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ABSTRACT

The Extended Kalman Filter (EKF) is suitable for real-time pose es-
timation due its low computational demand and ability to handle the
nonlinear perspective camera model. There are many EKF based ap-
proaches in the literature; some are very recent while others exist for
about two decades. These methods differ in two main aspects: the
number and arrangement of cameras, and the number and usage of
filters. In this work, we will compare these approaches using simu-
lations and real experiments. As far as we know, it is the first attempt
to do this with such details. We will show which is suitable under
different motion patterns, and explain the effect of the bas-relief am-
biguity upon the accuracy of the different approaches. Additionally,
we will discuss how to solve the scale factor ambiguity, and suggest
the best strategy to deal with the features fed to the filter.

Index Terms— Pose, EKF, multiple-cameras, bas-relief, scale

1. INTRODUCTION

Pose estimation is a crucial problem lasting-for-decades in computer
vision as well as in various other fields. Its aim is to find the lo-
cation and orientation of objects or cameras. The application range
extends from mixed reality in movies to activity recognition [1], and
guidance of bronchoscopic tracking [2]. Our motivation is to esti-
mate the pose of a moving robot within an unknown indoor scene.
Since this has to be done in real time, we need to adopt a recursive
technique (working a frame-by-frame). The Extended Kalman Filter
(EKF) is a good choice since its computational demand is low (e.g.
compared to the particle filter). Additionally, it can handle the non-
linear perspective camera model (in contrast to the linear Kalman
Filter (KF)). The EKF has been used in several ways to solve the
pose estimation problem. These ways differ in two main aspects:
firstly, the number and arrangement of cameras, and secondly, the
number and usage of filters. For example, a single camera and one
EKF for both pose and structure (sometimes iterated) are used in
[3], [4], and in [5]. Alternatively, a single camera, one EKF for pose,
and many EKFs for structure are used in [6]. In contrast, four cam-
eras arranged in two back-to-back stereo pairs, one EKF for pose are
used in [7] while the structure is obtained on-demand using triangu-
lation. On the other hand, two cameras arranged as a one stereo pair,
and one EKF for pose are used in [8] without solving for structure.
In this work, we compare between the different approaches using
the EKF for pose estimation. We focus on the approaches that han-
dle structure especially that the model-less approach of [8] relies on
calculating the trifocal tensor among successive frames which may
suffer from degeneracy [9]. Moreover, it does not resolve the scale

∗Supported by direct Grants under Projects: Codes 2050350 and 2050410
from the Faculty of Engineering, CUHK, Shatin, Hong Kong.

factor ambiguity since it aims at finding the camera projection ma-
trix which is defined only up to a scale [9]. In particular, we com-
pare four methods. The first uses a single camera, one EKF for pose,
and many EKFs for structure as in [6]. The second uses a single
camera and one EKF for both pose and structure as in [3], [4], and
in [5]. The third uses four cameras arranged in two back-to-back
stereo pairs, one EKF for pose as in [7]. The fourth is the same as
the third however using only the stereo pair in front (we thank an
anonymous reviewer of [7] for suggesting this comparison). As far
as we know, it is the first attempt to do this in literature with such de-
tails. The main contributions of this paper are: comparing between
different approaches of the EKF pose estimation, showing which is
suitable under different motion patterns, explaining the effect of the
bas-relief ambiguity upon the accuracy of the different approaches,
and suggesting the best strategy to deal with the features fed to the
filter. The rest of this paper includes: background, EKF solution
approaches, experiments, and discussion and conclusions.

2. BACKGROUND

2.1. Feature Selection and Maintenance
It is indicated in [5] that when the zero-mean assumption for mea-
surements is violated, the EKF settles at a biased estimate. In our
experience, it is necessary to the stability of the filter to have the fea-
tures selected uniformly around the mean (i.e. the image center at
(0,0)). On the other hand, it is almost universal for disappearing fea-
tures (e.g. due to occlusion) to be dropped from the filter. However,
handling the newly appearing features differs from an implementa-
tion to another, as will be shown below.

2.2. Scale Factor and Bas-relief Ambiguities
There is a scale factor ambiguity related to the structure from mo-
tion (SfM) approaches [9] (we cannot get the actual 3D structure or
translation but we get both up to a scale). As mentioned in [3], this
free scale factor (if not normalized) is an extra degree of freedom
along which the filter diverges. We will show in section 3 how the
different approaches deal with this problem. On the other hand, the
bas-relief ambiguity [10] becomes obvious when the depth variation
of the scene is small, and the camera field of view is narrow leading
to misinterpreting the small translation along one axis as a rotation
around another and vice versa.

3. EKF SOLUTION APPROACHES
The EKF is a recursive estimator suitable for real-time applications.
It estimates the output (a state space vector encoding either pose or
structure OR both according to the approach used) based upon the
inputs (2D pixel measurements of the tracked features in the current
frame, the previous state space vector, and its covariance). After
being initialized, the EKF undergoes two stages (prediction and up-
date) for each time step. For more details, we refer the reader to
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Fig. 1. (a) Top-down view: methods and corresponding cameras
used (b) Frontal view of robot and camera setup.

[3], [5], and [11]. Moreover, the multiple-camera EKF formulation
is found in [7] and with more details in [12]. The compared EKF
approaches for pose estimation are explained below.

3.1. First Method: Decoupled 1
This method uses a single camera, one EKF for pose, and one EKF
for each 3D feature (multiple EKFs for structure). The idea of using
one EKF for each 3D feature is used for example in [13], however
the recursive use of this method to get both pose and structure is
introduced in [6]. This method follows an alternating fashion to get
pose and structure (at each frame gets pose first using the EKF for
pose then proceeds to the multiple EKFs for structure). Since this
method decouples pose and structure and uses a single camera, we
denote it as: (decoupled 1).

In [6] new features are used as soon as they appear without using
subfilters. Additionally, it is assumed there that the scale factor am-
biguity is resolved knowing the translation between the object and
camera coordinate frames.

3.2. Second Method: Coupled 1
This method is denoted as: (coupled 1) since it couples pose and
structure (using a single EKF for both), and uses a single camera.
This method dates back to [3] however it still attracts recent research
e.g. [11]. Additionally, there is a long sequence of uses in-between
such as [14], [4], and [5].

In [5], each new feature is entered into a subfilter to absorb the
initialization error and prevent it from propagating onto the original
filter. While in [11] new features are added to the filter only if the
number of visible features is below a certain threshold. On the other
hand, the scale is set in [4] by setting the initial variance of the depth
of the first feature to zero. In [5], the scale is associated with three
reference features (e.g. the depth of their centroid). However, in
[11], the scale is set using an initialization target (a black rectangle
whose corners serve as features with known structure).

In addition to these differences, [3] and [11] use the quaternion
to describe the rotation while in [5] the angle-axis representation is
that used. However, what we need to emphasize here is that the same
policy is adopted (i.e. coupling pose and structure using a single
EKF and a single camera).

3.3. Third Method: 4 Cameras
This method is introduced in [7]. It uses four cameras arranged in
two back-to-back stereo pairs. One EKF is used for pose while the
structure is obtained on-demand using triangulation based on the fil-
ter output which guarantees the coupling between pose and struc-
ture. The zero-mean assumption for measurements is verified using

meth- tx ty tz α β γ
od mm mm mm m rad m rad m rad

1st 29.751 28.965 18.799 29.218 31.072 3.456

2nd 61.603 69.949 48.339 76.444 70.398 60.432

3rd 0.563 0.526 2.104 0.579 0.503 1.374

4th 41.408 45.593 8.401 46.318 41.159 5.800

Table 1. Average absolute error of pose values/frame (simulation)

a changeable set of features; in each frame the filter is fed with a
number of features selected uniformly around the mean.

Stereo information is used to reject the outliers (away from their
expected epipolar lines by e.g. 1.5 pixels). Newly appearing features
are considered when the number of tracked ones for any stereo pair
drops below a certain threshold. Stereo information is used also to
resolve the scale factor ambiguity since the baseline of each stereo
pair is known [10].

3.4. Fourth Method: 2 Cameras
This method is the same as the third however it is denoted as: (2
cameras) since it uses only the two cameras of the frontal stereo pair
(composed of Camera 1, and Camera 2, see Fig. 1).

4. EXPERIMENTS
4.1. Simulations
A robot carrying a setup of four cameras was moved with random
translations (tx, ty , and tz) and with random rotation angles (α, β,
and γ) in the direction of and around the X, Y, and Z axes respec-
tively. The coordinate system origin coincided with the center of the
first camera at the motion start with the Z axis perpendicular to the
image frame. The translations were taken randomly from ±0.005 to
±0.015 meters, and the rotation angles were taken randomly from
±0.005 to ±0.02 radians. All cameras had a 6 mm focal length, a
640 × 480 resolution, and a stereo baseline ranging from 0.1 to 0.2
meters. A random noise was added to each feature point with a nor-
mal distribution of zero mean and 0.5 pixel standard deviation. The
motion took place inside a spherical surface whose radius was one
meter and whose center was coinciding with the origin of the coor-
dinate system. The feature points were distributed randomly on the
spherical surface. The total number of feature points, was 35,000.
A sequence of 100 frames was taken by each camera. Due to the
motion randomness, the sequence should be divided into a number
of sections (see below). For fair comparison, each section contained
ten frames. We compared the methods mentioned above: decou-
pled 1, coupled 1, 2 cameras, and 4 cameras. Table 1 shows the
average of 100 runs of absolute error in the six pose parameters for
the four methods. All absolute errors are given per frame in milli-
(meter/radian). To get them in percentage, they should be compared
to the average sum of absolute translations in one run (1.00 meter),
and the average sum of absolute rotation angles (1.25 radians).

4.2. Real Experiments
We carried out the comparisons for three motion patterns: pure trans-
lation, pure rotation, and mixed rotation and translation using two
scenarios (the best and the worst). In the best scenario, we compare
all the methods with all the motion sequence considered as a one
section. This can be done because the motion of robots is usually
uniform. On the other hand, in the worst scenario, we cut the mo-
tion sequence into multiple sections. For each section, the filters are
restarted with fresh new features to study the cases where the num-
ber of tracked features becomes insufficient (due to large rotation or
being small from the beginning). All the results of the best scenario
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and some of the worst scenario are shown in Fig. 2. The ground truth
was provided by the computer controlling the robot, and the timing
information is provided in Table 2.

Step 4 cameras decoupled 1 coupled 1 2 cameras

initial 5.89062 0.174479 0.20312 2.78125
structure (in seconds per sequence)

tracking 0.18765 0.05250 0.05648 0.10598
features (in seconds per frame)

initial 0.01562 0.01562 0 0.01562
pose (using Lowe’s method, in seconds per sequence)

inside 0.014100 0.04375 0.37179 0.00534
EKF (in seconds per frame)

Table 2. Average time inside the steps of the compared approaches
(based on the best scenario of pure translation sequence, and using
MATLAB-7.0.4 running on a machine with a 2.8 MHz Pentium pro-
cessor, and 1.5 GB RAM). Frame means a frame from each camera.

5. DISCUSSION AND CONCLUSIONS
An advantage of 4 cameras and 2 cameras methods is that they ver-
ify the zero-mean assumption (see subsection 2.1) at every frame by
using a changeable set of features around the mean. This cannot
be done for decoupled 1 and coupled 1 which should ideally track
the same set of features (whose structure has been already stabilized
within the filter). In this case, unless the camera center moves along
the Z axis, the zero-mean assumption will be soon violated. Addi-
tionally, tracking the same set of features will keep the key features
which unify the scale as in [4], and [5] (note that the real scale is
not recovered). The use of an initialization target in the first frame
in [11] to recover the scale requires a manual intervention and may
hide some features behind.

Newly appearing features can be dealt with instantly in 4 cam-
eras and 2 cameras (stereo triangulation recovers the real scale).
However, for decoupled 1 and coupled 1, subfilters should be used
(see subsection 3.2). The subfilters are not used in [6] perhaps be-
cause the focus there is on one object whose translation from the
camera center is known. However, subfilters have drawbacks; they
reduce the longevity of features within the original filter, increase the
computational demand, and may be useless when features are lost
before being ready to enter the original filter. Dealing with newly
appearing features as in [11] and [7] (see subsections 3.2 and 3.3)
overcomes most of these drawbacks.

For fair comparison, we use more features for single camera
methods (50-150) than we use for multiple-camera methods (35-50).
Additionally, each time we restart the filter by moving back in time
ten frames to offer single camera methods a chance to become sta-
ble before relying on their output (as in [6]). Furthermore, we use
the Lowe’s method (as used in [7] for multiple-camera methods) to
initialize the pose in the decoupled 1 method based on the initial
structure to relate them together and speed the processing by using
good pose initial conditions.

In simulations, with all features on the unit sphere, setting the
depth of the nearest feature to the image center in the first frame
to one with zero initial variance fixes the scale factor to one and,
accordingly, we can compare the approaches which recover the real
scale with the approaches that only unify it. From Table 1, 4 cameras
method clearly outperforms all others.

For the real experiments, up to a scale translational pose parame-
ters are expected for single camera methods. From Fig. 2, 4 cameras
and 2 cameras are close to the ground truth. The performance of the
2 cameras method is better than its performance in the simulations.
The reason for this is that the simulations were carried out under

harsh conditions which are likely to increase the bas-relief ambigu-
ity since all features were distributed on a spherical surface with a
small depth variation. This was done to fix the scale factor to one
and accordingly be able to compare all methods.

On the other hand, decoupled 1 and coupled 1 always suffer
from deviations from the ground truth especially for pose parame-
ters that remain nearly constant (they could track pose parameters
whose change is dominating e.g. tz of rows 1 and 5 of Fig. 2, up
to a scale factor, sometimes with a large offset, and usually tens of
frames after initializing the filter). Additionally, cutting the sequence
into multiple sections and restarting the filter again seems to be dev-
astating to the single camera methods. In contrast, 4 cameras and
2 cameras can restart the filter at any time to acquire a fresh set of
features with a minimum drift, and an efficient rejection of outliers
on the per-frame-basis. Furthermore, a simple drift compensation
approach can be implemented easily in 4 cameras method [7].

To sum up, 4 cameras method is accurate under all tested pat-
terns of motion and in the presence of the bas-relief ambiguity. 2
cameras method is faster than the 4 cameras method and nearly
as accurate provided that there is no bas-relief ambiguity in the
scene. Single camera methods are suitable for tracking dominating
smoothly changing parameters provided that there is no bas-relief
ambiguity in the scene, and in this case, the decoupled 1 method is
preferred for the sake of speed.
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Fig. 2. Real experiments pose parameters, from top: rows 1 and 2 belong to pure translation sequence, rows 3 and 4 belong to pure rotation,
rows 5 and 6 belong to mixed rotation and translation, and the rightmost column shows a pose parameter for each sequence belonging to the
worst scenario (sequence as multiple sections).
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