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Abstract—A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering 

is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the 

estimation of the object’s pose. The second step is a set of extended Kalman filters, one for each model point, for the 

refinement of the positions of the model features in the 3D space. These two steps alternate from frames to frames. The 

initial model converges to the final structure as the image sequence is scanned sequentially. The performance of the 

algorithm is demonstrated with both synthetic data and real world objects. Analytical and empirical comparisons are 

made among our approach, the interleaved bundle adjustment method and the Kalman filtering based recursive 

algorithm by Azarbayejani and Pentland. Our approach outperformed the other two algorithms in terms of computation 

speed without loss in the quality of model reconstruction. 

 

Index Terms: 3D structure acquisition, Structure from motion, Kalman filtering, Multimedia processing 

 

I. INTRODUCTION 

HE research work presented in this paper falls into the category of structure from motion in the field of computer 

vision. The goal of these kinds of researches is to reconstruct a 3D structure and its pose from a sequence of 2D 

images. A subset of the problems is to perform the recovery of structure and pose in a sequential manner. This is also 

known as recursive or casual structure from motion. There are many real world applications for the casual model 

reconstructions. One novel application is that the pose of the camera in a movie scene recovered can be used to 

produce augmented reality video, in which synthetic objects can be mixed with real world characters. Another 

application is to use these algorithms to produce 3D movies. In that, the 3D scene is reconstructed from the frames of 
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the movies sequentially. The viewers are allowed to change the viewpoints of the scenes as the movie is played.  

There are various techniques to deal with the 3D reconstruction problem. One of the most popular approaches is 

the use of epipolar geometry. With the known correspondences between the two views, a constraint between these 

views can be set up. The camera motion can be recovered from the Fundamental matrix up to a scale factor if the 

camera is fully calibrated. The structure of the 3D model can be found be solving a set of equations. In a similar 

sense, the technique has been extended to three views or more [7]. 

Factorization [5] [6] is another common approach to tackle the problem of structure from motion. The work in [5] 

demonstrates the approach under the assumption of orthographic projection. The factorization method has been 

extended to handle the reconstruction of multiple independent moving objects [6]. Bundle adjustment is also an 

effective method [9]. It minimizes the re-projection error between the estimated model and the image measurements. 

The minimization procedure can be done in batch either by the well-known Newton’s or Levenberg-Marquardt 

iteration. A branch of it is the interleaved bundle adjustment as described in [2] and [9]. It breaks up the minimization 

problem into two steps so as to reduce the size of the Jacobian involved, resulting in speeding up the algorithm. 

The methods mentioned previously tackle the problem in a batch, in which the structure and motion are optimized 

for all the images at one time. There are solutions that recover the structure and motion in a sequential way. Most of 

them are based on Kalman filtering. The work in [3] finds the pose of the object based on a known CAD model from 

stereo images in real-time. The results are applied for visual servoing of robot manipulators. Some researchers adopt 

iterated extended Kalman filter (IEKF) for updating the structure in Euclidean [4] or projective framework [1]. The 

pose and the structure of the object are recovered alternately by a RANSAC-based equation solving technique and 

the IEKF. Thomas and Oliensis apply standard Kalman filtering to fuse the recent structure estimates found by 

Horn’s algorithm using the most recent image pair with the previous structure estimates at each time-step [12].  

The series of methods in [10] [11] [13] [14] recover both the structure and motion in a recursive manner. The work 

by Broida et al [14] is the ancestor of this series of researches. They apply a single IEKF to recover the structure and 

pose of the object. Azarbayejani and Pentland describe a method in [11] that makes significant improvements over 

[14]. Extension is made to recover the focal length of the camera in addition to the pose and structure. The pointwise 

structure is represented by one parameter per point such that the computation is overdetermined at every frame when 

the number of features is larger than 7, resulting in a better convergence and stability of the filter. The most recent 



SMCB-E-07312003-0372 3

work of recursive structure recovery is by Chiuso et al [10]. Similar techniques in structure from motion have also 

been applied to simultaneous localization and map-building for robot navigations [16]. 

The two-step Kalman filter based algorithm presented in this paper is inspired by the methods of interleaved 

bundle adjustment as described in [9]. The main advantage of our two-step approach is that we achieve a linear time 

and space complexity in terms of the available model features. This saves a lot of computation when the number of 

features needed to be handled is large, which is quite common for the reconstruction of objects with full details. In 

addition, our implementation can handle the structure from motion problem with changeable set of feature points. 

The full 360o view of an object can be reconstructed, which is demonstrated in the experiment. 

The rest of this paper is organized as follows. The modeling of our problem is first introduced in Section II. In 

section III, the overview of the two-step algorithm is described. In section IV and V, the formulations of the EKF for 

pose estimation and structure updating are presented. In section VI, the handling of the changeable set of feature 

points in our implementation is discussed. In section VII, there is an analytical comparison among our Kalman filter 

based approach, the interleaved bundle adjustment method [2], and the recursive algorithm by Azarbayejani and 

Pentland [11]. In section VIII, some experiments with real and synthetic data are performed. The results from the 

three approaches mentioned are analyzed. 

II. PROBLEM MODELING 

 

Figure 1. The geometric model of the system 

 

Figure 1 describes the geometry of the model reconstruction system. ],,[
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the coordinates of  the point Xi with respect to the object and the camera coordinate frame respectively. A point on 
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the image plane is denoted by ],[
iii
vup = . The relationship between the object frame and the camera frame is as 

follows: 
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R is a 3x3 rotation matrix and T is a 3x1 translation vector. T
C
 is a 3x1 translation vector that brings the object in 

the object frame to the camera frame. It is a constant in the model recovery process. Camera used in the system is 

calibrated. It has a fixed focal length f. The camera model is full perspective. The problem of structure from motion 

in our system is to recover the coordinates of model point 
O

i
X in the object coordinate frame and the pose of the 

object, i.e. the rotation R and translation T, with respect to the views at each time-step.  

III. OVERVIEW OF THE ALGORITHM 

The model reconstruction system is divided into three parts: feature extraction and tracking, model initialization, 

structure and pose updating. To make the presentation of the algorithm easy to understand, we first assume that all 

the features are observable from the first to the last frame in the image sequence. The details of the extra treatments 

needed to handle the changeable set of feature points are discussed in section VI. 

A. Feature extraction and tracking 

The KLT tracker described in [8] is used to extract feature points and track them from images to images. In our 

work, it is assumed that the problem of tracking has been solved and point matches from KLT are reliable enough for 

model reconstruction. 

B. Model initialization 

The model initialization is achieved by assuming that the projection of the first image in the sequence is 

orthographic. Perspective projection is assumed for image formation process in the remaining frames. The 

orthographic projection is expressed mathematically as: 
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zinit is the distance between the object and camera center. It is a parameter given by the user of the system and can 

be approximated easily. To obtain the initial model, features in the first image are back-projected from the image 

plane to the camera coordinate frame according to equation (2). The resulting initial structure is a planar model 
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located at a distance zinit from the camera. 

C. Structure and pose updating 

 

Figure 2. The flowchart of our two-step Kalman filter based algorithm. 

 

The initial model and the second image are fed into the first step for pose estimation. An EKF is adopted. The pose 

of the object with respect to the second image is estimated. The newly recovered pose and the input image are passed 

to the second step of the algorithm for structure updating. The second step consists of a set of N EKFs. Each filter 

corresponds to one coordinate point in the reconstructed 3D model. With the observations and the pose recovered for 

the current image frame, the coordinates of each feature point are updated accordingly. The algorithm alternates 

between the step 1 and 2 until all images in the sequence are used. 

IV. STRUCTURE UPDATING 

The following is the formulation of the EKF for structure updating. For N model points, N EKFs are needed for the 

structure update. For simplicity, we consider only one point in the model denoted by Xt, where t is the time-step of 

the model point, with respect to the object coordinate frame. 
tttt

XX
,1,

ˆ,ˆ
−

 are the positions of point Xt after the 

prediction and update respectively. 

We first define the dynamic model of a 3D point. The state transition and observation equation for a model point 

can be written as: 
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ν  are the zero mean Gaussian noise with covariance Qt and Rt respectively. 
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is the real measurement 

from the image sequence. )(Xh
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 is the projection function of the system: 
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C is obtained from equation (1) by substituting XO by X. The EKF first provides an optimal estimate of the state at 

the next sample time in accordance with the following equations: 
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They are known as the prediction equations. Λ  is the 3x3 covariance matrix of Xˆ . Here a noise covariance Qt of 

γ  is added. In normal situations, only the entry corresponds to the z coordinates of the 3D point is set to non-zero. 

The reason is that the initial guess of the structure is a planar object. Followed by the state prediction, the filter 

improves the previous estimate using the measurements acquired: 
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They are known as the update equations. W is the 3x2 Kalman gain matrix of the filter. Rt is the measurement noise 

covariance matrix. It is a tuning parameter and is set according to the quality of the images. It can also be acquired 

during the process of camera calibration.
X

h∇  is the Jacobian of the non-linear projection function ht(X) evaluated at 

1,
ˆ

−tt
X . In this way, the coordinates of the model points can be updated accordingly.  

V. POSE ESTIMATION 

The dynamic model that describes the motion of the object is as follows. w is the state of the system and is defined 

as: 

[ ]γγββαα &
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tx, ty, and tz are the translations of the object along the x, y and the z axes respectively. 
zyx

ttt &&&

,,
are their 

corresponding velocities. γβα ,, are the Yaw, Pitch and Roll angles. Their corresponding angular velocities are 

γβα &

&

& ,, . Ts denotes the duration over the sample period. Over the sample period, the velocities are assumed constant. 

The state transition and observation equation for the model are: 
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Similar to )(Xh
t

, XC is obtained from the equation (1) by substituting XO by X. The rotation matrix R and 

translation matrix T are evaluated with the parameters of the column vector wt.  

In our system, a fixed number of feature points (e.g. 150 in our experiment) extracted by the tracker are passed to 

the EKF for pose estimation. The model points are chosen based on how much they are updated in the step of 

structure refinement. Those points that are steady and have a high tendency to remain at the same 3D coordinates are 

used. The reason is that less update on a point implies that the point is in an accurate position.  

Here are the four core Kalman filter equations for pose estimation. The prediction equations for calculating the 

optimal estimates are: 
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The update equations for the corrections of estimates are: 
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w . In this way, the pose of the model to the next frame is estimated. 
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VI. HANDLING THE CHANGEABLE SET OF FEATURE POINTS 

The set of “active” feature points is changing due to occlusion and disocclusion. Extra treatments are needed in 

each step of the model reconstruction process. In feature tracking, the whole image sequence is divided into a number 

of sections. For each section, a number of frames near the end of that section are overlapped with the frames at the 

beginning of the succeeding section. The KLT tracker in [8], with feature replacement mechanism, is applied to each 

section independently. Cutting the image sequence into sections forces the tracker to release obsolete features after a 

finite time limit. It is important because wrong point correspondences arise without this treatment. 

New model points in the structure are initialized when new point features appear in the image sequence. This is 

obtained by assuming the projection of that point on its first appeared image frame is orthographic. The initial 

position, expressed in the camera coordinate frame, is computed according to equation (2). The coordinates are then 

transformed back to the object coordinate frame by equation (1). After the initialization of the 3D position, a new 

EKF is set up for updating its position. In addition, this new point is added to the pool ready to be selected for pose 

estimation. No modification is needed in the EKF for pose estimation. 

When a point feature vanishes from the image sequence, the filter that corresponds to the point is removed. The 3D 

position of that feature will no longer be updated. The index of that feature is also marked invalid for pose estimation 

since no related measurements in future time-steps can be used for finding the pose of the object. The treatments for 

handling changeable feature set are simple in our algorithm compared to the procedure in [10]. No sub-filters are 

required in our approach.  

VII. ANALYTICAL COMPARISON WITH OTHER ALGORITHMS 

A. The interleaved bundle adjustment method 

1) Computation efficiency 

 The main advantage of our Kalman filter based recursive approach is the gain in speed and scalability. An extra 

view of the object can be handled naturally by calculating the prediction and update equations for both the pose and 

structure only for that new measurement. However, the interleaved bundle adjustment method needs to re-compute 

from the first frame to the latest frame for a several iterations. Application like 3D movie as described in the 

introduction requires our recursive approach unless the film is pre-processed using a high performance computer. 
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2) Convergence of solutions  

Another advantage of our Kalman filter based method is that it has a better convergence rate in handling long 

sequences with large object motion, say a total of 90 degrees rotation along one of the axes. Consider the rotation of 

the object between the first and the last frame. In the first pass and the first iteration of the interleaved bundle 

adjustment method, the initial model is used to estimate the pose of the object with respect the last frame. This results 

in a large pose estimation error and eventually leads the computation in the second pass of the interleaved bundle 

adjustment to diverge. For our recursive approach, the model is updated incrementally from frames to frames, the 

most up-to-date model is used for pose estimation. The problem of using an inaccurate model to compute the pose is 

eliminated.  

B. The EKF by Azarbayejani and Pentland 

1) Algorithm Complexity 

The major difference between our approach and the EKF in [11] is that the structure refinement and pose estimation 

is broken down into two steps and each correspondence point in the structure is decoupled. In our approach, there are 

one 12x1 state vector for pose estimation plus N 3x1 state vectors for structure updating, where N is the total number 

of available features. This respectively results in one 12x12 and N 3x3 state covariance matrices. Since the number of 

measurements involved in the pose estimation step is fixed, both the storage and computation complexity are O(N). 

For the EKF described in [11], the pose and structure are encoded in a single state vector. The size of the state 

covariance matrices is (N+7)x(N+7). The storage and computation complexity are O(N
2
) and O(N

3
) respectively. Our 

modification is actually a tradeoff between speed and accuracy. However, experimental results show that the loss in 

accuracy is little and acceptable in real applications. Moreover, the reduction in complexity is useful for real-time 

robotics application since the computation resources in microcontrollers are tight. Also, our algorithm is ready to be 

implemented on distributed micro-processing system. The set of N EKFs used for structure updating can be run in 

parallel in a set of N micro-processors in a robotic system to speed up the computation. 

2) The problem of scaling 

Another advantage of our algorithm is that the exact model can be reconstructed given the alignment of translation 

TC between the object coordinate frame and camera coordinate frame. The EKF by Azarbayejani and Pentland is 

subject to scaling problem even TC is given. This is due to the nature of the structure model adopted in the filter. A 
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small deviation in the estimation of the Z coordinates of the point features causes a significant change in the scale of 

the object. The problem can be fixed by giving the EKF the real 3D coordinates of one of the feature points and 

setting their corresponding entries in the state covariance matrix zero. 

VIII. EXPERIMENTS AND RESULTS 

A. Experiments with synthetic data 

The first set of experiments was conducted with synthetic data. A synthetic object with 300 random feature points 

in 3D within a cube of volume of 0.13m3, centered at a place 0.33m away from the viewing camera, was generated. 

The camera has a focal length of 6mm. It imposes a 2D zero mean Gaussian noise with standard deviation 0.1 pixels 

on the image captured. The object was moving with a steady motion at a rate of [0.005 0.01 0.02] degrees and [0.001 

0.002 0.0003] meters for [Yaw Pitch Row] and [Tx Ty Tz] respectively. Random noise of 0.01 degrees was added to 

each rotation angle and a noise of 0.0005 meters was added to each of the translation parameter. 300 frames were 

generated for each test and a total of ten independent tests were carried out. Our Kalman filter algorithm, the 

interleaved bundle adjustment method [2] and the EKF by Azarbayejani and Pentland [11] were tested with the data 

and their results were compared.  

Figure 3-5 show the results. The solid line, dotted line and the dash line are for our Kalman filtering approach, the 

interleaved bundle adjustment method and the EKF by Azarbayejani and Pentland respectively. The implementations 

of the three algorithms are in Matlab with a Pentium III 1GHz machine. Figure 3 demonstrates the convergence of 

3D model error versus CPU time. Here the model error is defined as the percentage of mean-square-error of the 3D 

coordinates in the object coordinate frame. In our approach, the 3D model converges quickly to the solution within 

the first ten frames of the sequence. The average error is 0.69%. For the interleaved bundle adjustment method, the 

accuracy of the resulting model falls to 0.33% after 50 iterations. But for fair comparison, we should concentrate on 

the results after the first iteration. In this case, the average error is 0.74%, which is similar to our approach. The result 

is reasonable since our recursive algorithm cannot optimize the structure error of the model for all the images in the 

sequence simultaneously or optimize the error for scanning the sequence more than once, resulting in a larger final 

error than the batch processing approach. This is one of the characteristics of all recursive reconstruction algorithms. 

The plot of 3D model error of the EKF by Azarbayejani and Pentland is not included here. The reason is that the 
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model recovered by their algorithm is subject to scaling problem as described in section VII B 2). What can be 

concluded is that our Kalman filtering approach can find an accurate estimate of the structure in a shorter period of 

time than the interleaved bundle adjustment method.  

 

 

Figure 3. The 3D model error versus CPU time (in seconds) elapsed for the two approaches. 

 

 

Figure 4. A graph showing the relationship between the CPU time and the image residual error among the three algorithms.  

 

 

Figure 5. A graph showing the time needed to reconstruct a model when extra frames are added to the image sequence. Note that 

the interleaved bundle adjustment algorithm is set to run 20 iterations in the model reconstruction process. 

 

Figure 4 shows the time for the three algorithms to optimize the image residual error of the back-projected model. 

By careful analysis, our algorithm minimizes the residual error to a low level in the shortest time among the three 

algorithms. Our approach finishes the processing of the 300-frame sequence in 133 seconds. The EKF by 
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Azarbayejani and Pentland and the interleaved bundle adjustment method complete at 786 and 436 seconds 

respectively. The figure also indicates that our approach falls to an error similar to the EKF by Azarbayejani and 

Pentland, which reveals that there is no significant loss in the structure acquisition accuracy even the filter is 

decoupled. 

Figure 5 shows the time needed to reconstruct a model when extra frames were added sequentially to the image 

sequence. The first step in this plot was to reconstruct a model with the first 10 frames. The succeeding 40 frames 

were sequentially fed to the algorithm as the new measurements of the scene. Our approach outperformed the other 

two algorithms. It takes only 0.5 seconds to update the structure of the scene for every extra frame added to the image 

sequence. The EKF by Azarbayejani and Pentland takes about 3 seconds while the interleaved bundle adjustment 

method needs at least 10 seconds to do the same task. 

B. Experiments with real scene 

Experiments using real scene images were performed. Two test image sequences, one for the reconstruction of a 

paper box and one for a house model, were used in the experiment. The objects were put on a rotating turntable. 

Images were taken with a commercial web camera. The lengths of the paper box and the house sequence are 200 and 

80 frames respectively.  

Our recursive model reconstruction algorithm was applied to acquire the 3D models. After that, the wire-frame of 

the objects was built and texture from the appropriate images in the sequence was mapped to the recovered structure. 

The resultant objects were output in the form of VRML files. Figure 6 shows the results of the experiment. 

We have successfully reconstructed the 360o view of the paper box model from its 2D images. The total number of 

point features present in the model is about 500. The quality is good in general. However, you may notice that there 

is a presence of outlying model features in the recovered structure, resulting in flaws in some parts of the model. The 

outlying model features are mainly due to point mismatches that arise from the process of feature tracking by the 

KLT tracker. For the recovered house model, the total number of model features in the scene is about 1000. More 

geometric details are revealed in this case. This demonstrates that our algorithm is able to handle complex scene 

reconstruction within a reasonable time limit. 
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IX. CONCLUSIONS 

A two-step Kalman filter based algorithm is proposed and implemented. Our algorithm achieves linear time and 

space complexity in terms of the number of available point features. Our algorithm needs respectively less than one-

forth and one-third the time of the EKF by Azarbayejani and Pentland and the interleaved bundle adjustment method 

to process a sequence with 300 point features per frame. Besides, an elegant method is proposed to handle the 

changeable set of point features. The method is applied to reconstruct the full 360
o

 view of a paper box in the real 

data experiment. 

 The major limitation of our model reconstruction system is caused by the feature tracker and the texture mapping 

method. Feature tracking and texture mapping play a significant role in the reconstruction of 3D models from the real 

images. One possible improvement to our system is to make a filter on the top of the original KLT tracker to 

eliminate the outlying point features in neighboring images with the fundamental matrix [15]. Other improvements, 

like incorporating a robust mechanism for choosing the texture from images, can be made to improve the quality of 

model reconstruction.  
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Figure 6. The results of model reconstruction. First column: The first and the 100
th

 image of the paper box sequence. Second 

column: The reconstructed 3D paper box model viewed in Cortona. One view with texture mapping (the top one) and its wire-

frames (the bottom one).  Third column: The first and the last (80th) image of the house model sequence. Forth column: The 

reconstructed 3D house model. One view with texture mapping (the top one) and its wire-frames (the bottom one).  More results 

can be found at http://www.cse.cuhk.edu.hk/~khwong/demo/ 

 


