
DoubleLex Revisited and Beyond

Xuming Huang and Jimmy Lee
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{xmhuang,jlee}@cse.cuhk.edu.hk

Abstract
The paper proposes Maximum Residue (MR) as
a notion to evaluate the strength of a symmetry
breaking method. We give a proof to improve
the best known DoubleLex MR upper bound from
m!n! − (m! + n!) to min(m!, n!) for an m × n
matrix model. Our result implies that DoubleLex
works well on matrix models where min(m,n) is
relatively small. We further study the MR bounds
of SwapNext and SwapAny, which are extensions
to DoubleLex breaking further a small number of
composition symmetries. Such theoretical compar-
isons suggest general principles on selecting Lex-
based symmetry breaking methods based on the di-
mensions of the matrix models. Our experiments
confirm the theoretical predictions as well as effi-
ciency of these methods.

1 Introduction
Many constraint satisfaction problems can be formulated as a
matrix model [Flener et al., 2001], which has the decision
variables are organized in the form of a matrix with rows
and columns. Some such problems consist of matrix sym-
metries [Flener et al., 2002], in which rows and columns in a
solution matrix can be swapped arbitrarily to form symmetri-
cally equivalent solutions. DoubleLex [Flener et al., 2002] is
an efficient method for breaking matrix symmetries by post-
ing a linear number of lexicographical ordering constraints.
While Flener et al.[2002] demonstrate that DoubleLex can
eliminate all row and column symmetries, its observed good
performance [Katsirelos et al., 2010] in practice suggests a
stronger theoretical pruning guarantee.

In this paper, we propose the notion of Maximum Residue
(MR), which is the maximum number of remaining solutions
over all symmetry classes of a symmetry group, as a measure
of the strength of a symmetry breaking method. A major re-
sult is a factorial improvement of the DoubleLex’s MR upper
bound from m!n! − (m! + n!) to min(m!, n!) for an m × n
matrix model. We further show that this bound is tight in
general. Our result implies that DoubleLex works well when
min(m,n) is relatively small. When min(m,n) is large,
our analysis suggests the need for more symmetry breaking
constraints over those imposed by DoubleLex. Furthermore,

we study the MR bounds of SwapNext and SwapAny[Smith,
2014], which are two slight extensions upon DoubleLex by
further breaking products (compositions) of a row and a col-
umn symmetries.

Obviously, SwapNext and SwapAny subsume DoubleLex
in symmetry breaking power but with similar complexity in
terms of MR lower bounds. Our theoretical understanding
of these three methods suggests guiding principles on the ef-
ficiency of the methods when applied on matrix models of
varying sizes as defined by the matrices’ dimensions. Ex-
perimental results confirm (a) the accuracy of our theoretical
predictions and (b) the overhead of extra symmetry breaking
constraints in SwapNext and SwapAny can be nicely com-
pensated in practice in certain scenarios.

2 Background
A constraint satisfaction problem (CSP) is a triple P =
(X,D,C) where X = {x1, . . . , xn} is a set of variables,
each of which takes value from its domain D(xi), and C is
a set of constraints each specifying allowed value combina-
tions over a set of variables. An assignment {xi = vi|i ∈
{1, . . . , n}} instantiates each variable xi with vi ∈ D(xi). A
solution θ of P is an assignment that satisfies all constraints
in C. We denote the set of all solutions of P as sol(P).

A symmetry is a transformation from assignments to as-
signments and maps a solution to a solution. A symmetry
group GΣ is generated by a set of symmetry generators Σ
under composition. We use id to denote the identity in GΣ.
A symmetry class S of a group G is a set of solutions that
are symmetrically equivalent: a solution s ∈ S if and only if
g(s) ∈ S for every g ∈ G. Equivalently speaking, if a solu-
tion s ∈ S, then S = {g(s)|g ∈ G}. The symmetry group
of an m × n matrix model can be generated by a set of row
symmetry generators {ri|i ∈ {1, . . . ,m − 1}} and a set of
column symmetry generators {cj |j ∈ {1, . . . , n−1}}, where
ri switches the i-th and the (i+1)-st rows and cj switches the
j-th and the (j+1)-st columns. When the context is clear,
we use Grow to denote the group G{r1,...,rm−1}, Gcol for
G{c1,...,cn−1}, and Gmat for the matrix symmetry group.

A symmetry breaking constraint removes symmetries,
and therefore also symmetric solutions in a CSP. A set of
symmetry breaking constraints Csb is sound with respect
to G if at least one solution in each symmetry class of
G in sol(P) remains in sol(P,Csb) = sol(P ′), where

id . . . cp1 . . . cp2 . . .

id θ
...

...
...

rpt rptcp1 (θ) . . . rpt cp2 (θ) . . .
...

...
...

Table 1: The symmetry class of θ

P ′ = (X,D,C ∪ Csb). A set of symmetry breaking
constraints Csb is complete with respect to G if exactly one
solution in each symmetry class of G remains in sol(P,Csb).

3 DoubleLex Revisited
DoubleLex [Flener et al., 2002] posts (m+n−2) constraints
requiring a solution to be both row-wise and column-wise
lexicographically ordered. We concatenate the rows of a ma-
trix from the top to the bottom to form a string for lexico-
graphic comparison. More specifically, the following sets of
constraints are posted for an m× n matrix model:

θ ≤lex ri(θ) ∀i ∈ {1, ..., (m− 1)} (1)
θ ≤lex cj(θ) ∀j ∈ {1, ..., (n− 1)} (2)

where r′is are row symmetry generators that swap the i-th row
and (i + 1)-st row, and c′js are column symmetry generators
that swap the j-th column and (j + 1)-st column.

3.1 Improved Bound of Remaining Solutions
Flener et al.[2002] prove that all row symmetries (of size m!)
and column symmetries (of size n!) are removed, thus poten-
tially leaving m!n! − (m! + n!) solutions in each symmetry
class. However, the method works surprisingly well in prac-
tise and leaves much fewer solutions. In the following, we
provide further insight to the good performance by improv-
ing the best known upper bound to min(m!, n!).
Theorem 1. At most min(m!, n!) distinct solutions satisfy
DoubleLex in any symmetry class of Gmat for an m× n ma-
trix.

Proof. Given a solution θ of a symmetry class, the symme-
try class of θ can be generated by applying each symmetry in
Gmat upon θ. So the symmetry class of θ is {g(θ)|g ∈ G}.
We construct a table, where the rows are indexed by row sym-
metries from Grow and the columns are indexed by column
symmetries from Gcol. Since composition of a row symme-
try and a column symmetry is commutative, each symme-
try g ∈ Gmat can be uniquely written as the product of a
row symmetry and column symmetry: g = rpicpj where
rpi ∈ Grow and cpj ∈ Gcol (note that rpi is not necessar-
ily a generator, and similarly for cpj). We place the solution
g(θ) = rpicpj (θ) at the cell on the row indexed by rpi and
the column indexed by cpj thus the table encodes exactly the
symmetry class of θ (shown in Table 1).

Among the solutions on the same row of the table, at most
one distinct solution satisfies DoubleLex. Assume the con-
trary and consider the following two distinct solutions on the

same row indexed by rpt that both satisfy DoubleLex:

g1(θ) = rptcp1(θ) and g2(θ) = rptcp2(θ)

where cp1 6= cp2 . Observe that by applying a column sym-
metry cp2c

−1
p1 on g1(θ), we get g2(θ):

cp2c
−1
p1 g1(θ) = cp2c

−1
p1 rptcp1(θ) = cp2c

−1
p1 cp1rpt(θ)

= cp2rpt(θ) = rptcp2(θ) = g2(θ)

That means by only permuting the columns of a column-
wise lexicographically ordered solution g1(θ), the resulting
columns are still lexicographically ordered. Lexicographic
ordering is a total order and this leads to a contradiction if the
two solutions are distinct. So g1(θ) and g2(θ) must be the
same. In other words, there can only be at most one solution
placed on each row of the table. Similarly, there can only be
one distinct solution on each column of the table. We count
the number of remaining solutions in the table either by rows
or columns and thus there are at most min(m!, n!) solutions
in the table.

The theorem give a factorial improvement to the best
known upper bound of DoubleLex. The proof has no de-
pendence upon problem constraints, and should apply to any
problems with matrix symmetries. Moreover, it implies that
the strong guarantee maintains as long as the ordering is total.
We immediately have the following more general theorem on
any total ordering used in symmetry breaking:

Theorem 2. Given an m× n matrix model and a total order
≺ on strings. At most min(m!, n!) distinct solutions are both
rows and columns ordered with respect to ≺ in any symmetry
class of Gmat.

By the above theorem, we can order rows and columns us-
ing any total order for symmetry breaking to generate other
methods enjoying the same theoretical guarantee as Dou-
bleLex. Concretely, we refer to the constraints that order
both rows and columns using Reflex [Lee and Zhu, 2016] and
Gray code Ordering [Narodytska and Walsh, 2013] (for bi-
nary strings) as DoublexReflex and DoubleGrayCode.

Corollary 1. At most min(m!, n!) distinct solutions satisfy
DoubleReflex in any symmetry class of Gmat for an m × n
matrix.

Corollary 2. At most min(m!, n!) distinct solutions satisfy
DoubleGrayCode in any symmetry class of Gmat for an m×
n 0/1 matrix.

3.2 Maximum Residue
The strength of a symmetry breaking method is commonly
evaluated by the number of remaining solutions. It shows an
overall behaviour upon all symmetry classes. Less effort is
made to study what really happened within each symmetry
class. Indeed, the effects of a set of symmetry breaking con-
straints on different symmetry classes are different. In some
symmetry class, some symmetries are removed yet they re-
mains in another symmetry class. Zeynep [2004] pointed out
it is difficult to theoretically study how many symmetries are
removed. The above analysis gives a possible direction to

progress. We can directly characterize the number of remain-
ing solutions in a symmetry class and consider it as an in-
structive metric to measure the power of a symmetry breaking
method. We define the following notion to capture the power
of a set of symmetry breaking constraints C.

Definition 1. Given an m × n unconstrained matrix where
each variable has a domain {0, ..., (d − 1)} and a set of
symmetry breaking constraints C. We define the Maximum
Residue as

MR(m,n, d,C) , max
sc∈SC(m,n,d)

|{θ|θ ∈ sc and θ satisfies C}|

where SC(m,n, d) denotes all symmetry classes of anm×n
unconstrained matrix with domains {0, ..., (d− 1)}.

MR(m,n, d,C) gives the maximum number of remain-
ing distinct solutions satisfying C over all symmetry classes.
Though characterizing only the worst solution class, MR
gives a manageable analysis and serves as a supplement to
existing measures of strengths of symmetry breaking con-
straints. A symmetry breaking method having a smaller
number of maximum residue generally leaves fewer redun-
dant symmetric solutions and results in a shorter search time.
The maximum residue notion captures the symmetry break-
ing power in theory, and we will show how it agrees with
practical performance in the experimental section.

We now give a property of MR.

Property 1. MR(m,n, d,C) ≤ MR(m,n, d′,C) when d ≤ d′

Proof. Obviously, SC(m,n, d) ⊆ SC(m,n, d′) when d ≤
d′, And thus MR(m,n, d,C) ≤ MR(m,n, d′,C).

Without loss of generality, we denote the number of rows
as m, the number of columns as n, and assume m ≤ n from
now on to ease our discussion. We know from Theorem 1 that
MR(m,n, d,DoubleLex) ≤ m!. We provide a construction
showing that the bound is tight. Namely, we show a symme-
try class of an m ×m unconstrained matrix where there are
exactly m! solutions satisfying DoubleLex.

Construction 1 Construct an m × m matrix where all
elements except those on counter diagonal are zero, and the
counter diagonal is filled by any permutation of {1, 2, ...,m}.
For example, we construct the following matrix for m = 3:(

0 0 1
0 2 0
3 0 0

)
The matrix satisfies DoubleLex. In fact, any such ma-
trix whose counter diagonal is filled with a permutation
of {1, 2, 3} satisfies DoubleLex. Obviously one can trans-
form one such matrix to another by permuting the rows and
columns, and thus they are in the same symmetry class. There
are exactly m! permutations and therefore we have a symme-
try class with m! remaining solutions. Obviously, we con-
struct such matrix with more than m columns by appending
zero columns to the construction.

Theorem 3. MR(m,n, d,DoubleLex) = m! for n ≥ m, d ≥
m+ 1.

3.3 MR as Performance Indicator
MR(m,n, d,C) captures the worst case behaviour of C and it
can be used to indicate the empirical performance of C. It is
observed in [Flener et al., 2002] that enforcing lexicograph-
ical ordering only between columns (CLex) greatly outper-
forms enforcing lexicographical ordering only between rows
(RLex) on Balanced Incomplete Block Designs (BIBD) in-
stances. The authors conjectured it to be related to the tight
scalar product constraint on pairs of rows. We observe BIBD
instances involve skew matrices whose number of columns
is much larger than its number of rows. We believe this is
also a culprit to the peformance difference since RLex has a
significantly larger MR (n!) than CLex (m!).

A symmetry breaking method with a smaller MR is ex-
pected to perform better in practise. However, we also ob-
serve the performance difference between DoubleLex and
CLex that have the same maximum residue. We believe this
advantage comes from the common wisdom in symmetry
breaking: Breaking an “appropriate” number of extra sym-
metry is beneficial as the time saving from avoiding explo-
ration of symmetric solutions and failures compensates the
extra propagation cost. McDonald and Smith [2002] men-
tioned that the advantage disappears when the size of sym-
metries used reach a certain point beyond which enforcing
symmetry breaking is no more worthwhile. DoubleLex is
closer to the optimum tradeoff point than CLex, but we be-
lieve breaking more symmetries over DoubleLex can further
improve the performance in certain circumstances. We study
the MR bounds of two extensions upon DoubleLex.

4 Beyond DoubleLex
We study SwapNext and SwapAny[Smith, 2014] which
breaks extra composition symmetries that are products of a
row and a column generators.

4.1 SwapNext and SwapAny
We use rowwise order to concatenate the rows of the matrix.
Definition 2. SwapNext posts the following sets of con-
straints for an m× n matrix model:

(1) + (2) +

θ ≤lex ricj(θ),∀i ∈ {1, ..., (m− 1)}, j ∈ {1, ..., (n− 1)}
(3)

The second set of (m−1)(n−1) constraints break a set of
composition symmetries that are products of a row symmetry
generator and a column symmetry generator.

SwapNext considers only products of a row and a column
symmetries that swap adjacent rows/columns. SwapAny fur-
ther extends the idea to breaking products of row symme-
tries and column symmetries that swap any pairs of rows and
columns.
Definition 3. SwapAny posts the following sets of constraints
for an m× n matrix model:

(1) + (2) +

θ ≤lex ri1,i2cj1,j2(θ),∀1 ≤ i1 < i2 ≤ m, 1 ≤ j1 < j2 ≤ n
(4)

where ri1,i2 swaps the i1-th row and i2-th row, and cj1,j2
swaps the j1-th column and j2-th column.

The
(
m
2

)(
n
2

)
constraints in (4) break a set of composition

symmetries that are products of a row symmetry that swaps
two rows and a column symmetry that swaps two columns.

SwapAny is stronger than SwapNext, and SwapNext is
stronger than DoubleLex. We are interested in whether break-
ing these two sets of extra composition symmetries helps
lower the maximum residue. We give bounds of maximum
residue of SwapNext and SwapAny in the next section.

4.2 MR Bounds
The two methods naturally inherit the MR bound from Dou-
bleLex, and we have MR(m,n, d, SwapNext) ≤ m! and
MR(m,n, d, SwapAny) ≤ m!. We are curious if smaller up-
per bounds exist but we found that m! is in fact a tight upper
bound for both methods when d = m+ 1.
Theorem 4. MR(m,n,m+1, SwapNext) = m! for n ≥ 2m.

Theorem 5. MR(m,n,m+ 1, SwapAny) = m! for n ≥ 2m.

Proof. We prove both theorems by constructing a symmetry
class where we can identify m! distinct solutions satisfying
SwapAny (and therefore satisfying SwapNext too).

We construct a matrix by duplicating the columns of Con-
struction 1 and order them lexicographically. For example,
we have the following matrix for m = 3 (so the number of
columns n = 2m):(

0 0 0 0 1 1
0 0 2 2 0 0
3 3 0 0 0 0

)
Obviously the matrix satisfies DoubleLex. We can eas-

ily check by computers that the matrix also satisfies Swa-
pAny thus also SwapNext. The example shows a way to con-
struct such matrix: The matrix should have multiples copies
of columns with one non-zero entry. Columns with different
non-zero entry should have their entries appear on different
rows. We can create copies of m such distinct columns and
pack them into an m×2m matrix. There are m! such distinct
matrices and they all belong to the same symmetry class. we
can construct the desired matrix with more than 2m columns
by padding zero columns.

Without restrictions on n and d, the worst cases of MRs of
SwapNext and SwapAny equal that of DoubleLex. As many
matrix problems involves 0/1 matrix, it is also interesting to
see if restricting domain size yields a better upper bound. Un-
fortunately, the bounds cannot be improved below m!.

Theorem 6. MR(m,n, 2, SwapNext) = m! for n ≥ m(m+3)
2 .

Theorem 7. MR(m,n, 2, SwapAny) = m! for n ≥ m(m+3)
2 .

Proof. We use the same idea as in the previous constructions
by creating distinct columns. However, the domain is re-
stricted to {0, 1}. We use sequences of 1′s of different lengths
to “represent” distinct values. We construct such a matrix for
m = 3. (

0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 0 0

)

The matrix satisfies SwapAny. And similarly we can prove
m! solutions within this symmetry class satisfy SwapAny.
The construction requires 2 + . . . + (m + 1) = m(m+3)

2
columns. Appending zero columns on the left can produce
matrices of more than m(m+3)

2 columns.

The flexibility provided by the two unrestricted parameters
n and d enables the existence of worst cases where SwapNext
and SwapAny hit the bound. The MRs of all three methods
grow more than exponentially. We now study if the asymp-
totic behaviour can be improved when restricting n and d to-
gether. We study the case where m = n and d = 2.

For DoubleLex, a construction is given in [Katsirelos et al.,
2010] showing a symmetry class of a 2m×2m binary matrix
wherem! distinct solutions satisfy DoubleLex. The construc-
tion packs two identity matrices I, one matrix of zeroes O and
an arbitrary permutation matrix P (all of size m ×m as the
subscripts show) together as follows.(

Om Im
Im Pm

)
Equivalently speaking, there exists a symmetry class of

an m ×m binary matrix where bm2 c! solutions satisfy Dou-
bleLex. So we have MR(m,m, 2,DoubleLex) ≥ bm2 c!.

How about SwapNext and SwapAny? In fact, we can show
their growth is at least exponential in

√
m.

Theorem 8. MR(m,m, 2, SwapNext) ≥ (bm4 c)!

Proof. For any m being a multiple of 4, we can construct a
matrix by packing some identity matrices, zero matrices and
an arbitrary permutation matrix P of appropriate sizes as fol-
lows. (

Om/2 Im/2
Im/2 Xm/2

)
where

Xm/2 =

(
Om/4 Im/4
Im/4 Pm/4

)
It can be easily verified that the matrix satisfies SwapNext.
We obtain other distinct solutions within the same symmetry
class for different choice of the permutation matrix Pm/4 so
there are at least (m4)! solutions. When m is not a multiple of
4, we can construct such matrix for k = (bm4 c)∗4 and further
append zero rows and columns to construct the matrix of size
m×m. To sum up, we can always construct a symmetry class
of an m × m matrix where at least (bm4 c)! solutions satisfy
SwapNext.

Theorem 9. MR(m,m, 2, SwapAny) ≥ (b
√

2m− 3
2c)!

Proof. We can use the same construction technique in prov-
ing Theorem 7. We can construct a k × k(k+3)

2 matrix as a
core and append zero rows and columns to obtain an m×m
matrix. As the core matrix resides in an m × m matrix,
we can pick the largest k where k(k+3)

2 ≤ m holds. Thus
k = b

√
8m+9−3

2 c ≥ (b
√

2m − 3
2c). The symmetry class has

k! = (b
√

2m− 3
2c)! symmetric solutions satisfying SwapAny.

Thus MR(m,m, 2, SwapAny) ≥ (b
√

2m− 3
2c)!.

4.3 Discussion
We show the maximum residues of SwapNext and SwapAny
grow exponentially in

√
m. However, the experiment results,

which we will show in the next section, suggest that Swap-
Next and SwapAny potentially have a small upper bound. We
conjecture tighter upper bounds of maximum residue.

SwapNext and SwapAny are two useful alternatives for
scenarios that DoubleLex cannot handle well. DoubleLex
works well when the smaller dimension m is particularly
small as maximum residue (m!) will be small. When m is
relatively larger, maximum residue (m!) grows significantly
and stronger symmetry breaking is worthwhile. We will
show in experiments on different benchmarks. When m be-
comes larger, SwapNext and SwapAny start to outperform
DoubleLex and result in shorter runtime and less solutions.
The winner between SwapNext and SwapAny depends on the
larger dimension n. When n is moderately large, SwapAny
generally performs better. When n is larger than a particular
value, the overhead of SwapAny cannot be compensated by
the saving from symmetry breaking and SwapNext becomes
the best option. The exact cutoff points for selecting these
methods are problem-specific, but the behaviours are general.

We suggest the following principles on selecting Lex-based
symmetry breaking methods.

• DoubleLex: m is relatively small.

• SwapAny: m is relatively larger and n is moderately
large.

• SwapNext: m is relatively larger and n is particularly
large.

5 Experiment Results
In this section, we compare the pruning powers and running
time efficiencies of DoubleLex, SwapNext, SwapAny and
DoubleLex+AllPerm [Frisch et al., 2003]. In general, search
and solution count reductions are not necessarily strongly
connected, since it is always possible to produce a symme-
try breaking method which breaks all symmetries but only
causes the solver to fail only on leaf nodes. In practice, how-
ever, we use global constraints to break symmetries which do
not fail only at leaf nodes. Such global constraints also often
have good propagation power, but with an overhead. Our ex-
periments aim at demonstrating how well each method strikes
balance between search reduction and overhead.

We compare these methods on problems with matrix mod-
els and search for all solutions and first solution in satisfaction
problems and an optimization problem. The time limit is one
hour unless otherwise specified. In the experiments, we use
row-wise canonical ordering in ≤lex constraints. Minimum
domain size variable heuristic and minimum value heuris-
tic are used unless otherwise specified. The best results are
highlighted in bold. In the tables, we report the number of
solutions found within timeout (sol) , runtime in seconds
(time(s)), and the number of failures encountered (failure)
to demonstrate the improved symmetry breaking power of

the different methods. We represent large numbers in mil-
lions (M). For instances that cannot be solved within time
limit, runtime would be noted by “–” and the number of so-
lutions found will be marked with “≥”. All experiments are
conducted using Gecode 5.0.0 on Intel(R) Xeon(R) CPU E5-
2630 v2 2.60GHz processor with 250G memory.

5.1 Finding All Solutions
Unconstrained Matrix. We compare the “pure” symmetry
breaking effects of three methods on unconstrainedm×nma-
trices with domain size d and results are reported in Table 2.
On average, the solution set size of DoubleLex is 1.66 times
larger than that of SwapNext, which runs 1.65 times faster
than DoubleLex. The solution set size of DoubleLex is 2.57
times larger than that of SwapAny, which runs 2.21 times
faster than DoubleLex. These demonstrate the stronger sym-
metry breaking power of SwapNext and SwapAny in terms of
reduced exploration of symmetric solutions.

DoubleLex SwapNext SwapAny
(d m n) time(s) sol failure time(s) sol failure time(s) sol failure

3 4 6 110.53 86M 0 61.07 48M 39 41.53 30M 50
3 4 7 1672.59 1235M 0 947.88 706M 97 630.88 441M 147
3 5 5 413.07 318M 0 201.36 154M 245 121.68 89M 249
4 3 6 57.0 53M 0 42.07 39M 0 38.81 28M 0
4 3 7 667.13 581M 0 503.42 438M 0 464.47 308M 0
4 4 4 21.08 21M 0 13.8 13M 14 13.98 9M 20
4 4 5 1600.98 1361M 0 1013.07 860M 193 759.65 548M 295

Table 2: Unconstrained matrix

Error Correcting Code - Lee Distance (ECCLD). The
problem [Frisch et al., 2003] aims at finding a codebook
consisting of m codewords, where each codeword is a n-
character string from the alphabet {1, 2, 3, 4} such that the
Lee-Distance between each two codewords is d. The prob-
lem can be naturally modelled using an m × n matrix where
each row [xi,1, . . . , xi,n] constitutes a codeword. As we could
not find available implementation of AllPerm, we simulate
AllPerm as in [Lee and Li, 2012] using the global cardinality
constraints. Results are shown in Table 3. Experiment shows
SwapAny outperforms all other methods. All other three
methods have at least left one instance unsolved within time
limit. On average, the solution set size of DoubleLex is 2.15
times larger than that of SwapNext, which runs 1.56 times
faster than DoubleLex. DoubleLex+AllPerm and SwapNext
achieve similar performances both in terms of solution set
size and runtime. SwapAny achieves the best performance
over all instances, which is on average 2.3 times faster than
DoubleLex and results in 3.8 times smaller solution set. This
agree with our suggestion that SwapAny is the best option
when m is relatively larger and n is moderately large.

Balanced Incomplete Block Designs (BIBD). The prob-
lem is well-known from design theory that requires a con-
figuration distributing v objects into b blocks. Each object
appears in r out of b blocks and there are k objects in each
block. In addition, any two objects meet each other in the
same block for exactly λ times. The problem can be mod-
elled using a v × b 0/1 matrix where xi,j = 1 indicates that
Object i is allocated to Block j. As the occurrences of 0 and 1

DoubleLex SwapNext SwapAny DoubleLex+AllPerm
(mn d) time(s) sol failure time(s) sol failure time(s) sol failure time(s) sol failure

5 6 4 2076.19 29M 73M 1130.03 15M 39M 643.55 8M 21M 1133.57 14M 35M
5 7 4 – ≥40M 129M – ≥38M 125M 3105.98 31M 103M – ≥37M 118M
6 5 4 1050.66 5M 31M 554.67 3M 16M 296.51 1M 8M 558.73 2M 15M
7 5 4 3066.26 4M 75M 1569.5 2M 37M 775.4 926468 17M 1549.5 2M 35M
8 5 4 – ≥797553 70M 3381.09 677037 64M 1541.73 254972 28M 3279.09 622786 60M
7 7 2 20.08 115296 236767 13.7 46405 149364 13.06 31304 116828 15.12 73943 166390
8 7 2 37.39 137636 347764 24.32 43991 198648 21.8 27964 150397 27.3 85354 237070
7 8 2 48.37 277020 522165 31.32 111309 325331 31.92 75008 251072 35.99 176552 360966
8 8 2 99.75 417083 833223 56.41 129726 462256 57.63 82516 343965 71.5 255728 555759

Table 3: Error correcting code - Lee Distance (ECCLD)

DoubleLex SwapNext SwapAny
(v b r k λ) time(s) sol failure time(s) sol failure time(s) sol failure
5 40 16 2 4 0.06 1 243 0.04 1 243 1.85 1 243
5 50 20 2 5 0.07 1 361 0.08 1 361 6.49 1 361
6 30 10 2 2 0.06 1 212 0.03 1 206 1.01 1 206
7 35 15 3 5 15.37 64601 471356 8.16 16744 163452 14.0 16744 163452
7 42 18 3 6 152.82 432193 4M 58.94 109433 1M 76.65 109433 1M
7 49 21 3 7 1016.79 2M 28M 362.0 609429 8M 439.87 609429 8M
7 56 24 3 8 – ≥5M 95M 2115.64 2M 52M 2350.41 2M 52M
8 28 14 4 6 606.96 2M 14M 219.27 711707 4M 176.9 596399 3M

Table 4: Balanced incomplete block designs (BIBD)

on each row are the same, DoubleLex+AllPerm degenerates
to DoubleLex so we compare among the other three meth-
ods. The results in Table 4 agree with our prediction on the
method with best performance: When the number of row v is
small (5), DoubleLex performs well and stronger symmetry
breaking is not in need. When v grows, SwapNext outper-
forms DoubleLex. SwapNext also outperfoms SwapAny on
instances with large number of columns (b) since SwapNext
explore similar numbers of solutions as SwapAny with much
less overhead. SwapAny wins over SwapNext on only one
instance where b is not too large.

5.2 Optimization
ECCLD (Optimization Version). We also test the effi-
ciency on an optimization version of ECCLD. The goal is
to minimize the average absolute equal occurrence discrep-
ancy over the columns, which is a metric for selecting a good
Cover Array [Kim et al., 2017]. The results are shown in Ta-
ble 5. As SwapNext and DoubleLex+AllPerm achieve simi-
lar performance, we skip DoubleLex+AllPerm and compare
among the three other methods. SwapAny still outperforms
the other two methods. In particular, SwapAny is 2.42 times
faster than DoubleLex on average.

5.3 Finding First Solution
We test also if the symmetry breaking methods help in find-
ing first solution. Since symmetry breaking is not worthwhile
when there is little search, we experiment on larger ECCLD
and BIBD instances. In Tables 6 & 7, we report the runtime
and the number of failures of each method. The “NoSB” col-
umn reports the result where no symmetry breaking is used.

ECCLD (First Solution). We experiment with the rowwise
variable heuristic and minimum value heuristic as it greatly
outperforms the default heuristic we used in finding all so-
lutions. While we have experimented with quite a number
of instances, we report only results of those requiring more

DoubleLex SwapNext SwapAny
(n m d) failure time(s) failure time(s) failure time(s)

6 4 8 487 0.024 498 0.023 427 0.020
5 4 6 187201 3.808 119649 2.406 78637 1.718

5 10 2 45516 5.657 27106 3.533 21262 3.464
4 8 4 1M 61.239 540285 32.000 300808 18.744
5 5 6 3M 99.927 2M 60.581 1M 38.155
6 4 4 7M 158.201 4M 99.001 2M 66.319
5 6 6 15M 479.787 18M 291.820 5M 173.396
8 4 4 74M 1772.549 45M 1107.320 27M 715.061
6 5 4 100M 2666.142 53M 1443.238 28M 822.779

Table 5: ECCLD optimization

than 10s to solve with at least one method (including NoSB).
The time limit is 2 hours. The results are reported in Ta-
ble 6. NoSB is essentially impractical to use as compared
to the other four methods. As predicted theoretically, Swa-
pAny has the least failures among all methods. Instances
(13 8 6), (13 9 6) and (13 10 6) are hard instances requir-
ing much search, and SwapAny performs the best in terms
of runtime with its strongest pruning power. The number of
columns of all instances are not too large therefore enforcing
strong symmetry breaking for search reduction is worthwhile.
DoubleLex and DoubleLex+AllPerm are the worst in runtime
among the symmetry breaking methods. The search heuris-
tic always tries assigning 1 to all variables in the first row,
making AllPerm constraints trivially satisfied. Thus, Dou-
bleLex and DoubleLex+AllPerm achieve exactly the same
performance both in runtime and failures.

BIBD (First Solution). The rowwise variable heuristic and
minimum value heuritic are equivalent to the default heuristic
here since the domains are binary. The results are reported in
Table 7. Here, we report results of only instances requiring
more than 10s with at least one symmetry breaking method
(excluding NoSB). NoSB can solve none of the instances.

NoSB DoubleLex SwapNext SwapAny DoubleLex+AllPerm
(m n d) time(s) failure time(s) failure time(s) failure time(s) failure time(s) failure
13 8 6 - ≥ 96M 3580.28 27M 2806.84 22M 1942.92 13M 3755.52 27M
9 9 4 1139.22 20M 4.03 53749 1.74 20533 2.72 16629 4.72 53749

13 9 6 - ≥ 91M 5440.65 37M 4282.18 30M 3333.47 19M 5595.31 37M
10 10 4 3384.16 36M 6.76 55085 2.73 21096 4.34 17122 8.22 55085
13 10 6 - ≥ 84M 6584.31 41M 5192.47 33M 4577.75 21M 6759.68 41M

Table 6: ECCLD (first solution)

NoSB DoubleLex SwapNext SwapAny
(v b r k λ) time(s) failure time(s) failure time(s) failure time(s) failure
8 56 21 3 6 - ≥ 21M 13.75 139470 20.12 138111 226.91 138111
9 54 24 4 9 - ≥ 16M 135.0 970564 166.15 933302 843.92 933302
9 60 20 3 5 - ≥ 16M 38.17 289398 46.37 258128 505.03 258128
9 72 24 3 6 - ≥ 11M 18.41 112582 29.7 111304 1366.2 111304
9 84 28 3 7 - ≥ 10M 522.85 2M 734.05 2M - ≥ 17423
9 96 32 3 8 - ≥ 9M 171.52 786687 313.33 783238 - ≥ 3728

10 45 18 4 6 - ≥ 18M 664.62 11M 435.07 7M 545.43 7M

Table 7: BIBD (first solution)

DoubleLex wins in runtime in all instances except the last
since relatively little search is required to find the first so-
lution and DoubleLex is comparable in search reduction to
SwapNext and SwapAny. SwapAny timeouts on instances (9
84 28 3 7) and (9 96 32 3 8) as a prohibitively large number
of constraints are introduced by the large number of columns.
DoubleLex still wins since SwapNext only achieves minor
search reduction. The number of columns of the last instance
is moderate and some search (< 10M failures) is needed to
find the first solution. SwapNext prevails.

6 Conclusion
We give a factorial improvement to the best known upper
bound of remaining solutions over all symmetry classes of
Gmat. From there, we propose Maximum Residue (MR)
as a notion to evaluate the strength of a symmetry breaking
method. We further study the MR bounds of SwapNext and
SwapAny, which are extensions to DoubleLex for stronger
symmetry breaking. The theoretical comparisons allow us
to suggest general principles on selecting Lex-based symme-
try breaking methods based on the dimensions of the matrix
models and they are confirmed by our experiments. We be-
lieve investigation on tighter bounds of SwapNext, SwapAny
and other existing symmetry breaking methods are meaning-
ful future works. Studying MRs of other methods potentially
give insights and hints for deriving alternative choices of sym-
metry breaking constraints.

References
[Flener et al., 2001] Pierre Flener, Alan M. Frisch, Brahim

Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Ma-
trix modelling. In CP’01 Workshop on Modelling and
Problem Formulation, page 223, 2001.

[Flener et al., 2002] Pierre Flener, Alan M. Frisch, Brahim
Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson, and

Toby Walsh. Breaking row and column symmetries in ma-
trix models. In CP’02, pages 462–477. Springer, 2002.

[Frisch et al., 2003] Alan M. Frisch, Chris Jefferson, and Ian
Miguel. Constraints for breaking more row and column
symmetries. In CP’03, pages 318–332. Springer, 2003.

[Katsirelos et al., 2010] George Katsirelos, Nina Narodyt-
ska, and Toby Walsh. On the complexity and completeness
of static constraints for breaking row and column symme-
try. In CP’10, pages 305–320. Springer, 2010.

[Kim et al., 2017] Youngil Kim, Dae-Heung Jang, and
Christine M. Anderson-Cook. Selecting the best wild card
entries in a covering array. Quality and Reliability Engi-
neering International, 33(7):1615–1627, 2017.

[Kiziltan, 2004] Zeynep Kiziltan. Symmetry breaking order-
ing constraints. PhD thesis, Uppsala University, 2004.

[Lee and Li, 2012] Jimmy H.M. Lee and Jingying Li. In-
creasing symmetry breaking by preserving target symme-
tries. In CP’12, pages 422–438. Springer, 2012.

[Lee and Zhu, 2016] Jimmy H.M. Lee and Zichen Zhu.
Static symmetry breaking with the reflex ordering. In IJ-
CAI’16, pages 758–765, 2016.

[McDonald and Smith, 2002] Iain McDonald and Barbara
Smith. Partial symmetry breaking. In CP’02, pages 431–
445. Springer, 2002.

[Narodytska and Walsh, 2013] Nina Narodytska and Toby
Walsh. Breaking symmetry with different orderings. In
CP’13, pages 545–561. Springer, 2013.

[Smith, 2014] Barbara Smith. Symmetry breaking
constraints in constraint programming. Slides
published online. Retrieved June 12, 2019, from
https://www.slideserve.com/lore/symmetry-breaking-
constraints-in-constraint-programming, 2014.

	Introduction
	Background
	DoubleLex Revisited
	Improved Bound of Remaining Solutions
	Maximum Residue
	MR as Performance Indicator

	Beyond DoubleLex
	SwapNext and SwapAny
	MR Bounds
	Discussion

	Experiment Results
	Finding All Solutions
	Optimization
	Finding First Solution

	Conclusion

