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Abstract

Multiple Camera Systems (MCS) have been widely used
in many vision applications and attracted much attention
recently. There are two principle types of MCS, one is the
Rigid Multiple Camera System (RMCS); the other is the
Articulated Camera System (ACS). In an RMCS, the rela-
tive poses (relative 3-D position and orientation) between
the cameras are invariant. While, in an ACS, the cameras
are articulated through movable joints, the relative pose b
tween them may change. Therefore, through calibration of
an ACS we want to find not only the relative poses betweenFigure 1. An Robot with Four Cameras Attached on It, Where the
the cameras but also the positions of the joints in the ACS. Cameras are Articulated.

Although calibration methods for RMCS have been ex-

tensively developed during the past decades, the studies of . . - .
ACS calibration are still rare. In this paper, two ACS cal- istics of each camera in the MCS. In a Rigid Multiple Cam-

ibration methods are proposed. The first one uses the fea.ra System (RMCS), the cameras are fixed to each other.

ture correspondences between the cameras in the ACS. Thghe extrlns;:: parlamet%@[])[of an _RMCdee_scnbe_ theﬂrelal-
second one requires only the ego-motion information of thet'ye pose (the relative 3-D position an orlentatl_on, yia
cameras and can be used for the calibration of the non- S degrees of freedom) between the cameras in the MCS.

overlapping view ACS. In both methods, the ACS is assumeé:a”bration methods of the intrinsic parameters of a camera
to have performed general transformations in a static en- are well established, 9]. Calibration methods for the ex-

vironment. The efficiency and robustness of the proposeqtrinSiC parameters of an RMCS are alsq widely studigd. Eor
methods are tested by simulation and real experiments. |n|nsthan_ce, 'V'"?“';‘f propqsed in autong)aﬂc EMES call;bratlon
the real experiment, the intrinsic and extrinsic paramster technique with a moving reference bar which can be seen

of the ACS are calibrated using the same image sequence&.i’ha” Cﬁl_’nﬁ'raSIS]. Ar}s;one Ia?_d Teller de¥eloped anbalgo-
no extra data capturing step is required. The corresponding "' '11 WHICh TECOVETS the relalive poses of cameras by over-

trajectory is recovered and illustrated using the caliboat lapping portions of the outdo_or sgenr].[Baker an_d AIO".
results of the ACS. To our knowledge, we are the first to monos presented RMCS calibration methods using calibra-

study the calibration of ACS. tion objects such as awand_with LEDs or arigid bogrd with
known patternsi, 4]. Dornaika proposed a stereo rig self-
calibration method by the monocular epipolar geometries
and geometric constraints of a moving RMCS, in which
only the feature correspondences between the monocular
Calibration of a Multiple Camera System (MCS) is an images of each camera are requiréHl [In hand-eye cal-
essential step in many computer vision tasks such as SLAMibration, it is demonstrated that when a sensor is mounted
(Simultaneous Localization and Map), surveillance, stere on a moving robot hand, the relationship between the sen-
and metrology 11, 3, 7, 17]. Both the intrinsic and extrin-  sor coordinate system and hand coordinate system can be
sic parameters of the MCS are required to be estimated becalculated by the motion information of the hand and the
fore the MCS can be used. The intrinsic parametérd¢- sensor [(]. One example of using kinematic information
scribe the internal camera geometric and optical character of the cameras for RMCS is discussed by Caspi and Irani

1. Introduction
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[6], they indicated that if the cameras of a non-overlapping system of camera A}'s the coordinate system of camera B.

view RMCS are close to each other and share a same projecSuppose there are enough feature correspondences between

tion center, their recorded image sequences can be alignethe cameras so that the pose(df andC referring to the

effectively by the estimated transformations inside eathi  same coordinate syste@y, can be estimated. Therefore,

age sequence. the relative pose betweé&ry andC's is known. We want to
However, in some types of MCS, the relative poses be- find the position of O in the ACS. Ldf 4 andHpy be

tween the cameras are not fixed, hence the calibration meththe Euclidean transformation matrixes describetheand

ods for the RMCS cannot be used directly. In Figlirex Cp refer toCyy, so that for any poinP:

novel application of limb pose estimation by attaching cam-

eras on the arms of a robot is shown. On each arm of the Pa = Haw Py = { Raw Taw ] Puw 1)

robot, two cameras are articulated to each other through the 0 1

elbow joint of the arm. When the robot moves, the relative

pose between the cameras may change, while, the coordi-

nate of the elbow joint refers to each camera attached on the

corresponding arm is invariant. In this paper, such a type of _ . . .

MCS is named as Articulated Camera System (ACS). The’ whereR is the3 x 3 rotation mairix,T 'S:.J’ x 1 vector,

joint of the elbow is named as theint in the ACS. PW,’ P4 andPg are the homogenous coprdlnates ofthe 3-D
ACSs can be easily found in the real world, such as cam-Foint? refer tCy, C{“ andCp respectively.

era systems attached on human, robots and animals. Be- According to equationslj and ):

fore using an ACS, it has to be calibrated. However, there

R T
Pp = Hpw Pw = { gw Blw ] Py (2

_ -l _ -1
are still some unsolved problems: (i) In an ACS with over- Pw = HywPa = Hpw Pp (3)
lapping view, traditional calibration methods cannot -esti H-1 p, —H=1 P — 0 4
mate the positions of the joints in the ACS. (ii) In a non- AwtA T HpwsB = 4)
overlapping view ACS, neither the positions of the joints in
the ACS nor the_z relative pose_s_between the_ cameras in the Ry —RAyTaw Py B
ACS can be estimated by traditional calibration methods. 0 1 1
These considerations in mind motivate us to develop the T T =
S . Ry —RpwIsw Pgp
technologies in this paper. The rest of this paper are orga- 0 1 1 = 0 (5

nized as follows: Sectiof and3 analysis the constraints in

a moving ACS. The corresponding calibration methods are

proposed. Sectiofiand5 evaluate the proposed method by

simulation and real experiment. In sectigra brief conclu- . whereR7 is the transpose dR. Suppose the ACS per-

sion and the future plan are presented. formedn transformations, for théeth transformation of the
ACS, according to equatiot®):

Ry Pa—REywPs =Ry Taw — RLywTew  (6)

2. Calibration of ACS with Overlapping Views . ) . ) . ‘ ‘ .
(Riaw)" Pa—(Riw)" Pp = Riaw)" Thw —( le)T(TJ)%w
7
LetO = [ OF OF }T, whereO,4 and Op are the
coordinates of the joint O refer 04 andCp respectively.
Equation {) can be rewritten as:

[ Rip)" —(Riy)" |O=
(Riaw)" Thw — Rigw) T (8)

Since camera A and B are fixed on the articulated rigid
objects, O is invariant during the transformation of the
ACS. The transformationdR(, -, Ry, T4y and Ty,
for i € [1...n]) of the camera coordinate systems are
Figure 2. An Articulated Camera System with Overlappingaée  calculated by the projected image sequences. We propose

thatO can be estimated by a least squares method, when the

Suppose two rigid objects are articulated at joint O and ACS has moved to many different positions and captured
two cameras (camera A and B) are fixed on the two rigid ob- enough samples @t',,;,, Ry, Ty andT gy,
jects respectively (See Figug®. Let C4 be the coordinate




Figure 3. A Non-overlapping View Articulated Camera System

3. Calibration of Non-Overlapping View ACS

In many situations, there is no overlapping view between

the cameras in an ACS. And the lack of common features

makes the calibration method proposed in sectibecome
invalid (See Figure3). Moreover, since the relative pose

between the cameras in the ACS cannot be estimated by th

overlapping views, the calibration of the relative poses be

tween the non-overlapping view cameras is also required. In
this section, a calibration method based on the ego-motion

information of the cameras in an ACS is discussed.

3.1. Recovering the Position of the Joint Refers to
the Cameras in the ACS

Let C{"* and C3* be the coordinate systems of cam-
era A and B respectively at the initial state (timhe= 0).
Suppose the ACS performs transformations. Since the
coordinate of the joint O refers to camera A is fixed during
the transformation of the ACS. At time= ¢, we have:

R, T}

a=H,04 = [ ] Oa
, whereHY, is the Euclidean transformation matrix of cam-
era A at timei refers toC"*. R/, andT" describe the
orientation and origin of camera A at tinieefer toC;*'".
Also O 4 is the coordinate of point O at initial state refers to
Citand Oy is the coordinate of point O at timerefers
to Ot

If the position of the joint O refers t6'{"** is fixed dur-
ing the transformations of the ACS, we hav@’}, = O4,
Vi € [1,...,n]. Fori-th transformation of the ACS, ac-

cording to equation9):
Ty
0 1

(R —1)0a = -T}

NS

Ox=HY0, = (10)

(11)

™ML 0,

LetMy = [RLY -1, (R -I)T,..., (R - DT,
Ta=[THT,(T3T,....(THT]", we have:
MO, = —TA (12)

Since the transformation®(, and T, Vi € [1...n])

of camera A can be calculated by the projected image se-

quence. We propose, can be estimated by a least squares

method. SimilarlyOp can also be estimated. Therefore,

04 andOp are recovered.

3.2. The Unigueness of the Joint Pose Estimation

If the different segments of the articulated camera system
(ACS) are connected by 1D rotational joints (connected by
point rotational joints) and the ACS can perform general
transformations, the solution of the joint pose estimaison
unique:

For the joint pose estimation method using special mo-
tion (in section3.1). Suppose the solution of the joint pose
estimation is not unique, there must exist at lest two differ
ent 3D pointsO; and O, satisfy equationi2). We have:
—T4 andM 40, = —T4. Therefore, any point
P = sO; + (1 —s)O2 will also satisfy equationl2), where
s is an arbitrary scalar. According to the definitionf P
is the point on the line passing through the poiftsand
O4. SinceP satisfy equation12) represents that the posi-
tion of the P refers to the camera in the ACS is invariant
during the transformation of the ACS, it means the different
segments of ACS are connected by the 2D rotational axis in-
stead of the 1D rotational joints. The position of the points
on the 2D rotational axis refer to the camera in the ACS is
invariant during the transformation of the ACS. However, it
conflicts with the assumption. Similarly, the uniqueness of
the joint pose estimation method using overlapping views
(in section2) can also be verified.

3.3. Recovering the Relative Pose Between the
Cameras of the Non-overlapping view ACS

Let Hp4 be the Euclidean transformation matrix be-
tweenC7*¥ andC#t, so that for any poinf:

Rpa Tga

Pp=HpsPy = { 0 1

} Py =HpaPs (13)

, whereP, and P are the homogenous coordinate of Point
P refer toC andC'#'* respectively.

The relative poseR 4 andTp4) betweenC* and
C#t is defined as:
Rpa=R%, (14)

Tpa=-RE,Tpa (15)



Let O% be the coordinate of joint O at timerefer to
C%it, Since the coordinate of the joint O refer to camera B
is invariant:

R,

0 1 } Os

Ry T} Rpa Tha

v

0 1
[ RbRpa RETpa+ T
0 1

According to equationdj and (3):
R, T}

O = Hp,0)
IR

T

Of

o

] 04 (16)

(18)

R5RpA04 + RETpA + TG
1
RpaR, 04+ RpaTi +Tga

1 (19)

Rpa TBa
0 1
[ RBSRZA RBAT%'F Tea | 0. (17)
According to equationslE) and (L7):
R5Rpa Ry5Tpa + T Oy ]
0 1 1|
RpaRYy RpaTi+Tga O4 ]
0 1 1
R%RBAOA + R%TBA — RBARZAOA
~RpaT) +Th —Tpa 0 (20)
SinceO 4 can be estimated by the method discussed in
section3.3, theR g4 andTg 4 can be estimated by a least

square method, when the ACS perform enough general mo-

tions.

In our simulation and real experiment, the estimated
Rp4 is refined by a method discussed id[. Then the
roll, pitch and yaw corresponding to tligs 4 are estimated
according to the definition of the rotation matri%][ Let
Rpa = M(r,p,y), wherer p andy are the correspond-
ing roll, pitch and yaw oR 5 4, M is a function from roll,
pitch and yaw to the corresponding rotation matrix. Then,
ther, p, y, Tsa andO 4 are optimized by minimizing the
nonlinear error function:

E(T7pa Y, TBA7 OA) = Z( ,LBM(rapa y)OA + RiBTBA
i=1
—M(’f',p, y)RTAOA - M(’f‘,p, y)TA + Té - TBA) (21)
using a Levenberg-Marquardt method. Finally, g, is

recovered from the optimized p andy. The relative pose
between th&"* andC'%** is calculated by equation&4)

and (5).

4. Simulation

In this section, the proposed calibration methods are
evaluated with synthetic transformation data.
4.1. Performance w.r.t. Noise in Transformation
Data

Setup and Notations: In each test, one ACS with 2
cameras and 1 joint is generated randomly. In which,
1 < |04] < 2 meters,l1 < |Og|] < 2 meters. The gen-
erated ACS perform30 random transformations.

Performance of the Calibration Method for ACS with
Overlapping Views: In the first simulation, the proposed
algorithm is tested 100 times. Zero mean Gaussian noise is
added to the transformation data of the cameras. The con-
figuration, input and output of our simulation system are lis
as Tablel. Since we assume there are overlapping views
between the two cameras, the relative pose between them
can be estimated by many existing methods as discussed in
sectionl. Only the performance of joint pose estimation is
evaluated in our simulation. The error of joint estimation
are computed by:

05 — Op|
2|0

104 —0.]

Err = —
2|04

(22)

, whereO 4 is the ground truthy) 4 is the estimated position
of joint O refer to camera A. Similarly) is the ground
truth, O is the estimated position of joint O refer to camera
B. The corresponding results are shown in Figlieend>5.

Table 1. Configuration, Input and Output
Configuration

No. of Cameras in the ACS 2

No. of Joints in the ACS 1

Random transformations per test (n) 30

Number of tests 100
Input (i =1...n)

Rotations of camera®(,,;;, Ry) 2 x 30 x 100

Translations of camerad'(,;,, T5y,) 2 x 30 x 100

Zero Mean Gaussian noise:

0 <00t <2.4°and0 < o4rans < 0.1meters
Output

Mean error of joint pose estimation

STD error of joint pose estimation

Performance of the Calibration Method for Non-
Overlapping Views ACS: In the second simulation, firstly,
the pose of the joint is fixed refers €;"** during the trans-
formations of the ACS. The pose of the joint refers to the
camera A (Q,) is calibrated by the transformations of cam-
era A. Similarly,Op is calibrated. Then, the ACS performs
several general transformations (the joint is not needed to
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Figure 4. Mean Error of Joint Position Estimation
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Figure 5. STD Error of Joint Position Estimation

be fixed refer taC*"*), the relative pose between the cam-
eras are calibrated using the estimated joint pose and the
transformations of the cameras. The configuration, input
and output of the simulation system are listed as Table
The error of joint pose, relative rotation, relative tratigin
estimation are calculated by equatict?), (23) and @4)
respectively.

Figure6 and7 show the results of joint pose estimation.
Compare with the calibration method using the overlapping
views, the calibration method using special motions is more
accurate. The mean and STD error of the relative rotation
and translation estimation are presented in Figijre, 10
and11. The proposed algorithms are shown to be stable,
when the zero mean Gaussian noise ffrto 2.4° is added
to the roll, pitch and yaw of the rotation data, and the zero
mean Gaussian noise frointo 0.1 meters is added to the
translation data.

Err = \/|roll — roll|2 + |pitch — pitch|? + |yaw — jaw|?
(23)

_ |Tap — Tasl

Err = 24
Toan] (24)

Table 2. Configuration, Input and Output

Configuration

No. of Cameras in the ACS 2

No. of Joints in the ACS 1

Random transformations per test (n) 30

Number of tests 100
Input (i =1...n)

Transformations with fixed joint pose:

Rotations of camera®(,, R%) 2 % 30 x 100

Translations of camerad’(, T%) 2 x 30 x 100

General transformations:

Rotations of camera®(,, R%) 2 x 30 x 100

Translations of camerad'(, T;) 2 % 30 x 100

Zero Mean Gaussian noise:
0 <00t <2.4°and0 < oprans < 0.1meters

Output

Mean error of joint pose estimation

STD error of joint pose estimation

Mean error of relative translation estimation
STD error of relative translation estimation
Mean error of relative rotation estimation
STD error of relative rotation estimation

Mean Error of Joint Pose Estimation

Mean Error of Joint Pose Estimation

Rotation Noise (degree) Translation Noise (meter)

Figure 6. Mean Error of Joint Position Estimation

STD Error of Joint Pose Estimation
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Figure 7. STD Error of Joint Position Estimation
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5.1. Calibration of the Pose of the Joint in Each

‘ ACS. Two image sequenced{ and(@)-) are recorded, each

o1 sequence consists @6 images of sizad 600 x 1200. The

_ estimated joint pose are list in Tal8eas algorithm I.

Rotaton Nafe (degree) o0 Transiaton Noise (mete) By Fixed-Joint Motions (Algorithm II): In the sec-

ond real experiment, the joint of the ACS is fixed refers
to the world coordinate system during the transformation of
the ACS. The two cameras do not need to view the same
checker plane. And each camera records the image se-
guence independently. Two image sequenégsdndQ,)

are recorded, each sequence consistR2dfmages of size
1600 x 1200. The camera pose of the firstimage is selected
as the initial pose to generate the transformation sequence
of each camera. The estimated joint pose are list in Table
as algorithm Il. The poses of the joint refer to the two cam-
eras in the ACS are also estimated manually for comparison
purpose. Since the camera pose of any image in each image
sequence can be chosen as the initial camera pose (see sec-
tion 3.1), the proposed algorithm is also tested by choosing
Figure 10. Mean Error of Relative Translation Estimation different images as the reference. The mean and standard
derivation of the corresponding calibration results am pr
sented in Tabld.

g Camera

% 0.8 A‘%“lA‘ i 1 i . 1

: 4V’ ‘$ 'A N By _Overlappmg Views (AIg(_)rlthm [): In the first real

gos ’(\ﬁ‘Q§\l ‘ “:‘vv‘ experiment, the two cameras in the ACS observe the same
£ os ‘Q‘\“A‘Xy}‘ (;ﬁ" VA checker plane and record images simultaneously. The two
g0 ‘!;i}%‘m N ‘ﬂﬂx\“ cameras are free to move during the transformation of the

Figure 9. STD Error of Relative Rotation Estimation
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5. Real Experiment

5.2. Calibration of Relative Pose Between the Cam-
eras in the Non-Overlapping View ACS (Al-
gorithm 111)

In the real experiments, an ACS with two camer@arg-
non PowerShot G9is set up as Figuré3 (a). The intrin-
sic parameters of each camera in the ACS are calibrated
by Bouguet's implementation (“Camera Calibration Tool- In the third real experiment, firstly, we use the non-
box for Matlab”) of [L5]. Since the Bouguet's Toolbox can overlapping view ACS calibration method to process the
also estimate the pose information of the camera, the transimage sequenced; and ;. The joint pose Q4) esti-
formations of each camera are calculated using the samenated by algorithm Il is used as the input for the relative
image sequence for the intrinsic calibration simultangous pose calibration. Since there are overlapping views batwee
No additional images nor manual input is required in the @1 andQ2, we also calibrate the relative pose between the
real experiments. two cameras by the feature correspondences for compari-



Table 3. Results Of Joint Pose Calibration
I: the algorithm using overlapping views. II: the algorithusing

Recovered Trajectory of the ACS by O, and G,

fixed-joint motions. M: manual measurement(ground trué), is the _ s
coordinate of the joint refers to camera A, the same apphiésg. ) A . L
Algorithm Joint Pose (mm) A % L EOEY
X Y Z g 4434 é
I Oxg 300.28 50.07 | -33.47 ” : %
Op -273.70 | 53.81 | -30.15 |
Il Oxg 304.55 47.64 | -37.66 g™
Op -265 54.41 | -35.48 o3
M| O4 | 300+ 10 | 50+ 10 | -40+ 10 m
Op | -270+10 | 50+ 10 | -30+ 10 o

200

Table 4. Mean and STD of the Joint Pose Calibration Algorithm
Il Using Different Reference Images0( is the coordinate of the

joint refers to camera A, the same applie€xg.) —e
Algorithm Joint Pose (mm) Figure 12. The Trajectory of the ACS Recovered frgmandQ-
1 X Y Z

Mean| O4 | 305.44 | 47.19| -39.2
Op | -262.97| 56.21| -39.20
STD | Oyx 1.89 1.16 | 3.02
Op 3.3 2.67 | 2.58

son. The calibration result are listed in TableAfter the

joint pose refers to each camerain the ACS and relative pose
between the cameras in the ACS are calibrated, the trajec-
tory of the ACS is recovered (see Figur®. The proposed

(d)

I1I: our method. E: using feature correspondences Figure 13. The ACS with Two Cannon PowerShot G9 Used in the

Al - th - R I t'g Rotati Dp ' Real Experiment. (a) The ACS Used in the Real Experiment. (b)
gorthm elative Rotation (Degree) The ACS and two Checker Planes. (c) In the Front of the ACS. (d)

Roll Pitch Yaw On the Top of the ACS.
1 17.7158 | -11.3660 | -80.1913

F 17.5459 | -10.6024 | -78.9854 s i
Algorithm Relative Translation (mm) ﬁ
T, T, T, e -

Yy
1] 295.4183| -232.4576| 34.5004

Table 5. Result of Relative Pose Calibration

Imgs Imgi2 Imgu7

F 294.0235| -229.8369| 28.9739 (@) Images Recorded by Camera A .
calibration method is also tested by non-overlapping view iﬁl %
image sequences. Figuté (b), (c), (d) shows the configu- — . :
ration of the non-overlapping view ACS calibration system Img, Imge Img;2 Imgs7

(b) Images Recorded by Camera B

in the real experiment. Two image sequen nd
P 9 d 085 &ndC) Figure 14. Images Recorded by the ACS

are recorded, each sequence consistsrdfmages of size
1600 x 1200. There is no overlapping view betweépy
andQs. Figurel4 shows some samples of the recorded im- g conclusion

ages. We also manually measured the relative pose between

the two cameras for comparison. Since no feature corre- In this paper, an ACS calibration method is developed.
spondence can be used, we only get a rough estimation byBoth the simulation and real experiment show that the pose
aruler. The calibration results are shown in TahleAfter of the jointin an ACS can be estimated robustly. When there
the relative pose between the cameras at the initial state iss no overlapping view between the cameras in an ACS, the
estimated, the trajectory of the non-overlapping view ACS joint pose and the relative pose between the cameras can
is recovered (see Figufl). also be calculated. The trajectory of an ACS can be recov-



Table 6. Result of Relative Pose Calibration Using Non- References
Overlapping View Image Sequences. (lll: our method. M: n@nu

measurement.) _ _ [1] M. Antone and S. Teller. Scalable extrinsic calibration
Algorithm Relative Ro_tat|0n (Degree) of omni-directional image networks.International
Roll Pitch Yaw Journal of Computer Visigm9(2):143-174, 20021
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