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Abstract
LexLeader, a state of the art static symmetry break-
ing method, adds a lex ordering constraint for each
variable symmetry of the problem to select the
lexicographically least solution. In practice, the
same method can also be used for partial symme-
try breaking by breaking only a given subset of
symmetries. We propose a new total ordering, re-
flex, as basis of a new symmetry breaking con-
straint that collaborates well among themselves as
well as with Precedence constraints, thereby break-
ing more composition symmetries in partial sym-
metry breaking. An efficient GAC filtering algo-
rithm is presented for the reflex ordering constraint.
We propose the ReflexLeader method, which is a
variant of LexLeader using the reflex ordering in-
stead, and give conditions when ReflexLeader is
safe to combine with the Precedence and multiset
ordering constraints. Extensive experimentations
demonstrate empirically our claims and substantial
advantages of the reflex ordering over the lex order-
ing in partial symmetry breaking.

1 Introduction
Symmetries are common in many constraint problems. They
can be broken statically [Crawford et al., 1996; Flener et al.,
2002] or dynamically [Fahle et al., 2001; Roney-Dougal et
al., 2004]. LexLeader [Crawford et al., 1996], as the state of
the art static method, adds lex ordering constraints to select
the lexicographically least solution to break symmetries of in-
distinguishable objects. In practice, the same method is often
used for partial symmetry breaking by only breaking a sub-
set of symmetries, with DOUBLELEX [Flener et al., 2002]
and SNAKELEX [Grayland et al., 2009] being well known
special cases. The multiset ordering constraint [Frisch et
al., 2009] and Gray code constraint [Narodytska and Walsh,
2013] are also proposed to break variable symmetries based
on other orderings.

Given the same subset of symmetries, the pruning power of
partial symmetry breaking depends highly on the extra com-
position symmetries that can be broken by the interactions
among symmetry breaking constraints [Lee and Li, 2012].
Recently, Lee and Zhu [2016] propose two heuristics to break

more composition symmetries on the basis of Partial Symme-
try Breaking During Search [Gent and Smith, 2000]. Their
method restricts the search heuristic and thus cannot be com-
bined with other search techniques. The multiset ordering
is only a partial order and is thus often used in combination
with the lex ordering constraint. The Gray code constraint
focuses on Boolean variable vectors. We propose a new to-
tal ordering, reflex, and also a reflex ordering constraint for
breaking variable symmetries on integer problems. We show
empirically that given the same subset of symmetries, reflex
ordering constraints (and their combination with the Prece-
dence constraints [Law and Lee, 2004]) can break more com-
position symmetries than lex ordering constraints (and their
combination with the Precedence constraints).

We give theorems to compare the reflex and lex orders. An
efficient GAC filtering algorithm is given. Based on this re-
flex ordering, the ReflexLeader method is thus proposed by
adding one reflex ordering constraint for every variable sym-
metry of the problem or a subset. We prove that ReflexLeader
is safe to combine with Precedence [Law and Lee, 2004]
which is used to break value interchangeability as long as they
use the same fixed variable and value orders. In matrix prob-
lems, we prove that multiset ordering [Frisch et al., 2009]
the rows (columns) and reflex ordering the columns (rows)
are sound. Experimentations demonstrate the reflex order-
ing constraint can drastically reduce the solution set size,
search space and runtime when compared against state-of-
the-art methods based on the lex ordering constraint.

2 Background
A constraint satisfaction problem (CSP) P is a tuple
(X,D,C) where X is a finite set of variables, D is a finite
set of domains such that each x 2 X has a domain D(x)
and C is a set of constraints, each a subset of the Cartesian
product D(x

i1) ⇥ · · · ⇥ D(x
ik) of the domains of the in-

volved variables (scope). A constraint is generalized arc con-
sistent (GAC) iff every value in the domain of a variable in
the scope can find compatible values (called supports) from
the domains of all the other variables in the scope. An assign-
ment x = v assigns value v to variable x. A full assignment
is a set of assignments, one for each variable in X . A solution
to P is a full assignment that satisfies every constraint in C.

Here we consider symmetry as a property of the set of solu-
tions. A solution symmetry [Rossi et al., 2006] is a solution-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

758



preserving permutation on assignments. A variable symmetry
� is a bijection on variables that preserves solutions: if {x

i

=
v
i

|1  i  n} is a solution, then {x
�(i) = v

i

|1  i  n}
is also one. A value symmetry ✓ is a bijection on values that
preserves solutions: if {x

i

= v
i

|1  i  n} is a solution,
then {x

i

= ✓(v
i

)|1  i  n} is also. A set of values V is
interchangeable iff any bijection mapping from V ! V is a
value symmetry. A symmetry class [Flener et al., 2002] is an
equivalence class of full assignments, where two assignments
are equivalent if there is some symmetry mapping one into the
other. A symmetry breaking method is sound (complete) iff
it leaves at least (most) one solution in each symmetry class.

Given a group of variable symmetries G.
LexLeader [Crawford et al., 1996] adds one lex order-
ing constraint [Frisch et al., 2002], 

lex

, per variable
symmetry g 2 G according to a fixed variable order. DOU-
BLELEX [Flener et al., 2002] and SNAKELEX [Grayland
et al., 2009] are two partial methods based on LexLeader by
posting constraints to break only special subsets of matrix
symmetries.

3 The Reflex Ordering
We introduce reflex, a new total ordering. First, we give some
basic definitions. Given an integer vector a. Notation min(a)
denotes the min value in a, and posm(a) denotes the first po-
sition of min(a) in a. We use a � hposm(a)i to denote the
vector after deleting the first occurance of min(a) from a.
Vectors are indexed from 0, and a

i

denotes the ith item of a.
An integer vector a is reflexicographically (reflex) smaller

than another integer vector b, written a <
rlex

b, iff a =
NULL and b 6= NULL; or min(a) < min(b); or min(a) =
min(b) and posm(a) < posm(b); or min(a) = min(b)
and posm(a) = posm(b) and a � hposm(a)i <

rlex

b �
hposm(b)i. An integer vector a is reflex smaller than or equal
to another integer vector b, written a 

rlex

b, iff a = b or
a <

rlex

b. In other words, the reflex ordering first compares
the least values in the two vectors, then the first occurrence
positions of the least values if the values are the same. If
both the least values and their first occurrence positions are
all equal, the two vectors are compared again after discarding
the least values from the vectors respectively.

Consider the following two vectors
a = h3, 1, 4, 1, 4i, b = h2, 1, 2, 5, 1i. (1)

a <
rlex

b since the min values in a and b are both 1 and both
occur first at position 1, but the second occurrence of 1 in a

appears earlier than that in b.
The reflex ordering is like a mirror reflection of the lex or-

dering, which compares first the least positions (always the
same) and then the values of the least positions in the vectors.
If the least (zeroth) position values are the same, they are dis-
carded from the vectors, which will be compared again.

We can also define reflex in another way. If pa = (v, p) is
a pair, then we define pa.val = v and pa.pos = p. Given an
integer vector a, the sorted index vector as of a is a vector of
pairs such that (1) |as| = |a| = n, (2) each item in a

s is a
pair (v, p), (3) 8i 2 [0, n), 9j 2 [0, n) such that (a

i

, i) = a

s

j

and (4) items in a

s are sorted in increasing order of v and ties
are broken by p in increasing order again.

The sorted index vectors as and b

s of vectors in (1) are

a

s = h(1, 1), (1, 3), (3, 0), (4, 2), (4, 4)i
b

s = h(1, 1), (1, 4), (2, 0), (2, 2), (5, 3)i. (2)

We overload < for integer pairs and define (p1, p2) <
(q1, q2) iff (1) p1 < q1 or (2) p1 = q1 and p2 < q2. Thus, we
can have 

lex

on two vectors of pairs. Suppose a and b are
two vectors. We state the following theorem without proof.
Theorem 1. Given two integer vectors a and b. a 

rlex

b

iff as 
lex

b

s.

We say that a <
lex

b at position i iff a
i

< b

i

and a

j

= b

j

for all j < i. Consider the two vectors in (1), a <
rlex

b since
a

s <
lex

b

s at position 1.
Theorem 2. <

rlex

is a total ordering on integer vectors.

Proof. The result follows directly from Theorem 1 and the
fact that <

lex

is a total ordering.

The reflex and lex orderings coincide in only a special cir-
cumstance.
Theorem 3. Given two integer vectors a and b where the
number of distinct values in them is 2. a 

rlex

b iff a 
lex

b.

Proof. W.L.O.G, we assume there are only 0s and 1s in a and
b. The theorem is trivially true when a = b. We prove the
theorem for a 6= b. ()) a <

rlex

b means a

s <
lex

b

s.
Suppose a

s <
lex

b

s at position i. Then all values before this
position in a and b are pairwise equal and a

a

s
i .pos

= 0 but
b

a

s
i .pos

= 1. Thus a <
lex

b. (() If a <
lex

b at position
j, we must have a

j

= 0 and b

j

= 1. Thus a

s <
lex

b

s at
position k and a

s

k

.pos = j. a <
rlex

b.

Proposition 1. Given two integer vectors a and b where the
number of distinct values in a and b is larger than 2. There
are cases that (1) a <

rlex

b and a <
lex

b and (2) a <
rlex

b

and a >
lex

b.

Proof. (1) a = h0, 0, 1, 2, 3, 1i and b = h0, 0, 1, 3, 2, 1i. (2)
a = h0, 0, 2, 1, 0, 1i and b = h0, 0, 1, 1, 2, 0i.

4 GAC Enforcement
Utilizing the definition of sorted index vector and Theorem 1,
the reflex ordering constraint X 

rlex

Y can be decomposed
into (a) |X|+ |Y| element constraints and |X|+ |Y|� 2 or-
dering constraints to sort pairs to get the sorted index variable
vectors Xs and Y

s and (b) Xs 
lex

Y

s. However, this de-
composition hinders propagation and is also expensive due to
the introduction of extra variables and constraints.

In the following, we give a GAC algorithm on the reflex
ordering constraint X 

rlex

Y on two integer variable vec-
tors. We assume X and Y share no variables and have the
same length. We use fx (resp. cy) to denote the vector with
all variables in X (resp. Y) assigned the min (resp. max) val-
ues for their respective domains. Integer vector fx

x=v

is the
result of replacing the value assigned to x in fx to v, and sim-
ilarly for cy

y=v

. Functions min(X
i

) and max(X
i

) return the
min and max values in D(X

i

) respectively.
The GAC enforcement is based on the following theorems.

759



Theorem 4. X 
rlex

Y is GAC iff (1) 8x 2 X,
fx

x=max(x) rlex

cy and (2) 8y 2 Y, fx 
rlex

cy

y=min(y).

Proof. ()) If X 
rlex

Y is GAC, all values in the domains
of variables in X and Y can find supports. Given any value
v in the domain of x 2 X, the min values in the domains of
all other variables in X and the max values in the domains of
variables in Y must be supports of v. In particular, (1) is true.
Similarly, (2) is true. (() If (1) is true, then for all values v
in D(x): fx

x=v


rlex

cy. Thus all values in the domain of x
are supported. Similarly, by (2), all values in the domains of
y 2 Y are also supported.

The proof of the following theorem is similar.
Theorem 5. X 

rlex

Y is unsatisfiable iff fx >
rlex

cy.
Combining Theorems 4 and 5 with 1 respectively, we get

the following corollaries.
Corollary 1. X 

rlex

Y is GAC iff (1) 8x 2 X,
(fx

x=max(x))
s 

lex

cy

s and (2) 8y 2 Y, fx

s 
lex

(cy
y=min(y))

s.

Corollary 2. X 
rlex

Y is unsatisfiable iff fxs >
lex

cy

s.
Enforcing GAC on X 

rlex

Y can be achieved by pruning
inconsistent values v from the domains of all x 2 X such
that (fx

x=v

)s >
lex

cy

s and from the domains of all y 2 Y

such that fxs >
lex

(cy
y=v

)s. Thus, the upper bounds of all
x 2 X and the lower bounds of all y 2 Y are tightened.
Note that this does not change fx

s and cy

s as long as no
domains become empty. To prune values v from the domains
of x 2 X, we do not generate each (fx

x=v

)s to check if
(fx

x=v

)s >
lex

cy

s is true. Similarly, we do not generate
each (cy

y=v

)s to check if fxs >
lex

(cy
y=v

)s is true. We
utilize three pointers, fxs and cy

s plus our own rules to prune
inconsistent values. Our algorithm resembles more to that of
the multiset ordering constraint [Frisch et al., 2009] than that
of the lex ordering constraint [Frisch et al., 2002]. The outline
of the algorithm follows.

1. Compute fx, cy, fxs and cy

s.
2. Set the proper values of the three pointers ↵, � and � (to

be defined below) to help prune inconsistent values.
3. Tighten the lower bounds of all y 2 Y.
4. Tighten the upper bounds of all x 2 X.
We give the algorithms to enforce GAC with the help

of fx

s and cy

s, and illustrate with a running exam-
ple. Consider two disjoint and same sized variable vec-
tors, in which variables are represented by their domains:
X = h{5}, {2, 3}, {3}, {4}, {1, 2, 5}, {3}, {1, 2}i and Y =
h{2, 4}, {1, 2, 3}, {3}, {2, 3}, {0, 1}, {1, 2}, {0, 1}i. Then
fx = h5, 2, 3, 4, 1, 3, 1i, cy = h4, 3, 3, 3, 1, 2, 1i, fx

s =
h(1, 4), (1, 6), (2, 1), (3, 2), (3, 5), (4, 3), (5, 0)i and cy

s =
h(1, 4), (1, 6), (2, 5), (3, 1), (3, 2), (3, 3), (4, 0)i.

Variables with singleton domains are automatically as-
signed. We can check if x is assigned by x.assigned(), and
x.gq(v) and x.lq(v) enforce x � v and x  v respectively.

Algorithm 1 is the top level of the GAC algorithm. This al-
gorithm is called whenever the domain bound of a variable in
X or Y is modified. We first get fx and cy using floor() and

Algorithm 1 Reflex(X,Y)
1: fx

s  sortinv(floor(X)); cy

s  sortinv(ceiling(Y));
2: int ↵ �1; int �  �1; int �  �1;
3: SetPointer(X,Y,fx,cy,↵,�,�);
4: if ↵ = �2 then return FAILED;
5: else if ↵ = �1 then return SUBSUMED;
6: EnforceY(Y,fx,cy,↵,�,�);
7: if EnforceX(fx,cy,X

fx

s
↵.pos

,Y
fx

s
↵.pos

,↵,�,�,|Y|) =
SUBSUMED then return SUBSUMED;

8: return GACED;

ceiling() respectively, and generate the sorted index vectors
fx

s and cy

s using function sortinv() respectively (line 1). To
help enforce GAC, we define the following three pointers to
fx

s and cy

s: ↵, � and �. They are all initialized to �1 (line
2). Algorithm 2 is called (line 3) to set them so that

1. fx

s

↵

< cy

s

↵

and 8i 2 [0,↵), fxs

i

= cy

s

i

;
2. fx

s

�+1 > cy

s

�

, � � ↵ and 8i 2 (↵,�], fxs

i

= cy

s

i�1;

3. fx

s

�

> cy

s

�

, � > � and 8i 2 (�, �), fxs

i

= cy

s

i

.
At ↵, fxs <

lex

cy

s. If the vectors are equal, ↵ is still �1.
If fxs >

lex

cy

s, ↵ is set to �2. Pointer � is always larger
than or equal to ↵ for pruning inconsistent values from the do-
mains of X

fx

s
↵.pos

and Y

fx

s
↵.pos

. For cases where we cannot
find such a �, if 8i 2 (↵, |fxs|), fxs

i

= cy

s

i�1, � is still �1.
Otherwise, � is set to �2. Pointer � points to the index larger
than � such that hfxs

�+1, ...i >lex

hcys

�+1, ...i at position �.
If such case is impossible, � is still �1. In our example, the
values of the three pointers are: ↵ = 2, � = 2 and � = 3.

For space reasons, we skip the description of the simple
iteration in Algorithm 2, which achieves the definition of ↵,
� and � described above. One thing to note in Algorithm 2
is that, if 8j  i, fxs

j

= cy

s

j

(lines 3-4), x = X

fx

s
i .pos

and
y = Y

cy

s
i .pos

are set to their min and max values respectively
(lines 5-6). The reason is if x is assigned a larger value v
than min(x) or y is assigned a smaller value v than max(y),
(fx

x=v

)s >
lex

cy

s and fx

s >
lex

(cy
y=v

)s. Thus, in our
example, X4, X6, Y4 and Y6 are all enforced to be 1.

In Algorithm 1, if ↵ is set to �2 (line 4), fxs >
lex

cy

s.
The constraint is FAILED (line 4) according to Corollary 2.
If ↵ is still �1 (line 5), fxs = cy

s and all variables in X

and Y are set to their min and max values respectively. X =
Y and the constraint is SUBSUMED (line 5). Otherwise,
Algorithms 3 and 4 are called to prune inconsistent values in
the domains of variables in Y and X respectively (lines 6-
7). If Algorithm 4 returns SUBSUMED, X <

rlex

Y for any
possible assignment and the constraint is SUBSUMED (line
7). After the enforcements, the constraint is GACED (line 8).

Algorithm 3 prunes inconsistent values from the domains
of variables in Y. Consider all non-assigned variables y =
Y

i

where i < fx

s

↵

.pos (lines 1-2). If y is assigned a value
v  fx

s

↵

.val, (v, i) is moved to the kth position of (cy
y=v

)s

where k  ↵ and fx

s >
lex

(cy
y=v

)s at position k. In our
example, if Y0 = 2, (2, 0) is moved to the second position
of (cy

Y0=2)
s and fx

s >
lex

(cy
Y0=2)

s at this position. We
thus enforce y > fx

s

↵

.val (line 2). Value 2 is pruned from
D(Y0). Consider all non-assigned variables y = Y

i

where
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Algorithm 2 SetPointer(X,Y,fx,cy,↵,�,�)
1: int i 0; int j  0;
2: while i < |X|, j < n do {
3: if fxs

i

= cy

s

j

then {
4: if ↵ = �1 then {
5: X

fx

s
i .pos

 fx

s

i

.val;
6: Y

cy

s
j .pos

 cy

s

j

.val;}}
7: else if fxs

i

< cy

s

j

then
8: if ↵ = �1 then {↵ i; j--;}
9: else {

10: if � = �1 then �  �2;
11: break;}
12: else if ↵ = �1 then {↵ �2; break;}
13: else if � = �1 then {�  j; i--;}
14: else {�  i; break;}
15: i++; j++;}
16: return;

i > fx

s

↵

.pos (lines 3-4), if y is assigned a value v < fx

s

↵

.val,
(v, i) is moved to the kth position of (cy

y=v

)s where k  ↵
and fx

s >
lex

(cy
y=v

)s at this position. In our example, if
Y5 = 1, (1,5) is moved to the first position of (cy

Y5=1)
s

and fx

s >
lex

(cy
Y5=1)

s at this position. We thus enforce
y � fx

s

↵

.val (line 4). In our example, Y
i

� 2 for all i > 1.
Value 1 is pruned from D(Y5).

For non-assigned variable y = Y

fx

s
↵.pos

(line 6), there are
five cases. If �  �1 (line 7), fxs 

lex

(cy
y=fx

s
↵.val

)s.
We only need to enforce y � fx

s

↵

.val (line 7). Otherwise, if
fx

s

↵

.pos = cy

s

�

.pos (line 8), items in fx

s and (cy
y=fx

s
↵.val

)s

are pairwise equal from positions 0 to �. If � = �1 (line
9), fx

s 
lex

(cy
y=fx

s
↵.val

)s. Thus we only need to en-
force y � fx

s

↵

.val (line 9). Otherwise (line 10), fxs >
lex

(cy
y=fx

s
↵.val

)s at position �, we enforce y > fx

s

↵

.val (line
10). For case fx

s

↵

.pos 6= cy

s

�

.pos and (max(y), fxs

↵

.pos) oc-
curring after position � at cys (line 11), if y is assigned a
value v < fx

s

↵

.val, (v, fxs

↵

.pos) is moved to the kth position
of (cy

y=v

)s where k  ↵ and fx

s >
lex

(cy
y=v

)s at position
k. If y is assigned fx

s

↵

.val, (fxs

↵

.val, fxs

↵

.pos) is moved to
position ↵ in (cy

y=fx

s
↵.val

)s. Now fx

s

↵

= (cy
y=fx

s
↵.val

)s
↵

and fx

s >
lex

(cy
y=fx

s
↵.val

)s at position � + 1. We thus en-
force y > fx

s

↵

.val (line 12). This case occurs in our example
since fx

s

↵

.pos = 1 and cy

s

�

.pos = 5, and (3, 1) occurs after
position � in cy

s. If Y1 is assigned value 1, (1,1) is moved
to the zeroth position of (cy

Y1=1)
s and fx

s >
lex

(cy
Y1=1)

s

at this position. If Y1 is assigned value 2, (2,1) is moved to
the second position of (cy

Y1=2)
s and fx

s >
lex

(cy
Y1=2)

s

at position 3 since (3, 2) > (2, 5). We thus enforce Y1 > 2
and values 1 and 2 are pruned from D(Y1). Otherwise (line
13), we only need to enforce y � fx

s

↵

.val (line 13).
Algorithm 4 prunes inconsistent values only from the

domain of x = X

fx

s
↵.pos

. All values in the domains
of other variables x0 in X already have supports since
(fx

x

0=max(x0))
s <

lex

cy

s at position ↵. If x is assigned
(line 1) and Y

fx

s
↵.pos

is always larger than fx

s

↵

.val (line 2),

Algorithm 3 EnforceY(Y,fx,cy,↵,�,�)
1: for each i in [0, fxs

↵

.pos) do
2: if not Y

i

.assigned() then Y

i

.gq(fxs

↵

.val + 1);
3: for each i in (fxs

↵

.pos, n) do
4: if not Y

i

.assigned() then Y

i

.gq(fxs

↵

.val);
5: y  Y

fx

s
↵.pos

;
6: if not y.assigned() then
7: if �  �1 then y.gq(fxs

↵

.val);
8: else if fxs

↵

.pos = cy

s

�

.pos then
9: if � = �1 then y.gq(fxs

↵

.val);
10: else y.gq(fxs

↵

.val + 1);
11: else if (max(y), fxs

↵

.pos) > (cys

�

.val, cys

�

.pos)
12: then y.gq(fxs

↵

.val + 1);
13: else y.gq(fxs

↵

.val);
14: return;

Algorithm 4 EnforceX(fx,cy,x,y,↵,�,�,n)
1: if x.assigned() then
2: if min(y) > fx

s

↵

.val then return SUBSUMED;
3: else if � = �1 then
4: if cys

n�1.pos < fx

s

↵

.pos then
5: x.lq(cys

n�1.val � 1);
6: else x.lq(cys

n�1.val);
7: else if � > �1 then
8: if fxs

↵

.pos = cy

s

�

.pos then
9: if � = �1 then x.lq(cys

�

.val);
10: else x.lq(cys

�

.val � 1);
11: else if fxs

↵

.pos < cy

s

�

.pos then x.lq(cys

�

.val);
12: else x.lq(cys

�

.val � 1);
13: return;

there always have X <
rlex

Y at position ↵. The constraint
is SUBSUMED (line 2). Otherwise, if � = �1 (line 3),
this means fx

s

i

= cy

s

i�1 for all i > ↵. We need to make
sure (x, fxs

↵

.pos)  cy

s

n�1 and x is enforced accordingly
(lines 4-6). If � = �2, all values in the domain of x are
supported. If � > �1 (line 7), there are four cases. If
fx

s

↵

.pos = cy

s

�

.pos (line 8), items in (fx
x=fx

s
� .val

)s and cy

s

are pairwise equal from positions 0 to �. If � = �1 (line 9),
(fx

x=fx

s
� .val

)s 
lex

cy

s. Thus we only need to enforce x 
fx

s

�

.val (line 9). Otherwise (line 10), x < fx

s

�

.val (line 10).
For the case fx

s

↵

.pos < cy

s

�

.pos (line 11), if x is assigned
any value v > cy

s

�

.val, (v, fxs

↵

.pos) is moved to the kth po-
sition of (fx

x=v

)s where k � � and (fx
x=v

)s >
lex

cy

s at
position �. We thus enforce x  fx

s

�

.val (line 11). This case
occurs in our example since 1 < 5. If X1 = 3, (3, 1) replaces
(2, 1) in (fx

X1=3)s and (fx
X1=3)s >

lex

cy

s at position 2.
We thus enforce X1  2 and value 3 is pruned from D(X1).
If fxs

↵

.pos > cy

s

�

.pos, we enforce x < fx

s

�

.val (line 12).
After the enforcements, X and Y in our example are up-

dated to: X = h{5}, {2}, {3}, {4}, {1}, {3}, {1}i and Y =
h{4}, {3}, {3}, {2, 3}, {1}, {2}, {1}i. X 

rlex

Y is GAC.
Theorem 6. Algorithm 1 enforces GAC of X 

rlex

Y.
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Proof. Algorithm 1 always terminates. All values pruned
in Algorithm 1 are inconsistent values. We now prove
values left always have supports. If ↵ = �2, the con-
straint is unsatisfiable according to Corollary 2. If ↵ =
�1 after running Algorithm 1, all variables in X and Y

are assigned (lines 5-6 in Algorithm 2), X = Y. If
↵ > �1, based on Corollary 1, we only need to prove
for any x 2 X and y 2 Y, (fx

x=max(x))
s 

lex

cy

s

and fx

s 
lex

(cy
y=min(y))

s. (1) Consider all variables
x = X

fx

s
i .pos

where i 6= ↵, (fx
x=max(x))

s <
lex

cy

s at
↵. (2) Consider variable x = X

fx

s
↵.pos

. If x is not as-
signed, there are four cases. If � = �1, (fx

x=max(x))
s =

cy

s or (fx
x=max(x))

s <
lex

cy

s at the position where
(max(x), fxs

↵

.pos) appears in (fx
x=max(x))

s. If � = �2,
(fx

x=max(x))
s <

lex

cy

s at the least position among where
(max(x), fxs

↵

.pos) appears in (fx
x=max(x))

s and where � is
set to �2 in cy

s in Algorithm 2. If fx

s

↵

.pos = cy

s

�

.pos
and � = �1, (fx

x=max(x))
s = cy

s or (fx
x=max(x))

s <
lex

cy

s at the position where (max(x), fxs

↵

.pos) appears in
(fx

x=max(x))
s. If fx

s

↵

.pos = cy

s

�

.pos and � 6= �1, or
fx

s

↵

.pos 6= cy

s

�

.pos, (fx
x=max(x))

s <
lex

cy

s at the posi-
tion where (max(x), fxs

↵

.pos) appears in (fx
x=max(x))

s. (3)
Consider all variables Y

i

where i 6= fx

s

↵

.pos, fx

s <
lex

(cy
Yi=min(Yi))

s at ↵. (4) Consider variable y = Y

fx

s
↵.pos

.
If y is not assigned, there are three cases. If �  �1, or
fx

s

↵

.pos = cy

s

�

.pos and � = �1, fxs = (cy
y=min(y))

s or
fx

s <
lex

(cy
y=min(y))

s at ↵. If fx

s

↵

.pos = cy

s

�

.pos and
� 6= �1, or fx

s

↵

.pos 6= cy

s

�

.pos and (max(y), fxs

↵

.pos)
occurs after � at cy

s, fx

s <
lex

(cy
y=min(y))

s at ↵. If
fx

s

↵

.pos 6= cy

s

�

.pos and (max(y), fxs

↵

.pos) occurs before �
at cys, fxs <

lex

(cy
y=min(y))

s at ↵ if min(y) > fx

s

↵

.val and
at ↵+ 1 otherwise.

Theorem 7. Algorithm 1 runs in O(nlog(n)) time for con-
straint X 

rlex

Y, where |X| = |Y| = n.

Proof. Algorithms floor() and ceiling() have O(n) time com-
plexity respectively. Algorithm sortinv() runs in O(nlog(n)).
SetPointer() runs in O(n). EnforceY() runs in O(n). En-
forceX() runs in O(1). The total is O(nlog(n)).

Theorem 8. The space complexity of Algorithm 1 is O(n).

Proof. Algorithms floor(), ceiling() and sortinv() have space
O(n) respectively. Algorithms SetPointer(), EnforceY() and
EnforceX() have space O(1) respectively.

GAC enforcement of constraint X <
rlex

Y under condi-
tions where X and Y do or do not have the same length can be
achieved by changing EnforceY() and EnforceX() slightly.
We do not show them in here due to space limitation.

5 Reflex in Symmetry Breaking
Given a symmetry group G. Symmetry breaking method
ReflexLeader adds one reflex ordering constraint, 

rlex

, per
variable symmetry g 2 G according to a fixed variable order.
Since reflex is a total ordering, we have the following.

Theorem 9. ReflexLeader is sound and complete.

In this paper, we use ReflexLeader and LexLeader also to
break only a given subset of symmetries.

In matrix problems, lex ordering the rows (columns) breaks
all the row (column) symmetries. Similarly, reflex ordering
the rows (columns) breaks all the row (column) symmetries
since it is a total order. Thus, we can have DOUBLEREFLEX
by only adding reflex ordering constraints to break adjacent
rows and columns interchangeability.

ReflexLeader also has identical pruning power as
LexLeader in the following circumstance.
Theorem 10. Given a CSP P = (X,D,C) with symme-
try group G, D(x) ✓ E for all x 2 X and |E| = 2. Re-
flexLeader and LexLeader have the same solution and node
pruning powers when both are enforced GAC and based on
the same fixed variable and value orders.

Proof. We prove A 
rlex

B is GAC iff A 
lex

B is GAC
for any variable vectors A and B. Any support in A 

rlex

B

for a value v can be transformed to a support in A 
lex

B

according to Theorem 3. The reverse is also true.

Even though ReflexLeader and LexLeader generate the
same search tree with Boolean domains, the GAC algorithm
of X 

lex

Y is O(n) where n is the size of X and Y. When
we use DOUBLEREFLEX and DOUBLELEX to break the
matrix symmetries of the 0/1 model of the Balanced In-
complete Block Design problem [Flener et al., 2001], they
leave the same search tree but DOUBLELEX will run slightly
faster than DOUBLEREFLEX.

Precedence [Law and Lee, 2004] constrains a value s to
precede another value t in an integer variable vector X, which
means that if there exists j such that X

j

= t, then there must
exist i < j such that X

i

= s. We prove ReflexLeader is safe
to combine with Precedence.
Theorem 11. Given a CSP P = (X,D,C). If P has vari-
able symmetry group G and value interchangeability H . Us-
ing ReflexLeader to break G and Precedence to break H is
sound as long as they are based on the same fixed variable
and value orders.

Proof. Suppose they are based on the variable and value or-
der �. We prove that the reflex least solution according to �
in each solution symmetry class of symmetry group G � H
satisfies Precedence. Suppose S is the reflex least solution
in a symmetry class and sequenced according to the variable
order in �. Suppose further values i < j according to � and
(a) j occurs earlier than i in S or (b) j occurs but i does not
occur in S. In case (a), we interchange i and j in S and get
a solution R. In case (b), we replace j by i in S and get a
solution R. All the other values in S and R occur at the same
positions. We simply delete all these values out to get S0 and
R

0 respectively. Now the first value of S0 is j and the first
value of R0 is i, the first i occurs earlier in R

0 than that in S

0.
Since i < j, R0 <

rlex

S

0 and R <
rlex

S which contradicts
with S being the reflex least solution.

The multiset ordering constraint [Frisch et al., 2009] en-
sures the values taken by two variable vectors, when viewed
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Table 1: Unconstrained Matrix Problem
n,m, d LexLeader+Precedence ReflexLeader+Precedence

Rowwise MinMin Rowwise MinMin
#s #f t #s #f t #s #f t #s #f t

3 6 4 23,363,134 0 35.85 23,363,134 15,592 38.19 6,853,275 1,269 11.43 6,853,275 0 10.69
4 4 5 64,568,170 0 92.95 64,568,170 11,628 98.61 24,012,832 1,357 35.66 24,012,832 0 35.61
4 5 4 436,444,129 0 680.27 436,444,129 323,383 723.79 128,960,546 21,025 218.50 128,960,546 0 204.24
3 6 5 567,706,858 0 855.20 567,706,858 120,776 876.66 109,194,518 4,878 172.69 109,194,518 0 169.58

Table 2: Error Correcting Code-Lee Distance
n, c, b LexLeader ReflexLeader

Rowwise MinMin Rowwise MinMin
#s #f t #s #f t #s #f t #s #f t

5 6 5 839,073 3,275K 107.32 839,073 9,273K 432.77 411,138 1,690K 67.24 411,138 1,688K 66.79
6 4 4 2,789,051 2,622K 107.94 2,789,051 4,556K 190.55 1,545,486 1,969K 86.38 1,545,486 1,609K 67.72
8 4 4 20,826,947 30,807K 1,237.29 20,826,947 48,505K 2,122.27 11,112,142 30,168K 1,552.85 11,112,142 16,124K 671.73
6 4 5 15,439,833 39,964K 1,618.05 15,439,833 84,670K 4,214.56 7,771,675 27,916K 1,322.90 7,771,675 22,745K 1,006.53

as multisets, are ordered. All static symmetry breaking meth-
ods on column (row) symmetries are safe to combine with
multiset ordering constriants on row (column) symmetries.
Theorem 12. Suppose M is a static symmetry breaking
method. In matrix problems, multiset ordering the rows
(columns) and using M to break the columns (rows) inter-
changeability are sound no matter what variable and value
orders are used in each method.

Proof. Since interchanging columns (rows) does not change
the occurrences of values in each row (column), their combi-
nation is sound.

More specifically, the reflex ordering constraint is safe to
combine with the multiset ordering constraint.
Corollary 3. In matrix problems, multiset ordering the rows
(columns) and reflex ordering the columns (rows) are sound
regardless the variable and value orders used.

Proposition 1 implies that reflex and lex orderings can con-
flict with each other. Thus ReflexLeader cannot be combined
with LexLeader in general.

6 Experimental Results
This section gives four experiments. All static symmetry
breaking constraints are posted based on the rowwise vari-
able order and min value order. We compare ReflexLeader
with the efficient and widely used static method LexLeader
given the same subset of symmetries. All reflex and lex order-
ing constraints in the experiments can be simplified to con-
straints on two disjoint and same sized variable vectors.

In searching, we first use the standard rowwise variable or-
der (Rowwise) and min value order. Other orderings, e.g.
snake ordering, are also applicable. We skip them for lack of
space. We also exploit the smallest min value first (MinMin)
variable order and min value order, which align well with Re-
flexLeader since it always chooses the min value among the
values in the domains of all variables to branch.

All experiments are conducted using Gecode Solver 4.2.0
on Intel C2D E8400 3.0Ghz processors with 7GB. In our ta-
bles, #s denotes the number of solutions, #f denotes the

number of failures and t denotes the runtimes. For the last
two experiments, an entry with the symbol “-” indicates that
the search timed out after the 1-hour limit. The best results
are highlighted in bold.

Matrix Symmetries. To compare ReflexLeader and
LexLeader without effects of other factors, we first solve
the unconstrained matrix problem (n,m, d) which contains
only n ⇥ m variables but no constraints. Error Correcting
Code-Lee Distance (ECCLD) problems with parameters
(n, c, b) are also tested using the same model by Lee and
Zhu [2014]. Both problems have matrix symmetries. We thus
apply ReflexLeader and LexLeader to break the same subset
of matrix symmetries used by Lee and Zhu [2015]. Note
that [Lee and Zhu, 2015] breaking this subset of symmetries
by LexLeader performs better than DOUBLELEX which
has similar performance with SNAKELEX [Katsirelos et al.,
2010], so that their results are not reported here. The un-
constrained matrix problem also has value interchangeability
and Precedence can thus be exploited.

In the unconstrained matrix problem (Table 1), the solu-
tion set size for ReflexLeader is on average 29% of that of
LexLeader. In ECCLD (Table 2), the solution set size for Re-
flexLeader is reduced by 52% on average. This demonstrates
ReflexLeader (and its combination with Precedence) can
break more composition symmetries than that of LexLeader
(and its combination with Precedence). The runtimes are 3.45
and 3.76 times faster and 1.22 and 4.16 times faster on av-
erage under the two orderings for the two problems respec-
tively. ReflexLeader under MinMin runs 1.66 times faster
than LexLeader under Rowwise in ECCLD. Note that Re-
flexLeader and LexLeader have no failures under their respec-
tive search orders in the unconstrained matrix problem.

Geometric Symmetries. NNQueen [Kelsey et al., 2004]
and Diagonal Latin Square [Harvey, 2005] of size n are
tested. Both are modeled with n2 variables and both have
8 geometric symmetries, value interchangeability and their
compositions. We first use the VAR constraints [Puget,
2005a; 2005b], which are simplified from LexLeader, and
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Table 3: NNQueens
n VAR+Precedence ReflexLeader+Precedence

Rowwise MinMin Rowwise MinMin
#s #f t #s #f t #s #f t #s #f t

7 4 1,070 0.02 - - - 2 749 0.02 - - -
8 0 207,048 2.61 - - - 0 130,383 1.66 - - -
9 0 232,273,997 3,300.56 - - - 0 141,371,236 2,015.99 - - -

Table 4: Diagonal Latin Square
n VAR+Precedence ReflexLeader+Precedence

Rowwise MinMin Rowwise MinMin
#s #f t #s #f t #s #f t #s #f t

6 128 3,000 0.02 128 128,077,130 467.85 64 2,034 0.02 64 71,959,952 266.81
7 171,200 1,412,605 11.36 - - - 85,600 924,584 7.93 - - -

Precedence. Note that Precedence eliminates all variable
symmetries as it specifies that the first row must be h1, ..., ni.
And the VAR constraints cannot further delete symmetric so-
lutions. ReflexLeader on symmetry d1 (reflection on the di-
agonal), however, can further prune symmetric solutions. We
thus use ReflexLeader to break d1 and also Precedence to
break value interchangeability.

In Tables 3 and 4, after posting ReflexLeader on d1,
half of the solutions of VAR+Precedence is further elimi-
nated. The runtimes are 1.64 and 1.43 times faster for the
largest instance under Rowwise for the two problems respec-
tively. This shows again the combination of ReflexLeader and
Precedence breaks more composition symmetries than that
of LexLeader and Precedence. MinMin happens to conflict
with the problem constraints. Although MinMin is aligned
with ReflexLeader, our method has the flexibility of resort-
ing to other search orders that cooperate well with problem
constraints, in this case Rowwise. This shows the advantage
of static symmetry breaking methods: to be able to combine
with other search heuristics.

Discussions. The experiments show that ReflexLeader can
break more composition symmetries in partial symmetry
breaking than LexLeader can. The reason is that the canon-
ical solutions chosen by different ReflexLeader constraints
vary a lot more than those of LexLeader. Thus the intersec-
tion of ReflexLeader’s canonical solutions is smaller in size
than that of LexLeader. We also show that the combination
of ReflexLeader and Precedence can also break more compo-
sition symmetries in partial symmetry breaking than that of
LexLeader and Precedence. The reason is the canonical so-
lutions chosen by ReflexLeader have less intersections with
those chosen by Precedence. Thus ReflexLeader constraints
have better interactions amongst themselves as well as with
the Precedence constraint.

Multiset ordering constraints alone do not perform well to
break symmetries in matrix problems [Frisch et al., 2009]
since multiset ordering is only a partial order. People often
combine multiset ordering constraints with lex ordering con-
straints. We show no results of the combinations of multi-
set ordering constraint with the two total ordering constraints
due to space limitation. When combined with multiset or-
dering on the rows (columns), ReflexLeader and LexLeader
can only post symmetries on columns (rows) interchangeabil-

ity. This means only a linear and small number of symme-
tries are given to them. Results shows their combinations
with multiset ordering constraints result in the same number
of solutions for ECCLD. ReflexLeader is only slightly better
than LexLeader for the unconstrained matrix problem when
combined with multiset ordering constraints and Precedence.
When given their aligned heuristics, the partial ReflexLeader
alone runs 1.45 and 2.72 times faster than the combination
of LexLeader and multiset ordering constraints on average
for ECCLD and the unconstrained matrix problem (breaking
also value interchangeability) respectively.

We also do not compare the performance of DOUBLERE-
FLEX and DOUBLELEX for matrix problems for two rea-
sons. First, Lee and Zhu [2015] show that the subset of sym-
metries we give to ReflexLeader and LexLeader in here is bet-
ter than adjacent rows and columns interchangeability, with
which ReflexLeader and LexLeader are simplified to DOU-
BLEREFLEX and DOUBLELEX respectively. Second, with
more symmetries posted, the difference on the performances
of ReflexLeader and LexLeader is more prominent.

ReflexLeader has the advantage to prune more composi-
tion symmetries in partial symmetry breaking. The MinMin
heuristic matches well with the propagation of reflex ordering
constraints. However, MinMin is not a good heuristic to solve
many CSP problems. Often, it does not cooperate well with
the problem constraints. When the reduction on the search
tree size is small and the problem constraints are in conflict
with MinMin, using ReflexLeader and MinMin to solve the
problem would give no benefits.

7 Conclusion
Our contributions are four fold. First, we introduce the re-
flex total ordering on integer vectors and compare it with lex.
Second, we present the reflex ordering constraint and give
an efficient GAC algorithm. Third, we propose a new static
symmetry breaking method ReflexLeader and give conditions
when ReflexLeader is safe to combine with the Precedence
and multiset ordering constraints. Fourth, we give experimen-
tations to show substantial advantages of the reflex ordering
over the lex ordering in partial symmetry breaking.
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