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Abstract

Multiple Camera Systems (MCS) have been widely used
in many vision applications and attracted much attention
recently. There are two principle types of MCS, one is the
Rigid Multiple Camera System (RMCS); the other is the
Articulated Camera System (ACS). In an RMCS, the rela-
tive poses (relative 3-D position and orientation) between
the cameras are invariant. While, in an ACS, the cameras
are articulated through movable joints, the relative pose be-
tween them may change. Therefore, through calibration of
an ACS we want to find not only the relative poses between
the cameras but also the positions of the joints in the ACS.

Although calibration methods for RMCS have been ex-
tensively developed during the past decades, the studies of
ACS calibration are still rare. In this paper, two ACS cal-
ibration methods are proposed. The first one uses the fea-
ture correspondences between the cameras in the ACS. The
second one requires only the ego-motion information of the
cameras and can be used for the calibration of the non-
overlapping view ACS. In both methods, the ACS is assumed
to have performed general transformations in a static en-
vironment. The efficiency and robustness of the proposed
methods are tested by simulation and real experiments. In
the real experiment, the intrinsic and extrinsic parameters
of the ACS are calibrated using the same image sequences,
no extra data capturing step is required. The corresponding
trajectory is recovered and illustrated using the calibration
results of the ACS. To our knowledge, we are the first to
study the calibration of ACS.

1. Introduction

Calibration of a Multiple Camera System (MCS) is an
essential step in many computer vision tasks such as SLAM
(Simultaneous Localization and Map), surveillance, stereo
and metrology [11, 3, 7, 12]. Both the intrinsic and extrin-
sic parameters of the MCS are required to be estimated be-
fore the MCS can be used. The intrinsic parameters [9] de-
scribe the internal camera geometric and optical character-

Figure 1. An Robot with Four Cameras Attached on It, Where the
Cameras are Articulated.

istics of each camera in the MCS. In a Rigid Multiple Cam-
era System (RMCS), the cameras are fixed to each other.
The extrinsic parameters [5] of an RMCS describe the rela-
tive pose (the relative 3-D position and orientation, totally,
six degrees of freedom) between the cameras in the MCS.
Calibration methods of the intrinsic parameters of a camera
are well established [15, 9]. Calibration methods for the ex-
trinsic parameters of an RMCS are also widely studied. For
instance, Maas proposed an automatic RMCS calibration
technique with a moving reference bar which can be seen
by all cameras [13]. Antone and Teller developed an algo-
rithm which recovers the relative poses of cameras by over-
lapping portions of the outdoor scene [1]. Baker and Aloi-
monos presented RMCS calibration methods using calibra-
tion objects such as a wand with LEDs or a rigid board with
known patterns [2, 4]. Dornaika proposed a stereo rig self-
calibration method by the monocular epipolar geometries
and geometric constraints of a moving RMCS, in which
only the feature correspondences between the monocular
images of each camera are required [8]. In hand-eye cal-
ibration, it is demonstrated that when a sensor is mounted
on a moving robot hand, the relationship between the sen-
sor coordinate system and hand coordinate system can be
calculated by the motion information of the hand and the
sensor [10]. One example of using kinematic information
of the cameras for RMCS is discussed by Caspi and Irani
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[6], they indicated that if the cameras of a non-overlapping
view RMCS are close to each other and share a same projec-
tion center, their recorded image sequences can be aligned
effectively by the estimated transformations inside each im-
age sequence.

However, in some types of MCS, the relative poses be-
tween the cameras are not fixed, hence the calibration meth-
ods for the RMCS cannot be used directly. In Figure1, a
novel application of limb pose estimation by attaching cam-
eras on the arms of a robot is shown. On each arm of the
robot, two cameras are articulated to each other through the
elbow joint of the arm. When the robot moves, the relative
pose between the cameras may change, while, the coordi-
nate of the elbow joint refers to each camera attached on the
corresponding arm is invariant. In this paper, such a type of
MCS is named as Articulated Camera System (ACS). The
joint of the elbow is named as thejoint in the ACS.

ACSs can be easily found in the real world, such as cam-
era systems attached on human, robots and animals. Be-
fore using an ACS, it has to be calibrated. However, there
are still some unsolved problems: (i) In an ACS with over-
lapping view, traditional calibration methods cannot esti-
mate the positions of the joints in the ACS. (ii) In a non-
overlapping view ACS, neither the positions of the joints in
the ACS nor the relative poses between the cameras in the
ACS can be estimated by traditional calibration methods.

These considerations in mind motivate us to develop the
technologies in this paper. The rest of this paper are orga-
nized as follows: Section2 and3 analysis the constraints in
a moving ACS. The corresponding calibration methods are
proposed. Section4 and5 evaluate the proposed method by
simulation and real experiment. In section6, a brief conclu-
sion and the future plan are presented.

2. Calibration of ACS with Overlapping Views

Figure 2. An Articulated Camera System with Overlapping Views

Suppose two rigid objects are articulated at joint O and
two cameras (camera A and B) are fixed on the two rigid ob-
jects respectively (See Figure2). Let CA be the coordinate

system of camera A,CB the coordinate system of camera B.
Suppose there are enough feature correspondences between
the cameras so that the pose ofCA andCB referring to the
same coordinate systemCW can be estimated. Therefore,
the relative pose betweenCA andCB is known. We want to
find the position of O in the ACS. LetHAW andHBW be
the Euclidean transformation matrixes describe theCA and
CB refer toCW , so that for any pointP :

PA = HAW PW =

[
RAW TAW

0 1

]
PW (1)

PB = HBW PW =

[
RBW TBW

0 1

]
PW (2)

, whereR is the3 × 3 rotation matrix,T is 3 × 1 vector,
PW , PA andPB are the homogenous coordinates of the 3-D
PointP refer toCW , CA andCB respectively.

According to equations (1) and (2):

PW = H
−1

AW PA = H
−1

BW PB (3)

H
−1

AW PA − H
−1

BW PB = 0 (4)

[
R

T
AW −R

T
AW TAW

0 1

] [
P̄A

1

]
−

[
R

T
BW −R

T
BW TBW

0 1

] [
P̄B

1

]
= 0 (5)

R
T
AW P̄A − R

T
BW P̄B = R

T
AW TAW − R

T
BW TBW (6)

, whereR
T is the transpose ofR. Suppose the ACS per-

formedn transformations, for thei-th transformation of the
ACS, according to equation (6):

(Ri
AW )T P̄A−(Ri

BW )T P̄B = (Ri
AW )T T i

AW−(Ri
BW )T T i

BW

(7)

Let Õ =
[

ŌT
A ŌT

B

]T
, whereŌA and ŌB are the

coordinates of the joint O refer toCA andCB respectively.
Equation (7) can be rewritten as:

[
(Ri

AW )T −(Ri
BW )T

]
Õ =

(Ri
AW )T T i

AW − (Ri
BW )T T i

BW (8)

Since camera A and B are fixed on the articulated rigid
objects, Õ is invariant during the transformation of the
ACS. The transformations (R

i
AW , R

i
BW , T i

AW andT i
BW

for i ∈ [1 . . . n]) of the camera coordinate systems are
calculated by the projected image sequences. We propose
thatÕ can be estimated by a least squares method, when the
ACS has moved to many different positions and captured
enough samples ofRi

AW , Ri
BW , T i

AW andT i
BW .



Figure 3. A Non-overlapping View Articulated Camera System

3. Calibration of Non-Overlapping View ACS

In many situations, there is no overlapping view between
the cameras in an ACS. And the lack of common features
makes the calibration method proposed in section2 become
invalid (See Figure3). Moreover, since the relative pose
between the cameras in the ACS cannot be estimated by the
overlapping views, the calibration of the relative poses be-
tween the non-overlappingview cameras is also required. In
this section, a calibration method based on the ego-motion
information of the cameras in an ACS is discussed.

3.1. Recovering the Position of the Joint Refers to
the Cameras in the ACS

Let Cinit
A andCinit

B be the coordinate systems of cam-
era A and B respectively at the initial state (timet = 0).
Suppose the ACS performsn transformations. Since the
coordinate of the joint O refers to camera A is fixed during
the transformation of the ACS. At timet = i, we have:

Oi
A = H

i
AOA =

[
R

i
A T i

A

0 1

]
OA (9)

, whereHi
A is the Euclidean transformation matrix of cam-

era A at timei refers toCinit
A . R

i
A andT i

A describe the
orientation and origin of camera A at timei refer toCinit

A .
Also OA is the coordinate of point O at initial state refers to
Cinit

A , andOi
A is the coordinate of point O at timei refers

to Cinit
A .

If the position of the joint O refers toCinit
A is fixed dur-

ing the transformations of the ACS, we have:Oi
A = OA,

∀i ∈ [1, . . . , n]. For i-th transformation of the ACS, ac-
cording to equation (9):

OA = H
i
AOA =

[
R

i
A T i

A

0 1

]
OA (10)

(Ri
A − I)ŌA = −T i

A (11)

Let MA = [(R1

A − I)T , (R2

A − I)T , . . . , (Rn
A − I)T ]T ,

T̃A = [(T 1

A)T , (T 2

A)T , . . . , (T n
A)T ]T , we have:

MAŌA = −T̃A (12)

Since the transformations (R
i
A andT i

A, ∀i ∈ [1 . . . n])
of camera A can be calculated by the projected image se-
quence. We proposēOA can be estimated by a least squares
method. Similarly,ŌB can also be estimated. Therefore,
OA andOB are recovered.

3.2. The Uniqueness of the Joint Pose Estimation

If the different segments of the articulated camera system
(ACS) are connected by 1D rotational joints (connected by
point rotational joints) and the ACS can perform general
transformations, the solution of the joint pose estimationis
unique:

For the joint pose estimation method using special mo-
tion (in section3.1). Suppose the solution of the joint pose
estimation is not unique, there must exist at lest two differ-
ent 3D pointsO1 andO2 satisfy equation (12). We have:
MAO1 = −T̃A andMAO2 = −T̃A. Therefore, any point
P = sO1 +(1−s)O2 will also satisfy equation (12), where
s is an arbitrary scalar. According to the definition ofP , P

is the point on the line passing through the pointsO1 and
O2. SinceP satisfy equation (12) represents that the posi-
tion of theP refers to the camera in the ACS is invariant
during the transformation of the ACS, it means the different
segments of ACS are connected by the 2D rotational axis in-
stead of the 1D rotational joints. The position of the points
on the 2D rotational axis refer to the camera in the ACS is
invariant during the transformation of the ACS. However, it
conflicts with the assumption. Similarly, the uniqueness of
the joint pose estimation method using overlapping views
(in section2) can also be verified.

3.3. Recovering the Relative Pose Between the
Cameras of the Non-overlapping view ACS

Let HBA be the Euclidean transformation matrix be-
tweenCinit

A andCinit
B , so that for any pointP :

PB = HBAPA =

[
RBA TBA

0 1

]
PA = HBAPA (13)

, wherePA andPB are the homogenous coordinate of Point
P refer toCinit

A andCinit
B respectively.

The relative pose (̃RBA and T̃BA) betweenCinit
A and

Cinit
B is defined as:

R̃BA = R
T
BA (14)

T̃BA = −R
T
BATBA (15)



Let Oi
B be the coordinate of joint O at timei refer to

Cinit
B . Since the coordinate of the joint O refer to camera B

is invariant:

Oi
B =

[
R

i
B T i

B

0 1

]
OB

=

[
R

i
B T i

B

0 1

] [
RBA TBA

0 1

]
OA

=

[
R

i
BRBA R

i
BTBA + T i

B

0 1

]
OA (16)

According to equations (9) and (13):

Oi
B = HBAOi

A

=

[
RBA TBA

0 1

] [
R

i
A T i

A

0 1

]
OA

=

[
RBAR

i
A RBAT i

A + TBA

0 1

]
OA (17)

According to equations (16) and (17):
[

R
i
BRBA R

i
BTBA + T i

B

0 1

] [
ŌA

1

]

=

[
RBAR

i
A RBAT i

A + TBA

0 1

] [
ŌA

1

]
(18)

[
R

i
BRBAŌA + R

i
BTBA + T i

B

1

]

=

[
RBAR

i
AŌA + RBAT i

A + TBA

1

]
(19)

R
i
BRBAŌA + R

i
BTBA − RBAR

i
AŌA

−RBAT i
A + T i

B − TBA = 0 (20)

SinceŌA can be estimated by the method discussed in
section3.3, theRBA andTBA can be estimated by a least
square method, when the ACS perform enough general mo-
tions.

In our simulation and real experiment, the estimated
RBA is refined by a method discussed in [14]. Then the
roll, pitch and yaw corresponding to theRBA are estimated
according to the definition of the rotation matrix [9]. Let
RBA = M(r, p, y), wherer p andy are the correspond-
ing roll, pitch and yaw ofRBA, M is a function from roll,
pitch and yaw to the corresponding rotation matrix. Then,
ther, p, y, TBA andŌA are optimized by minimizing the
nonlinear error function:

E(r, p, y, TBA, OA) =

n∑

i=1

(Ri
BM(r, p, y)ŌA + R

i
BTBA

−M(r, p, y)Ri
AŌA − M(r, p, y)T i

A + T i
B − TBA) (21)

using a Levenberg-Marquardt method. Finally, theRBA is
recovered from the optimizedr, p andy. The relative pose
between theCinit

A andCinit
B is calculated by equations (14)

and (15).

4. Simulation

In this section, the proposed calibration methods are
evaluated with synthetic transformation data.

4.1. Performance w.r.t. Noise in Transformation
Data

Setup and Notations: In each test, one ACS with 2
cameras and 1 joint is generated randomly. In which,
1 ≤ |OA| ≤ 2 meters,1 ≤ |OB| ≤ 2 meters. The gen-
erated ACS performs30 random transformations.

Performance of the Calibration Method for ACS with
Overlapping Views: In the first simulation, the proposed
algorithm is tested 100 times. Zero mean Gaussian noise is
added to the transformation data of the cameras. The con-
figuration, input and output of our simulation system are list
as Table1. Since we assume there are overlapping views
between the two cameras, the relative pose between them
can be estimated by many existing methods as discussed in
section1. Only the performance of joint pose estimation is
evaluated in our simulation. The error of joint estimation
are computed by:

Err =
|ŌA − ˆ̄OA|

2|ŌA|
+

|ŌB − ˆ̄OB|

2|ŌB|
(22)

, whereŌA is the ground truth,̂̄OA is the estimated position
of joint O refer to camera A. Similarly,̄OB is the ground

truth, ˆ̄OB is the estimated position of joint O refer to camera
B. The corresponding results are shown in Figure4 and5.

Table 1. Configuration, Input and Output
Configuration

No. of Cameras in the ACS 2
No. of Joints in the ACS 1
Random transformations per test (n) 30
Number of tests 100

Input ( i = 1 . . . n)
Rotations of cameras (R

i
AW , Ri

BW ) 2 × 30 × 100
Translations of cameras (T i

AW , T i
BW ) 2 × 30 × 100

Zero Mean Gaussian noise:
0 ≤ σrot ≤ 2.4◦ and0 ≤ σtrans ≤ 0.1meters

Output
Mean error of joint pose estimation
STD error of joint pose estimation

Performance of the Calibration Method for Non-
Overlapping Views ACS: In the second simulation, firstly,
the pose of the joint is fixed refers toCinit

A during the trans-
formations of the ACS. The pose of the joint refers to the
camera A (OA) is calibrated by the transformations of cam-
era A. Similarly,OB is calibrated. Then, the ACS performs
several general transformations (the joint is not needed to
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Figure 4. Mean Error of Joint Position Estimation
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Figure 5. STD Error of Joint Position Estimation

be fixed refer toCinit
A ), the relative pose between the cam-

eras are calibrated using the estimated joint pose and the
transformations of the cameras. The configuration, input
and output of the simulation system are listed as Table2.
The error of joint pose, relative rotation, relative translation
estimation are calculated by equation (22), (23) and (24)
respectively.

Figure6 and7 show the results of joint pose estimation.
Compare with the calibration method using the overlapping
views, the calibration method using special motions is more
accurate. The mean and STD error of the relative rotation
and translation estimation are presented in Figure8, 9, 10
and11. The proposed algorithms are shown to be stable,
when the zero mean Gaussian noise from0◦ to2.4◦ is added
to the roll, pitch and yaw of the rotation data, and the zero
mean Gaussian noise from0 to 0.1 meters is added to the
translation data.

Err =

√
|roll − r̂oll|2 + |pitch− p̂itch|2 + |yaw − ŷaw|2

(23)

Err =
|TAB − T̂AB|

|TAB|
(24)

Table 2. Configuration, Input and Output
Configuration

No. of Cameras in the ACS 2
No. of Joints in the ACS 1
Random transformations per test (n) 30
Number of tests 100

Input ( i = 1 . . . n)
Transformations with fixed joint pose:
Rotations of cameras (R

i
A, Ri

B) 2 × 30 × 100
Translations of cameras (T i

A, T i
B) 2 × 30 × 100

General transformations:
Rotations of cameras (R

i
A, Ri

B) 2 × 30 × 100
Translations of cameras (T i

A, T i
B) 2 × 30 × 100

Zero Mean Gaussian noise:
0 ≤ σrot ≤ 2.4◦ and0 ≤ σtrans ≤ 0.1meters

Output
Mean error of joint pose estimation
STD error of joint pose estimation
Mean error of relative translation estimation
STD error of relative translation estimation
Mean error of relative rotation estimation
STD error of relative rotation estimation
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Figure 6. Mean Error of Joint Position Estimation
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Figure 7. STD Error of Joint Position Estimation
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Figure 8. Mean Error of Relative Rotation Estimation
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Figure 9. STD Error of Relative Rotation Estimation
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Figure 10. Mean Error of Relative Translation Estimation

5. Real Experiment

In the real experiments, an ACS with two cameras (Can-
non PowerShot G9) is set up as Figure13 (a). The intrin-
sic parameters of each camera in the ACS are calibrated
by Bouguet’s implementation (“Camera Calibration Tool-
box for Matlab”) of [15]. Since the Bouguet’s Toolbox can
also estimate the pose information of the camera, the trans-
formations of each camera are calculated using the same
image sequence for the intrinsic calibration simultaneously.
No additional images nor manual input is required in the
real experiments.
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Figure 11. STD Error of Relative Translation Estimation

5.1. Calibration of the Pose of the Joint in Each
Camera

By Overlapping Views (Algorithm I): In the first real
experiment, the two cameras in the ACS observe the same
checker plane and record images simultaneously. The two
cameras are free to move during the transformation of the
ACS. Two image sequences (Q1 andQ2) are recorded, each
sequence consists of15 images of size1600 × 1200. The
estimated joint pose are list in Table3 as algorithm I.

By Fixed-Joint Motions (Algorithm II): In the sec-
ond real experiment, the joint of the ACS is fixed refers
to the world coordinate system during the transformation of
the ACS. The two cameras do not need to view the same
checker plane. And each camera records the image se-
quence independently. Two image sequences (Q3 andQ4)
are recorded, each sequence consists of12 images of size
1600× 1200. The camera pose of the first image is selected
as the initial pose to generate the transformation sequence
of each camera. The estimated joint pose are list in Table3
as algorithm II. The poses of the joint refer to the two cam-
eras in the ACS are also estimated manually for comparison
purpose. Since the camera pose of any image in each image
sequence can be chosen as the initial camera pose (see sec-
tion 3.1), the proposed algorithm is also tested by choosing
different images as the reference. The mean and standard
derivation of the corresponding calibration results are pre-
sented in Table4.

5.2. Calibration of Relative Pose Between the Cam-
eras in the Non-Overlapping View ACS (Al-
gorithm III)

In the third real experiment, firstly, we use the non-
overlapping view ACS calibration method to process the
image sequencesQ1 and Q2. The joint pose (̄OA) esti-
mated by algorithm II is used as the input for the relative
pose calibration. Since there are overlapping views between
Q1 andQ2, we also calibrate the relative pose between the
two cameras by the feature correspondences for compari-



Table 3. Results Of Joint Pose Calibration
I: the algorithm using overlapping views. II: the algorithmusing
fixed-joint motions. M: manual measurement(ground truth).OA is the
coordinate of the joint refers to camera A, the same applies to OB .

Algorithm Joint Pose (mm)
X Y Z

I OA 300.28 50.07 -33.47
OB -273.70 53.81 -30.15

II OA 304.55 47.64 -37.66
OB -265 54.41 -35.48

M OA 300± 10 50± 10 -40± 10
OB -270± 10 50± 10 -30± 10

Table 4. Mean and STD of the Joint Pose Calibration Algorithm
II Using Different Reference Images. (OA is the coordinate of the
joint refers to camera A, the same applies toOB .)

Algorithm Joint Pose (mm)
II X Y Z

Mean OA 305.44 47.19 -39.2
OB -262.97 56.21 -39.20

STD OA 1.89 1.16 3.02
OB 3.3 2.67 2.58

son. The calibration result are listed in Table5. After the
joint pose refers to each camera in the ACS and relative pose
between the cameras in the ACS are calibrated, the trajec-
tory of the ACS is recovered (see Figure12). The proposed

Table 5. Result of Relative Pose Calibration
III: our method. F: using feature correspondences.

Algorithm Relative Rotation (Degree)
Roll Pitch Yaw

III 17.7158 -11.3660 -80.1913
F 17.5459 -10.6024 -78.9854

Algorithm Relative Translation (mm)
Tx Ty Tz

III 295.4183 -232.4576 34.5004
F 294.0235 -229.8369 28.9739

calibration method is also tested by non-overlapping view
image sequences. Figure13 (b), (c), (d) shows the configu-
ration of the non-overlapping view ACS calibration system
in the real experiment. Two image sequences (Q5 andQ6)
are recorded, each sequence consists of17 images of size
1600 × 1200. There is no overlapping view betweenQ5

andQ6. Figure14shows some samples of the recorded im-
ages. We also manually measured the relative pose between
the two cameras for comparison. Since no feature corre-
spondence can be used, we only get a rough estimation by
a ruler. The calibration results are shown in Table6. After
the relative pose between the cameras at the initial state is
estimated, the trajectory of the non-overlapping view ACS
is recovered (see Figure15).

Figure 12. The Trajectory of the ACS Recovered fromQ1 andQ2

(a) (b)

(c) (d)
Figure 13. The ACS with Two Cannon PowerShot G9 Used in the
Real Experiment. (a) The ACS Used in the Real Experiment. (b)
The ACS and two Checker Planes. (c) In the Front of the ACS. (d)
On the Top of the ACS.

Img1 Img6 Img12 Img17

(a) Images Recorded by Camera A

Img1 Img6 Img12 Img17

(b) Images Recorded by Camera B
Figure 14. Images Recorded by the ACS

6. Conclusion

In this paper, an ACS calibration method is developed.
Both the simulation and real experiment show that the pose
of the joint in an ACS can be estimated robustly. When there
is no overlapping view between the cameras in an ACS, the
joint pose and the relative pose between the cameras can
also be calculated. The trajectory of an ACS can be recov-



Table 6. Result of Relative Pose Calibration Using Non-
Overlapping View Image Sequences. (III: our method. M: manual
measurement.)

Algorithm Relative Rotation (Degree)
Roll Pitch Yaw

III 1.3182 88.4530 0.7315
M 0 ± 5 90± 5 0 ± 5

Algorithm Relative Translation (mm)
Tx Ty Tz

III 291.3321 -17.2837 -292.1382
M 290±20 0± 20 280±20

Figure 15. The Trajectory of the ACS Recovered fromQ5 andQ6

ered after the ACS is calibrated. The proposed calibration
method requires only the image sequences recorded by the
cameras in the ACS. In the real experiment, the intrinsic
and extrinsic parameters of the ACS are calibrated using
the same image sequences simultaneously.

Our future plan may focus on using an ACS attached on
different parts of human body to track the motion of the
human. We foresee that if calibration of articulated cameras
become a simple routine, researchers will find many novel
and interesting applications for such a camera system.
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