm

has been applied to create an augmented reality movie. The result is good in general. The motion of both

the real scene and the virtual object is consistent in our demonstration video.

To pursue further, we would like to extend our algorithm to tackle the structure from motion problem.

Moreover, the idea of feature searching in our algorithm is not merely limited to vision-based pose

estimation. It can be extended to solve the camera calibration problem or marker-based pose estimation

for augmented reality to reduce the problem caused by noise.
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