
Transition Dominance in Domain-Independent1

Dynamic Programming2

J. Christopher Beck #3

Department of Mechanical and Industrial Engineering, University of Toronto4

Ryo Kuroiwa #5

National Institute of Informatics, Tokyo, Japan6

The Graduate School of Advanced Studies, SOKENDAI, Tokyo, Japan7

Jimmy H.M. Lee #8

Department of Computer Science and Engineering, The Chinese University of Hong Kong9

Peter J. Stuckey #10

Monash University, Department of Data Science and AI, Australia11

ARC Training Centre OPTIMA, Australia12

Allen Z. Zhong #13

Monash University, Department of Data Science and AI, Australia14

ARC Training Centre OPTIMA, Australia15

Abstract16

Domain-independent dynamic programming (DIDP) is a model-based paradigm for dynamic pro-17

gramming (DP) that enables users to define DP models based on a state transition system. Heuristic18

search-based solvers have demonstrated strong performance in solving combinatorial optimization19

problems. In this paper, we formally define transition dominance in DIDP, where one transition20

consistently leads to better solutions than another, allowing the search process to safely ignore21

dominated transitions. To facilitate the efficient use of transition dominance, we introduce an22

interface for defining transition dominance and propose the use of state functions to cache values,23

thereby avoiding redundant computations when verifying transition dominance. Experimental results24

on DP models across multiple problem classes indicate that incorporating transition dominance and25

state functions yields a 5 to 10 times speed-up on average for different search algorithms within the26

DIDP framework compared to the baseline.27

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization28

Keywords and phrases Dominance, Dynamic Programming, Combinatorial Optimization29

Digital Object Identifier 10.4230/LIPIcs.CP.2025.630

Supplementary Material Software (Source Code): https://github.com/domain-independent-dp/31

didp-rs/releases/tag/transition-dominance-cp2532

Funding This work was supported by the Australian Research Council OPTIMA ITTC IC200100009,33

a General Research Fund (CUHK14206321) by the Hong Kong University Grants Committee, a34

Direct Grant by CUHK, and the Natural Sciences and Engineering Research Council of Canada.35

1 Introduction36

Dynamic programming [2] is a classical approach to solving combinatorial optimization37

problems. While it is often the most efficient way of solving many problems, traditionally38

dynamic programming solutions are hard coded for each problem of interest. Domain-39

Independent Dynamic Programming (DIDP) [13] is a new paradigm to allow the statement40

of the Bellman equations defining a combinatorial opmisation problem, independent of the41

techniques used to solve these equations, separating the specification of the model from42

the solving, as in other complete solving approaches such as constraint programming (CP)43

© J. Christopher Beck, Ryo Kuroiwa, Jimmy H.M. Lee, Peter J. Stuckey, and Allen Z. Zhong;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jcb@mie.utoronto.ca
https://orcid.org/0000-0002-4656-8908
mailto:kuroiwa@nii.ac.jp
https://orcid.org/0000-0002-3753-1644
mailto:jlee@cse.cuhk.edu.hk
https://orcid.org/0000-0001-9526-5850
mailto:peter.stuckey@monash.edu
https://orcid.org/0000-0003-2186-0459
mailto:allen.zhong@monash.edu
https://orcid.org/0000-0001-8807-8600
https://doi.org/10.4230/LIPIcs.CP.2025.6
https://github.com/domain-independent-dp/didp-rs/releases/tag/transition-dominance-cp25
https://github.com/domain-independent-dp/didp-rs/releases/tag/transition-dominance-cp25
https://github.com/domain-independent-dp/didp-rs/releases/tag/transition-dominance-cp25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Transition Dominance in Domain-Independent Dynamic Programming

and mixed integer programming (MIP). This separation enables easy experimentation with44

different search algorithms for the same problem domain and enables research on different DP45

models for a given problem. Empirical evaluation demonstrates the framework outperforms46

CP and MIP on multiple problem classes, closing a number of open problem instances [14].47

The Dynamic Programming Description Language (DyPDL) [13] is a powerful modelling48

language for DIDP that facilitates the expression of dynamic programming (DP) models.49

Beyond the problem components, DyPDL also supports the modelling of redundant inform-50

ation, such as state dominance and dual bounds, to improve the performance of various51

solving approaches. In this paper, we extend this framework by formally defining transition52

dominance, redundant information that indicates that certain transitions can be safely ignored53

if a state satisfies a certain condition. By incorporating transition dominance into DIDP, we54

make these advanced techniques accessible in a solver-independent manner. Deriving domin-55

ances in different problem domains is a challenging task that requires a deep understanding56

of problem structures. Our case studies demonstrate that the insights of identifying new57

dominances can be applied to similar problem domains, enabling the discovery of transition58

dominance from common substructures. Our key contributions are as follows:59

1. We formally define the concept of transition dominance for dynamic programming models.60

2. We introduce a new component into DyPDL to allow users to model transition dominance61

effectively and state functions to avoid redundant computations.62

3. We present new transition dominances for several combinatorial optimization problems.63

4. We demonstrate that using transition dominance and state functions substantially improve64

the performance of various search algorithms with 5 to 10 times speed-ups.65

2 Background66

A DyPDL model is a tuple ⟨V, S0, T , B, C⟩, where V is a set of state variables, S0 is the target67

state, T is a set of transitions, B is a set of base cases, and C is a set of state constraints. A68

state variable can be an element, set, or numeric variable. A state S ∈ D is a tuple that69

assigns values to state variables in V , where the value of a variable v ∈ V is denoted by S[v].70

Expressions are used in transitions, base cases, and state constraints to describe the71

computation of a value using state variables and constants. When an expression e is evaluated72

given a state S, it returns a value e(S). A numeric expression returns a numeric value73

e(S) ∈ Q. It can refer to a numeric constant or variable, use arithmetic operations, and74

take the cardinality of a set expression. An element expression returns a nonnegative integer75

e(S) ∈ Z+
0 , while a set expression returns a set e(S) ∈ 2Z+

0 . A condition cond is a function76

mapping a state S to a Boolean value c ∈ {⊤, ⊥}. We say S |= cond if c = ⊤, and S |= C77

for a set of conditions C if S |= cond for all cond ∈ C. A condition can refer to a Boolean78

constant, compare two elements or numeric expressions, or check whether an element is79

included in a set. The conjunction and disjunction of two conditions are also conditions.80

Base cases in B and state constraints in C are conditions. When a base case B ∈ B is satisfied81

by a state, the state is called a base state, and the set of all base states is denoted as SB.82

We assume that a function base_cost : SB 7→ Q is defined, which returns a numeric value83

base_cost(S) given a base state S.84

A transition τ ∈ T has effect effτ : D 7→ D which maps a state S to another state SJτK,85

and cost costτ : R ∪ {∞} × D 7→ R ∪ {∞} which maps a real value r and a state S to a86

value costτ (r, S). Preconditions preτ are conditions on state variables, and τ is applicable in87

a state S only if all preconditions are satisfied, denoted by S |= preτ .88

Solving a DyPDL model requires finding a sequence of transitions with the optimal cost89

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:3

to transform the target state S0 into a base state. Let σ = ⟨σ1, . . . , σm⟩ be a sequence90

of transitions applicable from S, i.e., S |= preσ1 and Si |= preσi+1 where S1 = SJσ1K and91

Si+1 = SiJσi+1K. Then, σ is an S-solution if Sm is a base state, S and each Si with92

i = 1, ..., m satisfy state constraints, and S and Si with i < m are not base states. If S is a93

base state, we assume that an empty sequence ⟨⟩ is an S-solution. The cost of an S-solution94

σ is defined recursively as95

if σ = ⟨⟩ , solution_cost(σ, S) = base_cost(S)96

otherwise, solution_cost(σ, S) = costσ1(solution_cost(⟨σ2, ..., σm⟩, SJσ1K), S)97

An optimal solution for minimization is an S-solution whose cost is less than or equal to98

the cost of any S-solution. Let V be a function of a state S that returns ∞ if there are no99

S-solution or the cost of an optimal S-solution otherwise.100

In this paper, we assume that a DyPDL model is both finite and acylic, and the cost101

expression satisfies the Principle of Optimality [2]. Under these assumptions, V (S) can be102

computed by Bellman equation [15]:103

V (S) = base_cost(S), if S ∈ SB (1a)104

V (S) = ∞, else if S ̸|= C (1b)105

V (S) = min
τ∈T (S)

costτ (V (S[[τ]]), S) else (1c)106

State dominance is a type of redundant information useful for improving the solving107

efficiency of DyPDL models.108

▶ Definition 1. A state S dominates another state S′, i.e. S ⪯ S′, if and only if there exists109

an S-solution σ for any S′-solution σ′ such that costσ(S) ≤ costσ′(S′) and |σ| ≤ |σ′|.110

In practice, it is challenging to detect and exploit state dominance, and therefore the DyPDL111

formulation focuses on its approximation defined by resource state variables with additional112

preference. A state S is preferred over (or approximately dominates) another state S′, denoted113

as S ⪯a S′, iff S[v] ≥ S′[v] for resource variables where greater is preferred, S[v] ≤ S′[v] for114

resource variables where less is preferred, and S[v] = S[v′] for non-resource variables.115

3 Transition Dominance in DIDP116

In this paper, we enhance the framework of DIDP by introducing transition dominance.117

State dominance falls into the category of memory-based dominance rules [22], where an118

unexpanded state is compared with previously generated states and pruned if it is shown to119

be dominated. In contrast, transition dominance is a type of non-memory-based dominance120

that implies the existence of a better solution without requiring additional memory.121

▶ Definition 2. Transition dominance at a state S is a relation defined over T (S) such that τ122

dominates τ ′ in S, denoted as τ ⪯S τ ′, implies that costτ (V (S[[τ]]), S) ≤ costτ ′(V (S[[τ ′]]), S).123

It is straightforward to show that transition dominance is a transitive relation. When a124

transition dominance relation in a state S is irreflexive, i.e., τ ̸⪯S τ , we denote the dominance125

relation by ≺S . If transition dominance relations in all states are irreflexive, removing126

dominated transitions for all states preserves the optimal cost for a DyPDL model.127

▶ Proposition 3. Let T ∗(S) = {τ ′ ∈ T (S) | ∄τ ∈ T (S), τ ≺S τ ′} be the set of non-dominated128

transitions for a state S where ≺S is an irreflexive transition dominance relation in a state S.129

The optimal cost of the DyPDL model ⟨V, S0, T , B, C⟩ is equivalent to that of ⟨V, S0, T ∗, B, C⟩.130

CP 2025

6:4 Transition Dominance in Domain-Independent Dynamic Programming

Job Release(ri) Processing(pi)
1 0 2
2 2 4
3 1 3

S0

S1 S2 S3

S4 S5 S6 S7 S8 S9

S10 S11 S12

τ1 : 2 τ2 : 6 τ3 : 4

τ2 : 6 τ3 : 5 τ1 : 8 τ3 : 9 τ1 : 6 τ2 : 8

τ3 : 9 τ2 : 9 τ3 : 11 τ1 : 11 τ2 : 10 τ1 : 10

(a) Example with transition dominance

Job Release(ri) Processing(pi)
1 0 3
2 2 4
3 1 3

S0

S1 S2 S3

S4 S5 S6 S7 S8 S9

S10 S11 S12

τ1 : 3 τ2 : 6 τ3 : 4

τ2 : 7 τ3 : 6 τ1 : 9 τ3 : 9 τ1 : 7 τ2 : 8

τ3 : 10 τ2 : 10 τ3 : 12 τ1 : 12 τ2 : 11 τ1 : 11

(b) Example with state dominance

Figure 1 Example job sequencing instances with transition dominance and state dominance.

The proof, inspired by Chu and Stuckey [4], is in Appendix A.131

Note that τ dominates τ ′ in state S, is different from state dominance S[[τ]] ⪯ S[[τ ′]].132

Transition dominance τ ⪯S τ ′ holds as long as costτ (V (S[[τ]]), S) ≤ costτ ′(V (S[[τ ′]]), S),133

whereas state dominance between S[[τ]] and S[[τ ′]] requires V (S[[τ]]) ≤ V (S[[τ ′]]). These two134

inequalities do not necessarily imply each other, as their relationship depends on the specific135

cost expressions. In practice, state dominance is approximately determined by comparing136

the values of state variables between two states, whereas transition dominance depends only137

on the values of variables within a single state.138

▶ Example 4. Consider a sequencing problem with three jobs, where each job has a release139

time and a processing time, and can only be processed after its release time. The objective140

is to find a sequence of jobs that minimizes the total completion time. We can model this141

problem using a set variable R to represent the remaining jobs and an integer resource142

variable t to represent the current time. A transition τi for each job i schedules the job next,143

with the precondition i ∈ R. The optimal value can be computed as follows:144

V (R, t) = 0, if R = ∅

V (R, t) = min
i∈R

{max(t, ri) + pi + V (R \ {i}, max(t, ri) + pi)} else
145

where max(t, ri)+pi is the completion time for job i given that the current time is t. Figure 1146

gives two example instances and their complete state transition graphs. Each edge in the147

transition graph is labeled with a transition and its corresponding value of max(t, ri) + pi.148

Base states are represented with a double-circle.149

Figure 1a illustrates the effect of transition dominance, where pruned solutions are150

highlighted in blue. Transition τ1 dominates τ2 in state S0 because the release time of job151

2 is not earlier than the time when job 1 can be fully processed. Thus, directly selecting152

τ1 from S0 is always preferable, leading to the pruning of all S0-solutions that start with153

τ2. Note that transition dominance concerns solutions originating from a single state but154

differing in their initial transitions.155

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:5

Figure 1b illustrates the effect of state dominance, where the processing time of job 1 is156

modified to 3, and so τ1 no longer dominates τ2. Note that t is a resource variable where157

a smaller value is preferred, which defines the state dominance criterion: if a state S has158

the same set of remaining jobs as another state S′, but a smaller or equal current time, i.e.,159

S[R] = S′[R] and S[t] ≤ S′[t], then S dominates S′. A close examination reveals that S4160

dominates S6, S5 dominates S8, and S9 dominates S7. Assuming that the state graph is161

explored using depth-first search, proceeding from left to right, solutions passing through162

S6 and S8, highlighted in red, are pruned by state dominance in this example. As shown,163

pruning by state dominance and by transition dominance operate differently. ◀164

4 Modelling Transition Dominance in DIDP165

Theoretically, transition dominance is defined for each state, but transition dominance rules166

that are valid for a set of states satisfying a certain condition are more interesting in practice.167

In this section, we introduce two constructs to facilitate modelling transition dominance.168

4.1 An Interface for Transition Dominance169

Exploiting transition dominance avoids the generation of successor states by dominated170

transitions. A direct way to specify transition dominance is to add additional preconditions171

for transitions. Modelers first identify a condition cτ⪯τ ′ on states such that if a state S172

satisfies it, then τ dominates τ ′ in S, i.e., S |= cτ⪯τ ′ → τ ⪯S τ ′. Then, the negation173

¬(cτ⪯τ ′ ∧ preτ) is added to the preconditions for the dominated transition τ ′, which states174

that τ ′ is applicable only if either transition τ is not applicable or the condition for transition175

dominance τ ⪯S τ ′ is not satisfied. Otherwise, τ ′ can be pruned since τ is a better applicable176

transition. In DP-based tools with non-declarative APIs like ddo [10] and CODD [20],177

transition dominance can be implemented by manually checking these preconditions during178

successor generation.179

▶ Example 5. Consider the transition dominance in Example 4 again. If there are two jobs180

i and j such that the time after scheduling i and j consecutively is no greater than that181

after scheduling j only in any state, then scheduling i first is no worse than scheduling j first.182

Formally, for any state S, if precede(i, j) = max(S[t], ri) + pi ≤ rj is true, then taking τi at183

state S is no worse than taking τj . To fully utilize the power of transition dominance, each184

transition τj should be compared against all other transitions to determine whether there is185

a transition τi which dominates τj . Therefore, we need to augment the precondition of τj186

with ∧i ̸=j¬{precede(i, j) ∧ (i ∈ R)}. ◀187

Directly modelling transition dominance through preconditions introduces two key chal-188

lenges. First, it conflates the redundant information of transition dominance with the actual189

preconditions of transitions, making it difficult for solvers to treat these distinct model190

elements differently. Second, multiple conditions for dominance require careful handling of191

tie-breaking for symmetric transitions that dominate each other in a state.192

▶ Example 6. Consider again the job sequencing problem in Example 4. If the current193

time t is greater than the release times for two jobs i and j and pi ≥ pj , then transition τi194

dominates another transition τj . This is a special case of Proposition 16. However, while the195

dominance is valid if the jobs have equal processing time, adding preconditions for both jobs196

may make a satisfiable instance unsatisfiable as both transitions become inapplicable.197

CP 2025

6:6 Transition Dominance in Domain-Independent Dynamic Programming

Multiple conditions for dominance may form reflexive transition dominance relations in some198

states, violating the requirement in Proposition 3 to preserve the optimality. To resolve199

this issue, modelers would need to carefully implement tie-breaking between symmetric200

transitions, adding unnecessary complexity to the model.201

To address these challenges, we introduce a new function in DIDPPy, a Python interface202

for using DIDP, that allows users to explicitly define transition dominance. The function203

model.add_transition returns a unique identifier for the newly added transition that can204

later be used to retrieve the transition and define transition dominance relationships. The205

function model.add_transition_dominance is provided for this purpose and takes three206

arguments: the identifiers of the dominating and dominated transitions, and the condition207

for transition dominance. The following shows a model for the problem in Example 5.208

Listing 1 Sample model for job sequencing with transition dominance
209

import didppy as dp , itertools210

r = [0, 2, 1]211

p = [2, 4, 3]212

all_jobs = [0, 1, 2]213

ids=[]214

215

model = dp.Model ()216

jobs = model.add_object_type(number =3)217

R = model.add_set_var(target=all_jobs , object_type=jobs)218

t = model.add_int_resource_var(target=0, less_is_better=True)219

model.add_base_case ([R.is_empty ()])220

for i in all_jobs:221

tran = dp.Transition(222

name="schedule␣job{}".format(i),223

cost=(dp.max(t, r[i]) + p[i]) + dp.IntExpr.state_cost (),224

effects =[(R, R.remove(i)), (t, dp.max(t, r[i]) + p[i])],225

preconditions =[R.contains(i)],226

)227

id = model.add_transition(tran)228

ids.append(id)229

230

for i, j in itertools.permutations(all_jobs , 2):231

if i != j:232

model.add_transition_dominance(233

ids[i], ids[j], [dp.max(t, r[i]) + p[i] <= r[j]]234

)235236

We formalize the entity defined with our interface as a transition dominance rule.237

▶ Definition 7. A transition dominance rule is a triple (τ, τ ′, c) such that S |= c →238

costτ (V (S[[τ]]), S) ≤ costτ ′(V (S[[τ ′]]), S).239

Suppose D is a set of transition dominance rules. The transition dominance graph240

G(S) = (N, E) for a state S is a directed graph where the set of nodes is N = T (S) and a241

directed edge (τ, τ ′) ∈ E exists if ∃(τ, τ ′, c) ∈ D with S |= c.242

A transition dominance rule provides a partial description of transition dominance relations243

across all states. Using the transition dominance graph G(S), we consider the transitive244

closure of the binary relation induced by a given set of transition dominance rules. Concretely,245

the binary relation ⪯S over T (S) derived from G(S) is defined such that there is a path246

from τ to τ ′.247

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:7

▶ Proposition 8. The relation ⪯S derived from a transition dominance graph is a transition248

dominance relation for S.249

Proof. For a pair of transitions such that τ ⪯S τ ′, there exists a path (τ1, ..., τm) in the250

transition dominance graph where τ = τ1 and τ ′ = τm. By Definition 7, costτi
(V (S[[τi]]), S) ≤251

costτi+1(V (S[[τi+1]]), S) for i = 1, .., m − 1. Thus, costτ (V (S[[τ]]), S) ≤ costτ2(V (S[[τ2]]), S) ≤252

... ≤ costτ ′(V (S[[τ ′]]), S), which satisfy the requirement of a transition dominance relation. ◀253

While irreflexivity is required to ensure there exists at least one optimal solution as shown in254

Proposition 3, a user may define symmetric transition dominance rules, e.g., (τ, τ ′, c) and255

(τ ′, τ, c′), such that there exists a state S where S |= c ∧ c′. To enforce irreflexivity in the256

transition dominance relation derived from the transition dominance graph while pruning257

as many dominated transitions as possible, we identify all strongly connected components258

(SCCs) and construct a contracted transition dominance graph as follows.259

▶ Definition 9. Given the transition dominance graph G(S) for a state S, a directed graph260

G′(S) is a contracted transition dominance graph if the set of nodes is T (S), and edges are261

constructed with the following procedure:262

1. In each SCC of G(S), select a representative node r, and add edge (r, v) to G′(S) for263

each node v ̸= r in the SCC.264

2. For each edge (u, v) in G(S) such that u and v are in different SCCs, add an edge (r, r′)265

to G′(S) where r and r′ are the representative nodes of the SCCs to which u and v belong.266

▶ Proposition 10. The binary relation ⪯S derived from a contracted transition dominance267

graph is an irreflexive transition dominance relation.268

Proof. Let G(S) be the transition dominance graph for a state S, and let G′(S) be the269

contracted transition dominance graph. We show that if G′(S) has a path from τ to τ ′, then270

G(S) also has a path from τ to τ ′. Then, by Proposition 8, the binary relation derived from271

G′(S) is a transition dominance relation. Consider an arbitrary edge (u, v) on a path from τ272

to τ ′ in G′(S). We show that G(S) has a path from u to v, and thus, by concatenating such273

paths, we can find a path from τ to τ ′ in G(S). If u and v belong to the same SCC in G(S),274

then there is a path from u to v in G(S). If u and v belong to different SCCs in G(S), then275

by the construction of G′(S), they represent their respective SCCs. Since G′(S) contains the276

edge (u, v), there exists an edge (u′, v′) in G(S) where u′ belongs to the SCC of u and v′
277

belongs to the SCC of v. Moreover, G(S) has a path from u to u′ and a path from v′ to v.278

Thus, a path from u to v exists in G that includes (u′, v′).279

Next, we show that G′(S) is acyclic, which implies that the derived binary relation over280

T (S) is irreflexive. Assume for contradiction that G′(S) contains a cycle, i.e., there exists a281

path from u to v and a path from v to u in G′(S). By the previous argument, G(S) must282

then contain a path from u to v and a path from v to u, meaning that u and v belong to283

the same SCC in G(S). However, since u and v have outgoing edges in G′(S), they must be284

representative nodes of different SCCs, contradicting the fact that they are in the same SCC.285

Thus, G′(S) cannot contain a cycle. ◀286

Finally, we show the maximality of a contracted transition dominance graph, i.e., we cannot287

use more transition dominance rules while keeping irreflexivity.288

▶ Proposition 11. Let G(S) be the transition dominance graph for a state S and G′(S) be a289

contracted transition dominance graph. Then, there does not exist an acyclic graph G′′(S)290

with the set of nodes T (S) satisfying all of the following properties:291

CP 2025

6:8 Transition Dominance in Domain-Independent Dynamic Programming

1. If G′′(S) has a path from τ to τ ′, then G(S) also has a path from τ to τ ′.292

2. If a node τ has an incoming edge in G′(S), then τ does so also in G′′(S).293

3. There exists a node τ that has an incoming edge in G′′(S) but not in G′(S).294

Proof. Assume that an acyclic graph G′′(S) with the described properties exists. Based on295

the third property, let τ be a node that has an incoming edge in G′′(S) but not in G′(S).296

By construction of G′(S), τ must be the representative node of an SCC in G(S). Let N ′ be297

the set of nodes in this SCC. In G(S), each node v ∈ N ′ does not have incoming edges from298

nodes in different SCCs; otherwise, an edge from a representative node in a different SCC to299

τ should have been added to G′.300

In G′(S), since τ is the representative node of N ′, each node v ∈ N ′ \ {τ} has incoming301

edge (τ, v). By the second property, in G′′(S), each node v ∈ N ′ \ {τ} has an incoming edge.302

Since τ also has an incoming edge in G′′(S), all nodes in N ′ have incoming edges in G′′(S).303

By the previous paragraph, an incoming edge to each v ∈ N ′ must be from a node in N ′. In304

G′′(S), since each node in N ′ has an incoming edge from another node in N ′, there must be305

a cycle, contradicting our assumption. ◀306

Note that if two transitions dominate each other, the choice of which dominance to enforce can307

impact search efficiency. However, by definition, our model provides no basis for preferring308

one over the other. In practice, we use Tarjan’s algorithm to detect all SCCs and keep the309

first node visited by depth-first search as the representative node of each SCC.310

Note that using the transition dominance interface and preconditions offer different311

advantages in terms of computational efficiency. Suppose that a transition τ is dominated312

by τ ′ if S |= cτ ′⪯τ and by τ ′′ if S |= cτ ′′⪯τ . Given a state S with T (S) = {τ, τ ′, τ ′′}, the313

transition dominance interface requires evaluating cτ ′⪯τ and cτ ′′⪯τ and performing SCC314

extraction to construct a contracted transition dominance graph. However, when transition315

dominance is modeled with preconditions, we can avoid evaluating cτ ′′⪯τ once we detect316

S |= cτ ′⪯τ . In contrast, using preconditions requires restricting conditions for transition317

dominance for tie-breaking, which may result in lost opportunities to exploit certain transition318

dominances within a state. Therefore, selecting the appropriate method depends on the319

trade-off between computational overhead and the effectiveness of transition dominance320

exploitation.321

4.2 Avoiding Redundant Computation using State Functions322

Modelling transition dominance typically requires pairwise comparisons of all applicable323

transitions of a state. To prevent the generation of dominated solutions, the condition324

cτ⪯τ ′ should be evaluated for all pairs (τ, τ ′) of transitions where τ potentially dominates τ ′.325

However, evaluating these conditions often results in redundant computations.326

▶ Example 12. Consider the problem in Example 5 and its corresponding model in Listing 1.327

The expression max(t, ri)+pi for all transitions, which is represented by the next_time array328

in the model, appears in the cost expression, the effects of the transition τi for job i, and329

the condition for transition dominance when comparing τi with other transitions. Suppose330

there are n jobs in total. The expression max(t, ri) + pi needs to be evaluated O(n) times331

when generating applicable transitions and removing dominated transitions. By caching the332

values of such redundant evaluations, the number of times to evaluate such expression can333

be reduced to O(1) for each transition. ◀334

To address this observation, we introduce state functions in DyPDL. State functions are335

defined by expressions using state variables and can be used in preconditions, effects, and336

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:9

cost expressions, just as state variables. During the solving process, state functions are lazily337

computed and cached. The following shows the usage in the job sequencing example.338

339
next_time = [dp.max(t, r[i]) + p[i] for i in all_jobs]340

next_time_sf = [dp.add_int_state_fun(next_time[i]) for i in all_jobs]341342

To use state functions in Listing 1, we define state functions next_time_sf for all transitions343

τi and replace all occurrences of dp.max(t, r[i]) + p[i] with next_time_sf[i]. When344

checking if the condition to test whether τ0 dominates τ1, the expression next_time[0] is345

computed and cached, and for all other comparison between τ0 and τj for j = 2, . . . , n, the346

value is reused and therefore redundant computation of next_time[0] is avoided. State347

functions are similar to axioms in PDDL [28], which are derived predicates whose truth is348

inferred from values of some basic predicates, while results of state functions can be Boolean,349

integer, or set values.350

As we will show in the experimental evaluation, using state functions is sometimes351

crucial in exploiting transition dominance efficiently. Additionally, state functions also avoid352

duplicate recomputation in the original models for problems such as Talent Scheduling [25]353

and OPTW [11]. More detailed descriptions of problems and models are in Appendix B.354

5 Case Studies355

In this section, we demonstrate the applicability of transition dominance across various356

optimization problems. For each problem, we describe its DyPDL model and the identified357

transition dominance. All proofs of propositions in this section are in Appendix A.358

5.1 Aircraft Landing359

The aircraft landing problem [18] involves scheduling the landing of a set of aircraft on360

multiple runways to minimize the delay from the target landing times. The aircraft are361

partitioned into multiple classes, and it is assumed that each class follows a first-come-first-362

serve sequence according to the target landing time. The decision at a state, then, is to363

determine which class of aircraft should land next on each runway. The model uses state364

S = (n⃗, l⃗, c⃗), where ni ∈ n⃗ is the index of the next aircraft for each class i, lj ∈ l⃗ is the most365

recent landing time for runway j, and cj ∈ c⃗ is the class of the most recently landed aircraft366

for runway j. The target and latest landing times of the next aircraft of class i are ti,ni
and367

pi,ni
, respectively.368

Landing two aircrafts of class i and i′ consecutively on the same runway must respect369

the minimum separation time sepi,i′ . A transition τi,j lands the next aircraft of class i on370

runway j with the delay d(S, i, j) = (lj + sepcj ,i − ti,ni)+, where (x)+ is 0 if x < 0 and x371

otherwise. This transition is applicable only when ni > 0 and the actual landing time is no372

later than pi,ni . The optimal value is computed as:373

V (S) = 0, if ni = 0, ∀i

V (S) = min
τi,j∈T (S)

{d(S, i, j) + V (S[[τi,j]])} else374

where transition τi,j updates ni to ni − 1, lj to max(lj + sepcj ,i, ti,ni), and cj to i.375

We follow Coppé et al. [6] to add state dominance that l⃗ are integer resource variables376

where less is preferred. We define transition dominance where landing the aircraft for class i377

is better than landing another class i′ on the same runway if the former can be landed before378

CP 2025

6:10 Transition Dominance in Domain-Independent Dynamic Programming

Minimum Separation Time
large medium

large 80s 70s

medium 60s 50s

� large

� medium

�

10s

�

Target: 60s
70s

�

Target: 150s

70s

runway

Figure 2 An example instance of aircraft landing.

ti′,ni′ − sepi,i′ . Figure 2 shows an example with two aircraft classes. A large aircraft has379

landed on the runway at 10s, and the target landing times for the next medium and large380

aircraft are 60s and 150s respectively. The target landing time of the next large aircraft is381

so late that the next medium aircraft can land first without delaying the large aircraft.382

▶ Proposition 13. Suppose minimum separation times satisfy the triangle inequality: sepi,j +383

sepj,k ≥ sepi,k for any classes i, j, k. If τi,j , τi′,j ∈ T (S) satisfy384

max(lj + sepcj ,i, ti,ni) ≤ ti′,ni′ − sepi,i′385

at the current state S, then costτi,j
(V (S[[τi,j]]), S) ≤ costτi′,j

(V (S[[τi′,j]]), S). ◀386

The transition dominance described above schedules a task, such as landing an aircraft,387

before the start of another task. This type of transition dominance also applies to other388

problems, such as the problem in Example 4, the Orienteering Problem with Time Windows389

(OPTW) and the Travelling Salesman Problem with Time Windows and Makespan Objective390

(TSPTW-M). Detailed problem descriptions are provided in Appendix B.391

5.2 Graph-Clear392

The Graph-Clear problem arises from multi-robot surveillance tasks [12]. The problem aims393

to find a sequence of steps to decontaminate (“sweep”) nodes in an undirected graph (N, E)394

with all nodes being initially contaminated. The objective is to minimize the maximum395

number of robots used over all steps in a given indoor environment modelled as a graph.396

Each node i ∈ N can be swept using ai robots, and each edge (i, j) ∈ E can be blocked using397

bij robots. If we sweep a node i ∈ N in one step, we must use robots for sweeping i, blocking398

edges connecting i, and blocking edges connecting all swept and unswept nodes to avoid399

recontamination. Figure 3 shows an example instance where the numbers on nodes and edges400

represent the number of robots required for node sweeping and edge blockage, respectively.401

The DyPDL model proposed by Kuroiwa and Beck [13] uses a set state variable C to402

represent swept nodes. A transition τi for each node i ∈ N is defined to add a node i into403

C and has the precondition i /∈ C. The number of robots used to sweep i at a state C404

is R(i, C) = ai +
∑

j∈N bij +
∑

j∈C\{i}
∑

k∈C bjk, and an optimal solution minimizes the405

maximum number of robots used at any step. The optimal value is computed as follows:406

V (C) = 0, if C = N

V (C) = min
i∈C

max{R(i, C), V (C ∪ {i})} else407

We define a transition dominance for the Graph-Clear problem inspired by the customer408

search model for the Minimization of Open Stacks Problem (MOSP) [4]. In Graph-Clear,409

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:11

3 4 1

2 5 6

a b c

d e f

2 1

6 1

6 2 2

swept nodes
unswept nodes

Figure 3 An example instance of Graph-Clear.

observe that in any sequence, a transition τi always requires the same number of robots to410

sweep a node i and block the edges connecting i to its neighbors. The difference arises in411

the number of robots required to block the cutting edges that connect swept nodes in C and412

unswept nodes in C \ {i}. If a transition τi reduces the weight of the cutting edges, sweeping413

any other unswept node i′ after applying τi requires fewer robots compared to sweeping i′
414

in the current state. Moreover, if τi uses fewer robots compared to transition τi′ , then the415

sequence beginning with transition τi then τi′ uses fewer robots at all steps compared to the416

corresponding sequence beginning with τi′ .417

Consider the instance in Figure 3. Sweeping node b in the next step is preferable to418

sweeping node e. First, the weight of the cutting edges after sweeping b becomes (6+2+2) = 10,419

which is smaller than the current state (2 + 1 + 6 + 2) = 11. Sweeping e and f afterwards420

will require fewer robots. Second, sweeping b requires only 4 + (2 + 2 + 1) + (6 + 2) = 17421

robots, which is fewer than the 5 + (2 + 6 + 1) + (2 + 1 + 2) = 19 robots needed to sweep e.422

We can conclude that sweeping b then e is always better than sweeping e from the current423

state. This can be formulated as transition dominance in the model.424

▶ Proposition 14. Suppose i, i′ ∈ C for a state in the DyPDL model of the Graph-Clear425

problem. If we have i ̸= i′ and426

ai +
∑
j∈C

bij ≤ ai′ +
∑
j∈C

bi′j (2a)427

∑
j∈C

bij ≤
∑
j∈C

bij (2b)428

at a state S, then costτi
(V (S[[τi]]), S) ≤ costτi′ (V (S[[τi′]]), S). ◀429

5.3 Discrete Lot Sizing430

The discrete lot-sizing problem (DLSP) is a production planning problem for items of various431

types on a single machine [24]. Each type has a set of items, and the jth item of type i432

must be produced before its due period di,j . A changeover cost ci,i′ is incurred when the433

machine switches from producing an item of type i to an item of type i′. Additionally, the434

stocking cost is calculated as the product of the unit cost si and the difference between the435

production period and di,j .436

We propose a sequence model that makes decisions based on the reversed production437

sequence of item types. The model uses three types of state variables: an integer variable438

q represents the latest available period for producing items, t represents the type of item439

chosen in the last decision, and r⃗ is a vector where ri ∈ r⃗ indicates the remaining demand440

for each type i. A transition τi represents the decision to produce an item of type i.441

CP 2025

6:12 Transition Dominance in Domain-Independent Dynamic Programming

Item Parameters
Type Item No. di,j si

1 1 3 2
2 4 2
3 6 2
4 9 2

2 1 7 3
2 9 3

Changeover Costs
Type 1 Type 2

Type 1 0 3
Type 2 2 0

0 1 2 3 4 5 6 7 8 9 10 period

Type 1 Type 2

Figure 4 An example instance and solution sequence of DSLP.

Since backlogging is not allowed, the item is produced at the period min(di,ri , q), and the442

available period is updated to min(di,ri
, q) − 1. The total cost of the transition is defined as443

c(S, i) = ci,t + si · (di,ri
− q)+.444

Figure 4 illustrates an example instance and a corresponding solution sequence σ =445

⟨τ1, τ2, τ1, τ2, τ1, τ1⟩. Initially, q = 10 and r⃗ = ⟨4, 2⟩. The first transition τ1 selects an item of446

type 1 to produce at period 9, which is the latest due period for type 1 items. The state447

variables are updated as follows: q becomes min(d1,4, 10) − 1 = 8, t is updated to 1, and r⃗ is448

updated to ⟨3, 2⟩. The second transition τ2 selects an item of type 2 to produce at period 8,449

incurring a stocking cost of s2 · (d2,r2 − q)+ = 3 · (9 − 8) = 3 and a changeover cost of c2,1 = 2.450

The sequence continues until either all items are produced or the sequence becomes invalid,451

as the available production period q becomes less than the total number of remaining items.452

Formally, the DP model can be expressed using the following Bellman equation:453

V (S) = 0, if ∀i, ri = 0

V (S) = ∞, if
∑

i ri > q

V (S) = min
τi∈T (S)

{c(S, i) + V (S[[τi]])}, otherwise
454

Observe that in the example sequence in Figure 4, the machine is idle at period 7. An item455

of type 2 could have been produced at this period to reduce the stocking cost. Additionally,456

this would save the changeover cost incurred from switching from a type 2 item to a type457

1 item at period 5. We could verify whether τ2 dominates τ1 after applying the prefix458

transitions ⟨τ1, τ2⟩. If τ2 indeed dominates τ1, the example sequence can be safely discarded,459

as it is guaranteed not to be optimal. The following proposition formally characterizes the460

transition dominance observed in this example.461

▶ Proposition 15. Suppose the changeover costs satisfy the triangle inequality. If τi, τi′ ∈462

T (S) where i ̸= i′ satisfy:463

i has a later production period: di′,ri′ < min(di,ri
, q),464

the total cost is less: ci′,i + ci,t ≤ ci′,t + 2si,465

at a state S, then costτi(V (S[[τi]]), S) ≤ costτi′ (V (S[[τi′]]), S). ◀466

Note that Coppé, Gillard, and Schaus [5] propose a similar model which introduces a auxiliary467

idle transition and makes decisions for each period in reverse, starting from the last period468

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:13

0 900 00 0.5 1
Completion time (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

ACPS

base +D +S +D +S

0 900 00 0.5 1
Completion time (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

CAASDy

base +D +S +D +S

0 900 00 0.5 1
Completion time (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

CABS

base +D +S +D +S

Figure 5 The ratio of instances against time and optimality gap averaged by all problem classes

considered in the planning horizon. Preliminary experiments show that solving the sequence469

model is more efficient than the period model.470

6 Experimental Evaluation471

In this section, we experimentally evaluate the impact of using transition dominance and472

state functions on seven combinatorial optimization problems. For Graph-Clear, OPTW, and473

TSPTW-M, we modify the existing models1 by incorporating additional state functions and474

transition dominance. Following Kuroiwa and Beck [13, 14], we use benchmark instances from475

the literature. Further details on these instances are provided in Appendix C. Additionally,476

we introduce new DyPDL models for four problems:477

One Machine Scheduling Minimizing Total Weighted Tardiness (1|ri|
∑

wiTi): We imple-478

ment the model based on the one for 1||
∑

wiTi from a public repository,1 and we generate479

300 instances where the number of tasks n ∈ {20, 25, 30, 35, 40}, α ∈ {0, 0.5, 1, 1.5} and480

β ∈ {0.05, 0.25, 0.5} control the distribution of release and due dates of tasks. We481

implement transition dominance following Akturk and Ozdemir [1].482

Aircraft Landing (ALP): transition dominance is implemented based on the DP presented483

by Lieder, Briskorn and Stolletz [18], and 720 instances from Coppé et al. [6] are used.484

Talent Scheduling (Talent-Sched): the double-ended DP model and the dominance from485

Qin et al. [25] are implemented in DyPDL, and 1000 instances are sampled from those by486

Garcia de la Banda and Stuckey [7] in the same way as Kuroiwa and Beck [13].487

Discrete Lot Sizing Problem (DSLP): we implement the sequence model and generate 360488

instances following Coppé et al. [5] with the number of items in {4, 6, 8, 10}, the number489

of periods in {100, 120, 140, 160, 180, 200}, and the density in {0.7, 0.8, 0.9}. The stocking490

costs and changeover costs are sampled uniformly in [10, 50] and [20, 40] respectively.491

The transition dominance interface and state functions are implemented in didp-rs v0.7.32
492

using Rust 1.78.0, and all models are implemented in Python 3.9.16 using DIDPPy, a Python493

interface for didp-rs. All experiments are run on an Intel Xeon-Gold 6150 processor with a494

single thread, an 8 GB memory limit, and a time limit of 1800 seconds.495

We experiment with three search algorithms: Anytime Column Progressive Search (ACPS),496

Complete Anytime Beam Search (CABS). and Cost-Algebraic A* Search (CAASDy). These497

1 https://github.com/Kurorororo/didp-models
2 https://didp.ai/

CP 2025

https://github.com/Kurorororo/didp-models

6:14 Transition Dominance in Domain-Independent Dynamic Programming

Problem Solver Average Solving Time Average Expanded Nodes
base +D +S +D+S base +D reduction

1|ri|
∑

wiTi

ACPS 23.98 1.99 24.03 1.97 1803688.77 183502.68 89.83%
CABS 153.89 3.38 153.46 3.22 14889711.97 374543.79 97.48%
CAASDy 19.98 1.76 20.39 1.65 1298236.12 132313.69 89.81%

ALP
ACPS 69.90 47.71 69.55 43.44 5290237.80 3154905.57 40.36%
CABS 165.68 106.90 159.41 92.69 14235715.54 8914310.72 37.38%
CAASDy 67.66 49.18 68.56 44.61 3951671.66 2503272.76 36.65%

Graph-Clear
ACPS 34.25 142.44 26.17 30.13 1245620.20 947797.81 23.91%
CABS 40.12 168.04 24.04 28.94 1734871.17 952846.14 45.08%
CAASDy 8.36 17.51 7.11 4.35 225567.74 138467.09 38.61%

Talent-Sched
ACPS 191.24 102.09 116.47 15.11 1894764.81 394158.89 79.20%
CABS 238.81 150.64 142.33 26.35 2387816.79 665926.33 72.11%
CAASDy 16.47 13.62 11.28 2.83 205820.52 77316.28 62.44%

OPTW
ACPS 57.08 43.49 42.77 34.74 1434287.87 1234402.62 13.94%
CABS 188.23 146.80 143.97 114.26 3877856.20 3352288.70 13.55%
CAASDy 47.48 40.79 35.98 31.29 1365988.53 1175550.17 13.94%

TSPTW-M
ACPS 31.97 29.93 15.23 14.76 673951.74 619372.42 8.10%
CABS 98.45 91.26 53.30 50.64 2013448.95 1804993.92 10.35%
CAASDy 30.80 28.19 15.62 14.53 623198.30 557875.92 10.48%

DSLP
ACPS 37.72 13.57 37.59 12.00 5664688.02 1142853.46 79.82%
CABS 249.48 105.06 255.71 93.90 27283103.00 6743668.77 75.28%
CAASDy 27.02 10.62 27.33 9.38 3313961.61 783309.53 76.36%

Table 1 Experimental results for co-solved instances

solvers usually solve the most instances subject to the limits and exhibit representative498

tendencies [13] in the DIDP framework. We compare four models for each problem: the499

“base” model and the base model plus transition dominance “+D”, state functions “+S”, and500

both transition dominance and state functions “+D+S”.501

We compare four configurations of each solving algorithms based on two metrics: (1)502

coverage, which is the number of instances for which optimality or infeasibility is proven within503

time and memory limits, and (2) optimality gap, which is the relative difference between504

the primal and dual bounds, with a value between 0 and 1. If no solution is found and the505

instance is not proven infeasible, we set the optimality gap to be 1. Figure 5 illustrates the506

cumulative ratio of solved instances with respect to completion time and optimality gap. On507

the left-hand side of each subfigure, the x-axis represents time in seconds, and the y-axis508

represents the ratio of coverage achieved within x seconds to the total number of instances.509

On the right-hand side, the x-axis represents the optimality gap, and the y-axis represents510

the ratio of instances where the optimality gap is less than or equal to x. A curve that is511

higher and further to the left indicates better performance, which means more instances are512

solved within a given time or achieve lower optimality gaps within the time limit.513

As shown in Figure 5, “+D” and “+D+S” improve the performance of all search algorithms514

substantially. Upon inspecting the detailed results, combining both transition dominance515

and state functions enables ACPS, CAASDy, and CABS to solve 420, 450, and 426 more516

instances in total, respectively, and reduces the average optimality gap by 0.114, 0.155, and517

0.106, respectively, within the limits. Compared with ACPS and CABS, the CAASDy solver518

exhibits an interesting plateau pattern after initial increases, as its first solution is usually519

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:15

optimal: it is guaranteed for our DP models of 1|ri|
∑

wiTi, ALP, Graph-Clear, Talent-Sched,520

and DSLP in theory, and it is usually the case with OPTW and TSPTW-M in practice.521

The optimality gap remains 1 even though the dual bound is improved. Overall, the gaps522

between “+D+S” and “base” show that transition dominance and state functions enable the523

algorithms to solve instances completely with less time and reduce the primal-dual gaps for524

unsolved instances considerably.525

The coverage and optimality gap may be affected by the time-out and memory limits526

used in our experiments. To better analyze speed-ups, we also report the average solving527

time and the average number of expanded nodes in Table 1 for co-solved instances that can528

be solved by all four configurations of each solver. Since the number of expanded nodes529

remains unchanged when state functions are used, we omit the results for “+S” and “+D+S”530

in this metric. The fastest average time for each solver is highlighted, and the percentage531

reduction in expanded nodes is provided for reference.532

From the results, we observe that using transition dominance alone (“+D”) reduces the533

number of expanded nodes across all problems and decreases solving time for all problems534

except Graph-Clear. The “+S” configuration is particularly beneficial in Talent-Sched and535

OPTW, where state functions help avoid recomputations in their original formulations.536

Combining both transition dominance and state functions further reduces the average solving537

time compared to the “base” setup. Overall, the average speed-ups across all co-solved538

instances for ACPS, CABS, and CAASDy are 10.10, 8.87, and 5.81, respectively.539

In the Graph-Clear problem, evaluating transition dominance involves costly summation540

computations over sets, which significantly slows down performance when applied alone. A541

closer examination reveals that transition dominance is more effective in reducing expanded542

nodes for low-density graphs. Combining state functions with transition dominance is543

essential to achieve better results. In contrast, the “+S” configuration results in similar or544

higher average times than “base” in 1|ri|
∑

wiTi, ALP, and DSLP, as state functions mostly545

involve simple integer or Boolean expressions that do not benefit much from caching. They546

become slightly more effective in “+D+S” when evaluating transition dominance requires547

more reuses of the cached values. Exploring the trade-offs in using transition dominance and548

state functions in different problem domains is an interesting direction for future research.549

7 Concluding Remarks550

In this paper, we define transition dominance within the framework of DIDP and introduce551

new constructs, the transition dominance interface and state function, into DyPDL to552

facilitate effective and efficient modelling of transition dominance. We also demonstrate the553

broad applicability of transition dominance by presenting several previously unexploited cases554

and show that the insights gained from transition dominance can be applied across problem555

domains with common combinatorial substructures. Our experimental results indicate that556

incorporating transition dominance enhances the solving process of various search algorithms557

in DIDP, reducing computational time and improving solution quality across a range of558

combinatorial optimization problems.559

An interesting research direction is to study whether transition dominance and state560

functions can be extracted automatically by analyzing DyPDL models. In the benchmark561

problems studied in this paper, the dominance rules follow recurring patterns. Specifically,562

transition dominance applies when one can construct a better solution, and the way we563

construct such a better solution is usually by advancing (shifting forward) a transition. The564

goal is to identify sufficient conditions under which the objective value of the new solution565

CP 2025

6:16 Transition Dominance in Domain-Independent Dynamic Programming

improves. These construction patterns could serve as a basis for a general method to infer566

automatically transition dominance from a problem model. Previous work has explored567

automatic generation of dominance-breaking constraints from constraint programming mod-568

els [16, 17], and similar techniques may be applicable to analyzing DyPDL models to derive569

state dominance and transition dominance.570

State functions capture common subexpressions and can be extracted through the analysis571

of DyPDL models, but there is a tradeoff between recomputation and caching. Retrieving572

results from cache can prevent the recomputation of computationally costly expressions.573

However, for simple expressions such as basic comparisons, recomputation is more efficient574

than caching in terms of time and space. Analyzing the trade-off is important for extracting575

state functions automatically.576

References577

1 M Selim Akturk and Deniz Ozdemir. An exact approach to minimizing total weighted tardiness578

with release dates. IIE Transactions, 32:1091–1101, 2000. doi:10.1023/A:1013741325877.579

2 Richard Bellman. Dynamic Programming. Princeton University Press, 1957.580

3 TC Cheng, JE Diamond, and BM Lin. Optimal scheduling in film production to minimize581

talent hold cost. Journal of Optimization Theory and Applications, 79(3):479–492, 1993.582

doi:10.1007/BF00940554.583

4 Geoffrey Chu and Peter J. Stuckey. Minimizing the maximum number of open stacks by584

customer search. In Ian P. Gent, editor, Principles and Practice of Constraint Programming -585

CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009,586

Proceedings, volume 5732 of Lecture Notes in Computer Science, pages 242–257. Springer,587

2009. doi:10.1007/978-3-642-04244-7_21.588

5 Vianney Coppé, Xavier Gillard, and Pierre Schaus. Decision diagram-based branch-and-bound589

with caching for dominance and suboptimality detection. INFORMS Journal on Computing,590

36(6):1522–1542, 2024. doi:10.1287/IJOC.2022.0340.591

6 Vianney Coppé, Xavier Gillard, and Pierre Schaus. Modeling and exploiting dominance rules592

for discrete optimization with decision diagrams. In Bistra Dilkina, editor, Integration of593

Constraint Programming, Artificial Intelligence, and Operations Research, CPAIOR 2024,594

volume 14742 of Lecture Notes in Computer Science, pages 226–242. Springer, 2024. doi:595

10.1007/978-3-031-60597-0_15.596

7 Maria Garcia de la Banda, Peter J. Stuckey, and Geoffrey Chu. Solving talent scheduling597

with dynamic programming. INFORMS Journal of Computing, 23(1):120–137, 2011. doi:598

10.1287/IJOC.1090.0378.599

8 Yvan Dumas, Jacques Desrosiers, Éric Gélinas, and Marius M. Solomon. An optimal algorithm600

for the traveling salesman problem with time windows. Operations Research, 43(2):367–371,601

1995. doi:10.1287/OPRE.43.2.367.602

9 Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A generalized insertion603

heuristic for the traveling salesman problem with time windows. Operations Research, 46(3):330–604

335, 1998. doi:10.1287/OPRE.46.3.330.605

10 Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and efficient frame-606

work for mdd-based optimization. In Christian Bessiere, editor, Proceedings of the Twenty-607

Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 5243–608

5245. International Joint Conferences on Artificial Intelligence Organization, 2020. doi:609

10.24963/IJCAI.2020/757.610

11 Marisa G Kantor and Moshe B Rosenwein. The orienteering problem with time windows.611

Journal of the Operational Research Society, 43(6):629–635, 1992. doi:10.1057/jors.1992.88.612

12 Andreas Kolling and Stefano Carpin. The GRAPH-CLEAR problem: definition, theoret-613

ical properties and its connections to multirobot aided surveillance. In 2007 IEEE/RSJ614

https://doi.org/10.1023/A:1013741325877
https://doi.org/10.1007/BF00940554
https://doi.org/10.1007/978-3-642-04244-7_21
https://doi.org/10.1287/IJOC.2022.0340
https://doi.org/10.1007/978-3-031-60597-0_15
https://doi.org/10.1007/978-3-031-60597-0_15
https://doi.org/10.1007/978-3-031-60597-0_15
https://doi.org/10.1287/IJOC.1090.0378
https://doi.org/10.1287/IJOC.1090.0378
https://doi.org/10.1287/IJOC.1090.0378
https://doi.org/10.1287/OPRE.43.2.367
https://doi.org/10.1287/OPRE.46.3.330
https://doi.org/10.24963/IJCAI.2020/757
https://doi.org/10.24963/IJCAI.2020/757
https://doi.org/10.24963/IJCAI.2020/757
https://doi.org/10.1057/jors.1992.88

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:17

International Conference on Intelligent Robots and Systems, pages 1003–1008. IEEE, 2007.615

doi:10.1109/IROS.2007.4399368.616

13 Ryo Kuroiwa and J Christopher Beck. Domain-independent dynamic programming: Gen-617

eric state space search for combinatorial optimization. In Proceedings of the Interna-618

tional Conference on Automated Planning and Scheduling, volume 33, pages 236–244, 2023.619

doi:10.1609/ICAPS.V33I1.27200.620

14 Ryo Kuroiwa and J Christopher Beck. Solving domain-independent dynamic programming621

problems with anytime heuristic search. In Proceedings of the International Conference on622

Automated Planning and Scheduling, volume 33, pages 245–253, 2023. doi:10.1609/ICAPS.623

V33I1.27201.624

15 Ryo Kuroiwa and J Christopher Beck. Domain-independent dynamic programming. arXiv625

preprint arXiv:2401.13883, 2024. doi:10.48550/arXiv.2401.13883.626

16 Jimmy H.M. Lee and Allen Z Zhong. Automatic generation of dominance breaking nogoods627

for a class of constraint optimization problems. Artificial Intelligence, 323:103974, 2023.628

doi:10.1016/j.artint.2023.103974.629

17 Jimmy H.M. Lee and Allen Z Zhong. Exploiting functional constraints in automatic dominance630

breaking for constraint optimization. Journal of Artificial Intelligence Research, 78:1–35, 2023.631

doi:10.1613/jair.1.14714.632

18 Alexander Lieder, Dirk Briskorn, and Raik Stolletz. A dynamic programming approach for633

the aircraft landing problem with aircraft classes. European Journal of Operational Research,634

243(1):61–69, 2015. doi:10.1016/j.ejor.2014.11.027.635

19 Manuel López-Ibáñez, Christian Blum, Jeffrey W Ohlmann, and Barrett W Thomas. The636

travelling salesman problem with time windows: Adapting algorithms from travel-time to637

makespan optimization. Applied Soft Computing, 13(9):3806–3815, 2013. doi:10.1016/j.638

asoc.2013.05.009.639

20 Laurent Michel and Willem-Jan van Hoeve. CODD: A decision diagram-based solver for640

combinatorial optimization. In Ulle Endriss, Francisco S. Melo, Kerstin Bach, Alberto641

José Bugarín Diz, Jose Maria Alonso-Moral, Senén Barro, and Fredrik Heintz, editors, ECAI642

2024 - 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago643

de Compostela, Spain - Including 13th Conference on Prestigious Applications of Intelligent644

Systems (PAIS 2024), volume 392 of Frontiers in Artificial Intelligence and Applications, pages645

4240–4247. IOS Press, 2024. doi:10.3233/FAIA240997.646

21 Roberto Montemanni, Gambardella Luca Maria, et al. An ant colony system for team647

orienteering problems with time windows. arXiv preprint arXiv:2305.07305, 2009. doi:648

10.48550/arXiv.2305.07305.649

22 David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell. Branch-and-650

bound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete651

Optimization, 19:79–102, 2016. doi:10.1016/j.disopt.2016.01.005.652

23 Jeffrey W Ohlmann and Barrett W Thomas. A compressed-annealing heuristic for the traveling653

salesman problem with time windows. INFORMS Journal on Computing, 19(1):80–90, 2007.654

doi:10.1287/ijoc.1050.0145.655

24 Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming,656

volume 149. Springer, 2006. doi:10.1007/0-387-33477-7.657

25 Hu Qin, Zizhen Zhang, Andrew Lim, and Xiaocong Liang. An enhanced branch-and-bound658

algorithm for the talent scheduling problem. European Journal of Operational Research,659

250(2):412–426, 2016. doi:10.1016/j.ejor.2015.10.002.660

26 Giovanni Righini and Matteo Salani. Dynamic programming for the orienteering problem with661

time windows. Technical report, Università degli Studi di Milano-Polo Didattico e di Ricerca662

di Crema, 2006. URL: https://air.unimi.it/handle/2434/6449.663

27 Giovanni Righini and Matteo Salani. Decremental state space relaxation strategies and664

initialization heuristics for solving the orienteering problem with time windows with dynamic665

CP 2025

https://doi.org/10.1109/IROS.2007.4399368
https://doi.org/10.1609/ICAPS.V33I1.27200
https://doi.org/10.1609/ICAPS.V33I1.27201
https://doi.org/10.1609/ICAPS.V33I1.27201
https://doi.org/10.1609/ICAPS.V33I1.27201
https://doi.org/10.48550/arXiv.2401.13883
https://doi.org/10.1016/j.artint.2023.103974
https://doi.org/10.1613/jair.1.14714
https://doi.org/10.1016/j.ejor.2014.11.027
https://doi.org/10.1016/j.asoc.2013.05.009
https://doi.org/10.1016/j.asoc.2013.05.009
https://doi.org/10.1016/j.asoc.2013.05.009
https://doi.org/10.3233/FAIA240997
https://doi.org/10.48550/arXiv.2305.07305
https://doi.org/10.48550/arXiv.2305.07305
https://doi.org/10.48550/arXiv.2305.07305
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1287/ijoc.1050.0145
https://doi.org/10.1007/0-387-33477-7
https://doi.org/10.1016/j.ejor.2015.10.002
https://air.unimi.it/handle/2434/6449

6:18 Transition Dominance in Domain-Independent Dynamic Programming

programming. Computers & operations research, 36(4):1191–1203, 2009. doi:10.1016/j.cor.666

2008.01.003.667

28 Sylvie Thiébaux, Jörg Hoffmann, and Bernhard Nebel. In defense of PDDL axioms. Artificial668

Intelligence, 168(1-2):38–69, 2005. doi:10.1016/j.artint.2005.05.004.669

29 Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk Van Oudheusden.670

Iterated local search for the team orienteering problem with time windows. Computers &671

Operations Research, 36(12):3281–3290, 2009. doi:10.1016/j.cor.2009.03.008.672

https://doi.org/10.1016/j.cor.2008.01.003
https://doi.org/10.1016/j.cor.2008.01.003
https://doi.org/10.1016/j.cor.2008.01.003
https://doi.org/10.1016/j.artint.2005.05.004
https://doi.org/10.1016/j.cor.2009.03.008

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:19

A Proofs of Propositions673

674

Proof for Proposition 3. The proposition is trivial if V (S0) = ∞, as removing transitions675

in any state does not reduce the cost of that state. Let Ω denote the set of S0-solutions,676

which contains a finite number of elements by the assumptions of finiteness of a DyPDL677

model. We aim to show that there exists an optimal solution such that no transition in the678

solution is dominated. To achieve this, we define a relation R over Ω. For any two solutions679

σ = ⟨σ1, σ2, . . . , σr⟩ and σ′ = ⟨σ′
1, σ′

2, . . . , σ′
s⟩ ∈ Ω, we say σRσ′ if and only if there exists680

t ∈ Z≥0 such that: (1) t ≤ r and t ≤ s, (2) σi = σ′
i for all i ≤ t, and (3) either σt+1 ≺S σ′

t+1,681

where S = S0[[σ:t]] = S0[[σ′
:t]], or t = r and t < s. Here, we denote the state resulting from682

applying ⟨σ1, ..., σt⟩ in S0 by S0[[σ:t]].683

It is straightforward to verify that R is both transitive and irreflexive. Now, suppose684

an optimal solution σ0 for S0 is pruned due to the restriction of T to T ∗. Then, there685

must exist another solution σ1 such that σ1Rσ0. By Definition 2 and Principle of Optim-686

ality, solution_cost(σ1, S0) ≤ solution_cost(σ0, S0), and σ1 is also an optimal solution. By687

repeating this process, we can construct a sequence of optimal solutions σ0, σ1, . . . such that688

σi+1Rσi. Since R is transitive and irreflexive, and the set of optimal solutions is a finite689

subset of Ω, the sequence cannot repeat indefinitely. The sequence must terminate at some690

σk, which is optimal and not pruned by replacing T with T ∗. ◀691

Proof for Proposition 13. We need to show that for any S-solution ⟨τi′,j ; σ⟩ beginning with692

τi′,j , there exists a better solution beginning with τi,j . Suppose τi,k ∈ σ where aircraft i693

lands on runway k. We can always construct another S-solution ⟨τi,j , τi′,j ; σ′⟩, where σ′ is694

σ excluding τi,k. The landing times of all aircraft on runway j will not change since the695

landing time of the first aircraft i′ is still ti′,ni′ = max(max(sepcj ,i + lj , ti,ni) + sepi,i′ , ti′,ni′).696

The landing time of all aircraft on runway k cannot be any later since we are removing an697

aircraft and the minimum separation times satisfy the triangle inequality. ◀698

Proof for Proposition 14. For any S-solution ⟨τi′ ; σ⟩ beginning with τi′ , τi must be in σ699

since τi ∈ T (S) and i /∈ C. We can construct another solution ⟨τi; τi′ ; σ′⟩, where σ′ is σ700

excluding τi. We now prove that the constructed solution uses an equal or lower number of701

robots at each step. First, the number of robots required to sweep node i does not exceed702

that required to sweep node i′ at state C:703

R(i, C) = ai +
∑
j∈N

bij +
∑

j∈C\{i}

∑
k∈C

bjk

= ai +
∑
j∈N

bij −
∑
k∈C

bik +
∑
j∈C

∑
k∈C

bjk

= ai +
∑

j∈N\C

bij +
∑
j∈C

∑
k∈C

bjk

≤ ai′ +
∑

j∈N\C

bi′j +
∑
j∈C

∑
k∈C

bjk

= ai′ +
∑
j∈N

bi′j +
∑

j∈C\{i′}

∑
k∈C

bjk

= R(i′, C)

704

CP 2025

6:20 Transition Dominance in Domain-Independent Dynamic Programming

The inequality above is from (2a). Also, the number of robots to sweep other nodes does not705

increase since for any l ∈ C \ {i} at a state C ′ = C ∪ {i} after applying τi706

R(l, C ′) =al +
∑
j∈N

blj +
∑

j∈C′\{l}

∑
k∈C′

bjk

=al +
∑
j∈N

blj +
∑

j∈C\{l}

∑
k∈C

bjk +
∑

j∈C′\{l}

bji −
∑
k∈C

bik

≤al +
∑
j∈N

blj +
∑

j∈C\{l}

∑
k∈C

bjk +
∑

j∈C\{l}

bji −
∑
k∈C

bik

≤al +
∑
j∈N

blj +
∑

j∈C\{l}

∑
k∈C

bjk

=R(l, C)

707

The first inequality is because C ′ ⊃ C, and the second inequality is due to (2b). ◀708

Proof for Proposition 15. Suppose there exists a dominated sequence of the form ⟨τi′ , σ⟩.709

We can always construct a dominating sequence ⟨τi, τi′ , σ′⟩, where the first occurrence of τi in710

σ is removed to form σ′. If the dominated sequence is feasible, then the dominating sequence711

must also be feasible because the due date di′,ri′ is less than min(di,ri , q). Postponing the712

production of the next item of type i and removing τi from σ does not cause the production713

periods of any items to be pushed earlier.714

Next, we prove that the total cost of the dominating sequence is less than that of the715

dominated sequence. We first analyze the difference in changeover costs. In the dominated716

sequence, an item of type i′ is produced, followed by an item of type t, incurring a changeover717

cost of ci′,t. If we insert the production of an item of type i between them, the changeover718

cost becomes ci′,i + ci,t. The difference is ci′,i + ci,t − ci′,t. Since the changeover costs satisfy719

the triangle inequality, removing the first τi from σ does not increase the changeover costs.720

As for the stocking costs, the only difference lies in the cost of the next item of type i. In721

the dominated sequence, the item is not produced at period min(di,ri
, q) or di′,ri′ . Thus, its722

production period must be postponed by at least two periods, increasing the total cost by723

ci′,i + ci,t − ci′,t − 2si ≤ 0. ◀724

B Additional Problem Descriptions725

B.1 One Machine Scheduling Minimizing Total Weighted Tardiness726

We consider one machine scheduling for a set of jobs N , where each job i ∈ N has the727

processing time pi, the release dates ri, the deadline di, and the weight wi, all of which are728

nonnegative. The objective is to schedule all jobs while minimizing the sum of weighted729

tardiness, i.e. the different between di and the completion time of job i.730

We formulate a DyPDL model where one job is scheduled at each step. Let F be a set731

variable representing the set of scheduled jobs, and t be the current time, which are initially an732

empty set and 0 respectively. The current time t is an integer resource variable where less is733

preferred. The completion of a job i when it is scheduled after time t is C(t, i) = max(ri, t)+pi,734

and the tardiness is represented as a numeric expression T (t, i) = max(0, Ci(t) − di). The735

optimal value of a state S = (F, t) is computed as:736

V (S) = 0, if F = N

V (S) = min
i∈F

T (t, i) + V (F \ {i}, Ci(t)) else737

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:21

We implement two dominance rules proposed by Akturk and Ozdemir [1].738

▶ Proposition 16. Suppose i, i′ ∈ F for a state in the DyPDL model of the 1|ri|
∑

wiTi739

problem. If τi, τi′ ∈ T (S) satisfy (1) pi ≥ pi′ , (2) di ≤ di′ , (3) wi ≥ wi′ , and (4) C(t, i) ≤740

C(t, i′) at a state S, then costτi
(V (S[[τi]]), S) ≤ costτi′ (V (S[[τi′]]), S). ◀741

▶ Proposition 17. Suppose i ∈ F for a state in the DyPDL model of the 1|ri|
∑

wiTi problem.742

If ri ≤ t, and for all i′ ∈ F , τi satisfies (1) pi ≤ pi′ , (2) di ≤ di′ , (3) wi ≥ wi′ at a state S,743

then costτi(V (S[[τi]]), S) ≤ costτi′ (V (S[[τi′]]), S) for all transitions τi′ ̸= τi. ◀744

Note that the second dominance rule can be implemented using forced transitions in DyPDL,745

a transition such that all other transitions are not applicable when it is applicable, a special746

case of transition dominance.747

B.2 Talent Scheduling Problem748

The talent scheduling problem [3] is to find a sequence of scenes to shoot to minimize the749

total cost of a film. In this problem, a set of actors A and a set of scenes N are given. In a750

scene s ∈ N , a set of actors As ⊆ A plays for ds days. For convenience, let A(S) denote the751

set of all actors in all scenes s ∈ S, i.e. A(S) = ∪s∈SAs. An actor a incurs the cost ca for752

each day they are on location. If an actor plays on days i and j, they are on location on753

days i, i + 1, ..., j even if they do not play on day i + 1 to j − 1. The objective is to find a754

sequence of scenes such that the total cost is minimized.755

We use the double-ended search model proposed by Garcia de la Banda et al. [7] and756

implement the dominance proposed by Qin et al. [25]. Let B and E be two set variables757

representing the scenes at the beginning and at the end of the schedule, which are empty758

sets initially, and R = N \ (B ∪ E) be the set of remaining scenes. At each step, a scene s to759

shoot is selected from R, and τs append s to B. There are two types of actors:760

Type 1: If a is neither in A(B) ∩ A(E) nor in A(s) but is still present on location during761

the days of shooting scene s. In other words, a /∈ A(B) ∩ A(E), a /∈ A(s), and a ∈762

A(B) ∩ A(R \ {s}). Actor a must be paid for the shooting days of scene s.763

Type 2: If a is not included in A(B) ∩ A(E) but is included in A(E), and scene s is their764

first involved scene, then actor a must be paid for all shooting days for scenes in R \ {s}.765

Let T1(s, B, E) = (As ∪ (A(B) ∩ A(R \ {s}))) \ (A(B) ∩ A(E)) and T2(s, B, E) = (As ∩766

A(E)) \ A(B). Therefore, The cost per day to shoot s is767

c(s, B, E) =ds ×
∑

a∈T1(s,B,E)

ca+
∑

s′∈R\{s}

ds′ ×
∑

a∈T2(s,B,E)

ca768

Overall, we have the following DyPDL model.769

V (B, E) =
{

0 if B ∪ E = N

c(s, B, E) + V (E, B ∪ {s}) else
770

We implement the dual bound where the remaining cost must be at least the total cost of771

actors times the shooting days they must present, i.e.772

η(S) =
∑

a∈A(R)

ca ×
∑

s∈{s′|a∈As′ }

ds773

We follow Qin et al. [25] to implement the following dominance rule as transition dominance.774

775

CP 2025

6:22 Transition Dominance in Domain-Independent Dynamic Programming

▶ Proposition 18. Suppose two scenes s, s′ ∈ R are two unscheduled scenes. Let o(B, s) =776

A(B) ∩ A(B) ∪ As and o(E, s) = A(E) ∩ A(E) ∪ As. If τs and τs′ satisfy777

o(B, s) ⊇ o(B, s′) ∧ o(E, s) ⊂ o(E, s′), or778

o(B, s) ⊂ o(B, s′) ∧ o(E, s) ⊆ o(E, s′),779

then costτs
(V (S[[τs]]), S) ≤ costτs′ (V (S[[τs′]]), S) at the current state.780

B.3 Orienteering Problem with Time Window781

The OPTW problem [11] asks for a schedule to visit a set of customers N = {1, . . . , n − 1}782

starting from the depot 0. Visiting customer j from i incurs travel time ci,j > 0 while783

producing the profit pi ≥ 0. Each customer i has a service window [ai, bi] and can be visited784

only within the window. The vehicle needs to wait until ai upon earlier arrival. The objective785

is to maximize the total profit while returning to the depot before the deadline b0.786

The DyPDL model we implement is similar to the DP model by Righini and Salani [27].787

The model uses a set variable U to represent the set of customers to visit, an element variable788

loc to represent the current location, and a numeric resource variable t to represent the789

current time. We visit customers one by one using transitions. Customer j can be visited790

next if it can be visited and the depot can be reached by the deadline after visiting j. Let791

c∗
i,j be the shortest travel time from i to j. Then, the set of customers that can be visited792

next is X(U, loc, t) = {j ∈ U | t + cloc,j ≤ bj ∧ t + cloc,j + c∗
j,0 ≤ b0}. The optimal value of a793

state can be computed as follows:794

V (S) = 0, if U = ∅

V (S) = −∞ else if t + cloc,0 > b0

V (S) = max
j∈X(U,loc,t)

pj + V (S[[τj]]) else
795

In the actual implementation, we also add additional forced transitions to remove nodes from796

U that cannot be reached without violating the time limit b0.797

Transition dominance in this problem is similar to that of ALP: if customers i and i′
798

can be visited consecutively without reaching ai′ starting from the current position and the799

current time, then taking τi′ must not be optimal.800

▶ Proposition 19. Suppose the travel times satisfy the triangle inequality, and customers i, i′ ∈801

U are unvisited. If τi, τi′ satisfy that visiting i and i′ consecutively does not reach the start time802

of i′, i.e., max(ai, t + cloc,i) + ci,i′ < ai′ , then costτi
(V (S[[τi]]), S) ≤ costτi′ (V (S[[τi′]]), S). ◀803

Proof. By definition of X(U, loc, t) we can infer that X(U, loc, t1) ⊆ X(U, loc, t2) if t1 ≤ t2.804

Let the current state be S = (U, loc, t). We show that for any S-solution ⟨τi′ ; σ⟩ starting805

with τi′ , we can construct a dominating S-solution starting with τi then τi′ which has at806

least the same profits.807

Suppose that σ does not contain τi′ , we can construct an S-solution ⟨τi, τi′ ; σ⟩. The state808

after applying transition τi′ directly and after applying transitions τi and τi′ are:809

S1 = (U \ {i′}, i′, max(ai′ , t + cloc,i′))
S2 = (U \ {i, i′}, i′, max(ai′ , max(ai, t + cloc,i) + ci,i′) = (U \ {i, i′}, i′, ai′)

810

respectively. The simplification of S2 is due to the condition in the proposition.811

Consider the first transition τj in σ. Since j ̸= i, j ∈ X(U \ {i′}, loc, t) implies j ∈812

X(U \ {i, i′}, loc, t). After applying transition τj to S1 and S2, the current time becomes813

max(aj , max(ai′ , t + cloc,i′) + ci′,j) and max(aj , ai′ + ci′,j), respectively, with the latter term814

J.C. Beck, R. Kuroiwa, J.H.M. Lee, P.J. Stuckey, and A.Z. Zhong 6:23

still being less than or equal to the former. Inductively, if σ is an S1-solution, then it must815

also be a feasible S2-solution with the same profit. According to the Bellman equation, the816

S-solution ⟨τi′ ; σ⟩ has less profit than ⟨τi, τi′ ; σ⟩ due to the additional transition τi.817

Now, suppose the S1-solution does visit customer i, and let σ′ be the sequence of818

transitions obtained by removing τi from σ. We claim that σ′ is a feasible S2-solution. The819

arguments for the applicability of any transition τj before τi in σ are similar to those above.820

Skipping τi in the solution does not increase the current time due to the triangle inequality of821

travel times. After transition τi, the set of unvisited customers becomes the same. Therefore,822

if σ is a feasible S1-solution, then σ′ is a feasible S2-solution. The difference in the objective823

between σ and σ′ is pi, and the solutions ⟨τi′ ; σ⟩ and ⟨τi, τi′ ; σ⟩ have the same objective. ◀824

B.4 Travelling Salesman Problem with Time Windows825

In the travelling salesperson problem with time windows and makespan objective [19], a set826

of customers N = {0, ..., n − 1} is given. A solution is a tour starting from the depot (index827

0), visiting each customer exactly once, and returning to the depot. Visiting customer j from828

i incurs the travel time ci,j > 0. In the beginning, t = 0. The visit to customer i must be829

within a time window [ai, bi]. Upon earlier arrival, waiting until ai is required. The objective830

we consider is to minimize the total makespan where the cost of visiting customer j from the831

current location i with time t is max{ci,j , aj − t}. Let c∗
i,j be the shortest travel time from i832

to j. Similar to OPTW, the model uses a set variable U represents the set of customers to833

visit, an element variable loc represents the current location, and a numeric resource variable834

t represents the current time. We visit customers one by one using transitions. For simplicity,835

let X(U, loc, t) = {j | t + c∗
loc,j ≤ bj} and d(t, loc, j) = max{cloc,j , aj − t}.836

The optimal value of a state S can be computed as follows:837

V (S) = cloc,0, if U = ∅

V (S) = ∞ else if ∃j ∈ U, t + c∗
ij > bj

V (S) = max
j∈X(U,i,t)

d(t, i, j) + V (S[[τj]]) otherwise
838

▶ Proposition 20. Suppose the travel times satisfy the triangle inequality, and customers839

i, i′ ∈ U are unvisited. If visiting i and i′ consecutively does not reach the start time of i′,840

i.e. max(ai, t + d(t, loc, i)) + ci,i′ < ai′ , then costτi
(V (S[[τi]]), S) ≤ costτi′ (V (S[[τi′]]), S). ◀841

The proof is similar to that of OPTW.842

C Experiment Instances843

Graph-Clear: We use 135 instances generated by Kuroiwa and Beck [15], where each844

graph consists of 20, 30, or 40 nodes.845

OPTW: We use 144 instances from Righini and Salani [26], Montemanni and Gam-846

bardella [21], and Vansteenwegen et al. [29]. The original instances are defined on a847

geometric plane. However, rounding distances between locations in the literature may lead848

to violations of the triangle inequality. To correct this, we update the distance between849

locations i and j to dik + dkj whenever there exists a location k such that dij > dik + dkj .850

TSPTW-M: For TSPTW, we use 290 instances from Dumas et al. [8], Gendreau et851

al. [9], and Ohlmann and Thomas [23]. Similar to OPTW, rounding integer travel times852

may result in violations of the triangle inequality. We apply the same correction to ensure853

that the inequality holds for all travel times.854

CP 2025

	1 Introduction
	2 Background
	3 Transition Dominance in DIDP
	4 Modelling Transition Dominance in DIDP
	4.1 An Interface for Transition Dominance
	4.2 Avoiding Redundant Computation using State Functions

	5 Case Studies
	5.1 Aircraft Landing
	5.2 Graph-Clear
	5.3 Discrete Lot Sizing

	6 Experimental Evaluation
	7 Concluding Remarks
	A Proofs of Propositions
	B Additional Problem Descriptions
	B.1 One Machine Scheduling Minimizing Total Weighted Tardiness
	B.2 Talent Scheduling Problem
	B.3 Orienteering Problem with Time Window
	B.4 Travelling Salesman Problem with Time Windows

	C Experiment Instances

