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Graphical model processing is a central problem in artificial intelligence. The optimization 
of the combined cost of a network of local cost functions federates a variety of famous 
problems including CSP, SAT and Max-SAT but also optimization in stochastic variants 
such as Markov Random Fields and Bayesian networks. Exact solving methods for these 
problems typically include branch and bound and local inference-based bounds.
In this paper we are interested in understanding when and how dynamic programming 
based optimization can be used to efficiently enforce soft local consistencies on Global 
Cost Functions, defined as parameterized families of cost functions of unbounded arity. 
Enforcing local consistencies in cost function networks is performed by applying so-
called Equivalence Preserving Transformations (EPTs) to the cost functions. These EPTs may 
transform global cost functions and make them intractable to optimize.
We identify as tractable projection-safe those global cost functions whose optimization is 
and remains tractable after applying the EPTs used for enforcing arc consistency. We also 
provide new classes of cost functions that are tractable projection-safe thanks to dynamic 
programming.
We show that dynamic programming can either be directly used inside filtering algorithms, 
defining polynomially DAG-filterable cost functions, or emulated by arc consistency filtering 
on a Berge-acyclic network of bounded-arity cost functions, defining Berge-acyclic network-
decomposable cost functions. We give examples of such cost functions and we provide a 
systematic way to define decompositions from existing decomposable global constraints.
These two approaches to enforcing consistency in global cost functions are then embedded 
in a solver for extensive experiments that confirm the feasibility and efficiency of our 
proposal.
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1. Introduction

Cost Function Networks (CFNs) offer a simple and general framework for modeling and solving over-constrained and 
optimization problems. They capture a variety of problems that range from CSP, SAT and Max-SAT to maximization of 
likelihood in stochastic variants such as Markov Random Fields or Bayesian networks. They have been applied to a variety 
of real problems, in resource allocation, bioinformatics or machine learning among others [2,18,28,29,35,60,63].

Besides being equipped with an efficient branch and bound procedure augmented with powerful local consistency tech-
niques, a practical CFN solver should have a good library of global cost functions to model the often complex scenarios in 
real-life applications.

Enforcing local consistencies requires to apply Equivalence Preserving Transformations (EPTs) such as cost projection and 
extension [20]. Most local consistencies require to compute minima of the cost function to determine the amount of cost 
to project/extend. By applying these operations, local consistencies may reduce domains and, more importantly, tighten 
a global lower bound on the criteria to optimize. This is crucial for branch and bound efficiency. Global cost functions 
have unbounded arity, but may have a specific semantics that makes available dedicated polynomial-time algorithms for 
minimization. However, when local consistencies apply EPTs, they modify the cost function and may break the properties 
that makes it polynomial-time minimizable. We say that a cost function is tractable if it can be minimized in polynomial 
time. The notion of tractable projection-safety captures precisely those functions that remain tractable even after EPTs.

In this paper, we prove that any tractable global cost function remains tractable after EPTs to/from the zero-arity cost 
function (W∅), and cannot remain tractable if arbitrary EPTs to/from r-ary cost functions for r ≥ 2 are allowed. When 
r = 1, we show that the answer is indefinite. We describe a simple tractable global cost function and show how it becomes 
intractable after projections/extensions to/from unary cost functions. We also show that flow-based projection-safe cost 
functions [46] are positive examples of tractable projection-safe cost functions.

For r = 1, we introduce polynomially DAG-filterable global cost functions, which can be transformed into a filtering 
Directed Acyclic Graph with a polynomial number of simpler cost functions for (minimum) cost calculation. Computing 
minima of such cost functions, using a polynomial time dynamic programming algorithm, is tractable and remains tractable 
after projections/extensions. Thus, polynomially DAG-filterable cost functions are tractable projection-safe. Adding to the 
existing repertoire of global cost functions, cost function variants of existing global constraints such as Among, Regular,
Grammar, and Max/Min, are proved to be polynomially DAG-filterable.

To avoid the need to implement dedicated dynamic programming algorithms, we also consider the possibility of directly 
using decompositions of global cost functions into polynomial size networks of cost functions with bounded arities, usually 
ternary cost functions. We show how such network-decompositions can be derived from known global constraint decomposi-
tions and how Berge-acyclicity allows soft local consistencies to emulate dynamic programming in this case. We prove that 
Berge-acyclic network-decompositions can also be used to directly build polynomial filtering DAGs.

To demonstrate the feasibility of these approaches, we implement and embed various global cost functions using filtering 
DAG and network-decompositions in toulbar2, an open source cost function networks solver. We conduct experiments us-
ing different benchmarks to evaluate and to compare the performance of the DAG-based and network-based decomposition 
approaches.

The rest of the paper is organized as follows. Section 2 contains the necessary background to understand our contri-
butions. Section 3 analyses the tractability of enforcing local consistencies on global cost functions and characterizes the 
conditions for preserving tractability after applying EPTs. In Section 4 we define DAG-filtering and in Section 5 we give an 
example of a polynomial DAG-filterable global cost function. Sections 6 and 7 present network-decomposability and the 
conditions for preserving the level of local consistency. Section 8 shows the relation between network-decompositions and 
DAG-filtering. Section 9 provides an experimental analysis of the two approaches on several classes of problems. Section 10
concludes the paper.

2. Background

We give preliminaries on cost function networks and global cost functions.

2.1. Cost function networks

A cost function network (CFN) is a special case of the valued constraint satisfaction problem [62] with a specific cost 
structure ([0, . . . , �], ⊕, ≤). We give the formal definitions of the cost structure and CFN as follows.

Definition 1 (Cost Structure [62]). The cost structure ([0, . . . , �], ⊕, ≤) is a tuple defined as:

• [0, . . . , �] is the interval of integers from 0 to � ordered by the standard ordering ≤, where � is either a positive 
integer or +∞.

• ⊕ is the addition operation defined as a ⊕ b = min(�, a + b). We also define the subtraction � operator for any a and 
b, where a ≥ b, as:
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Precondition: −W S2 (�) ≤ α ≤ min�′∈D S1 ,�′ [S2]=� W S1 (�′);

Procedure Project(S1, S2, �, α)
W S2 (�) ← W S2 (�) ⊕ α;
foreach (�′ ∈ D S1 such that �′[S2] = �) do

W S1 (�′) ← W S1 (�′) � α;

Algorithm 1: A cost shifting EPT used to enforce soft local consistencies. The ⊕, � operations are extended here to handle possibly 
negative costs as follows: for non-negative costs α, β , we have α � (−β) = α ⊕ β and for β ≤ α, α ⊕ (−β) = α � β .

a � b =
{

a − b, if a �= �;
�, otherwise

Note that more general additive cost structures have also been used. Specifically, VAC and OSAC [19] local consistencies 
are defined using a structure using non-negative rational instead of non-negative integer numbers. For ease of understand-
ing, our discussion assumes integral costs. However, it can easily be generalized to rational costs.

Definition 2 (Cost Function Network [61]). A Cost Function Network (CFN) is a tuple (X , W, �), where:

• X is an ordered set of discrete domain variables {x1, x2, . . . , xn}. The domain of xi ∈X being denoted as D(xi);
• W is a set of cost functions W S each with a scope S = {xs1 , . . . , xsr } ⊆ X that maps tuples � ∈ D S , where D S =

D(xs1 ) × · · · × D(xsr ), to [0, . . . , �].

When the context is clear, we abuse notation by denoting an assignment of a set of variables S ⊆ X as a tuple � =
(vs1 , . . . , vsr ) ∈ D S . The notation �[xsi ] denotes the value vsi assigned to xsi in �, and �[S ′] denotes the tuple formed by 
projecting � onto S ′ ⊆ S . Without loss of generality, we assume W = {W∅} ∪ {W i | xi ∈ X } ∪ W+ . W∅ is a constant 
zero-arity cost function. W i is a unary cost function associated with each xi ∈ X . W+ is a set of cost functions W S with 
scope S and |S| ≥ 2. If W∅ and {W i} are not defined, we assume W i(v) = 0 for all v ∈ D(xi) and W∅ = 0. To simplify 
notation, we also denote by W s1,s2,...,sr the cost function on variables {xs1 , xs2 , . . . , xsr } when the context is clear.

Definition 3. Given a CFN (X , W, �), the cost of a tuple � ∈ DX is defined as cost(�) = ⊕
W S ∈W W S (�[S]). A tuple � ∈ DX

is feasible if cost(�) < �, and it is an optimal solution of the CFN if cost(�) is minimum among all tuples in DX .

We observe that a classical Constraint Network is merely a CFN where all cost functions W S ∈ W are such that ∀� ∈
D S , W S (�) ∈ {0, �}. The problem of the existence of a solution in a constraint network, called Constraint Satisfaction Problem 
(CSP), is NP-complete. Finding an optimal solution to a CFN is thus above NP. Restrictions to Boolean variables and binary 
constraints are known to be APX-hard [53]. In the terminology of stochastic graphical models, this problem is also equivalent 
to the Maximum A Posteriori (MAP/MRF) problem or the Maximum Probability Explanation (MPE) in Bayesian networks [35]. 
CFNs can be solved exactly with depth-first branch-and-bound search using W∅ as a lower bound. Search efficiency is 
enhanced by maintaining local consistencies that increase the lower bound by redistributing costs among W S , pushing 
costs into W∅ and W i , and pruning values while preserving the equivalence of the problem (i.e., the cost of each tuple 
� ∈ DX is unchanged).

2.2. Soft local consistencies and EPTs

Different consistency notions have been defined. Examples include NC* [42], (G)AC* [20,42,46,48,61], FD(G)AC* [41,42,
46,48], (weak) ED(G)AC* [32,47,48], VAC and OSAC [19]. Enforcing such local consistencies requires applying equivalence 
preserving transformations (EPTs) that shift costs between different scopes. The main EPT is defined below and described 
as Algorithm 1. This is a compact version of the projection and extension defined in [22].

Definition 4 (EPTs [22]). Given two cost functions W S1 and W S2 , S2 ⊂ S1, the EPT Project (S1, S2, �, α) shifts an amount 
of cost α between a tuple � ∈ D S2 of W S2 and the cost function W S1 . The direction of the shift is given by the sign of α. 
The precondition guarantees that costs remain non-negative after the EPT has been applied.

Denoting by r = |S2|, the EPT is called an r-EPT. It is an r-projection when α ≥ 0 and an r-extension when α < 0.

It is now possible to introduce local consistency enforcing algorithms.

Definition 5 (Node Consistency [42]). A variable xi is star node consistent (NC*) if each value v ∈ D(xi) satisfies W i(v) ⊕ W∅ <

� and there exists a value v ′ ∈ D(xi) such that W i(v ′) = 0. A CFN is NC* iff all variables are NC*.

Procedure enforceNC*() in Algorithm 2 enforces NC*, where unaryProject() applies EPTs that move unary costs 
towards W∅ while keeping the solution unchanged, and pruneVar(xi ) removes infeasible values.
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Procedure enforceNC*()
1 foreach xi ∈ X do unaryProject(xi );
2 foreach xi ∈ X do pruneVar(xi );

Procedure unaryProject(xi )
3 α := min{W i(v) | v ∈ D(xi)};
4 Project({xi}, ∅, (), α);

Procedure pruneVar(xi )
5 foreach v ∈ D(xi) s.t. W i(v) ⊕ W∅ = � do
6 D(xi) := D(xi) \ {v};

Algorithm 2: Enforce NC*.

Procedure enforceGAC*(W S , xi )
1 foreach v ∈ D(xi) do
2 α := min{W S (�) | � ∈ D S ∧ �[xi ] = v};
3 Project(S, {xi}, (v), α)
4 unaryProject(xi );
5 pruneVar(xi );

Algorithm 3: Enforcing GAC* for xi with respect to W S .

Definition 6 ((Generalized) Arc Consistency [20,46,48]). Given a CFN P = (X , W, �), a cost function W S ∈ W+ and a variable 
xi ∈ S .

• A tuple � ∈ D S is a simple support for v ∈ D(xi) with respect to W S with xi ∈ S iff �[xi] = v and W S (�) = 0.
• A variable xi ∈ S is star generalized arc consistent (GAC*) with respect to W S iff

– xi is NC*;
– each value vi ∈ D(xi) has a simple support � with respect to W S .

• A CFN is GAC* iff all variables are GAC* with respect to all related non-unary cost functions.

To avoid exponential space complexity, the GAC* definition and the algorithm is slightly different from the one given by 
Cooper and Schiex [20], which also requires for every tuple � ∈ D S , W S (�) = � if W∅ ⊕ ⊕

xi∈S W i(�[xi]) ⊕ W S (�) = �.
The procedure enforceGAC*() in Algorithm 3, enforces GAC* on a single variable xi ∈X with respect to a cost function 

W S ∈W+ , where xi ∈ S in a CFN (X , W, �). The procedure first computes the minimum when xi = v for each v ∈ D(xi) at 
line 2, then performs a 1-projection from W S to W i at line 3. Lines 4 and 5 enforce NC* on xi .

Local consistency enforcement involves two types of operations: (1) finding the minimum cost returned by the cost 
functions among all (or part of the) tuples; (2) applying EPTs that shift costs to and from smaller-arity cost functions.

Minimum cost computation corresponds to line 3 in Algorithm 2, and line 2 in Algorithm 3. For simplicity, we write 
min{W S(�) | � ∈ D S } as min{W S }.

In practice, projections and extensions can be performed in constant time using the � data-structure introduced in 
Cooper and Schiex [20]. For example, when we perform 1-projections or 1-extensions, instead of modifying the costs of all 
tuples, we store the projected and extended costs in �−

xi ,v and �+
xi ,v respectively. Whenever we compute the value of the 

cost function W S for a tuple � with �[xi] = v , we return W S (�) ��−
xi ,v ⊕�+

xi ,v . The time complexity of enforcing one of the 
previous consistencies is thus entirely defined by the time complexity of computing the minimum of a cost function during 
the enforcing.

Proposition 1. The procedure enforceGAC*() in Algorithm 3 requires O (d · fmin) time, where d is the maximum domain size and 
fmin is the time complexity of minimizing W S .

Proof. Line 2 requires O ( fmin) time. We can replace the domain of xi by {v}, and run the minimum computation to get 
the minimum cost. Projection at line 3 can be performed in constant time. Thus, each iteration requires O ( fmin). Since the 
procedure iterates d times, and the procedures unaryProject and pruneVar requires O (d), the overall complexity is 
O (d · fmin + d) = O (d · fmin). �

In the general case, fmin is in O (dr) where r is the size of the scope and d the maximum domain size. However, 
a global cost function may have specialized algorithms which make the operation of finding minimum, and thus consistency 
enforcement, tractable.

2.3. Global constraints, soft global constraints and global cost functions

Definition 7 (Global Constraint [9,59]). A global constraint, denoted by GC(S, A1, . . . , At), is a family of hard constraints pa-
rameterized by a scope S , and possibly extra parameters A1, . . . , At .
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Examples of global constraints are AllDifferent [43], GCC [58], Same [11], Among [10], Regular [55], Grammar [37], 
and Maximum/Minimum constraints [7]. Because of their unbounded scope, global constraints cannot be efficiently prop-
agated by generic local consistency algorithms, which are exponential in the arity of the constraint. Specific propagation 
algorithms are designed to achieve polynomial time complexity in the size of the input, i.e. the scope, the domains and 
extra parameters.

To capture the idea of costs assigned to constraint violations, the notion of soft global constraint has been introduced. This 
is a traditional global constraint with one extra variable representing the cost of the assignment w.r.t. to an existing global 
constraint. The cost is given by a violation measure function.

Definition 8 (Soft Global Constraint [56]). A soft global constraint, denoted by Soft_GC
μ(S ∪ {z}, A1, . . . , At), is a family of hard 

constraints parameterized by a violation measure μ, a scope S , a cost variable z, and possibly extra parameters A1, . . . , At . 
The constraint is satisfied if and only if z = μ(S, A1, . . . , At).

Soft global constraints are used to introduce costs in the CSP framework, and therefore inside constraint programming 
solvers [57]. It requires the introduction of extra cost variables and does not exploit the stronger propagation offered by 
some of the soft local consistencies. A possible alternative, when a sum of costs needs to be optimized, lies in the use of 
global cost functions.

Definition 9 (Global Cost Function [48,65]). A global cost function, denoted as W_GCF(S, A1, . . . , At), is a family of cost functions 
parameterized by a scope S and possibly extra parameters A1, . . . , At .

For example, if S is a set of variables with non-negative integer domains, it is easy to define the Global Cost Function 
W_Sum(S) ≡ ⊕

xi∈S min(�, xi).
It is possible to derive a global cost function from an existing soft global constraint Soft_GC

μ(S ∪ {z}, A1, . . . , At). In this 
case, we denote the corresponding global cost function as W_GCF

μ . Its value for a tuple � ∈ D S is equal to min(�, μ(�)).
For example, global cost functions W_AllDifferent

var/W_AllDifferent
dec [46,48] can be derived from two different 

violation measures of AllDifferent, namely variable-based and decomposition-based [34,56], respectively. Other examples 
include W_GCC

var and W_GCC
val [46,48], W_Same

var [46,48], W_SlidingSum
var [51], W_Regular

var and W_Regular
edit [4,

46,48], W_EGCC
var [51], W_Disjunctive

val and W_Cumulative
val [49,51].

3. Tractable projection-safety

All soft local consistencies are based on the use of EPTs, shifting costs between two scopes. The size of the smallest 
scope used in a EPT is called the order (r) of the EPT. Such a EPT is called an r-EPT. It is directly related to the level of 
local consistency enforced: node consistency uses EPTs onto the empty scope (r = 0), arc consistencies use unary scopes 
(r = 1) whereas higher-order consistencies use larger scopes (r ≥ 2) [22]. In this section, we show that the order of the EPTs 
directly impacts the tractability of global cost function minimization.

To be able to analyze complexities in global cost functions, we first define the decision problem associated with the 
optimization problem min{W_GCF(S, A1, . . . , At)}.

IsBetterThan(W_GCF(S, A1, . . . , At), m)
Instance. A global cost function W_GCF, a scope S with domains for the variables in S , values for the parameters 
A1, . . . , At , and a fixed integer m.
Question. Does there exist a tuple � ∈ D S such that W_GCF(S, A1, . . . , At)(�)<m?

We can then define the tractability of a global cost function.

Definition 10. A global cost function W_GCF(S, A1, . . . , At) is said to be tractable iff the problem IsBetterThan(W_GCF(S, A1,

. . . , At), m) is in P .

For a tractable global cost function W S = W_GCF(S, A1, . . . , At), the time complexity of computing min{W S} is bounded 
above by a polynomial function in the size of the input, including the scope, the corresponding domains, the other param-
eters of the global cost function, and log(m).

We introduce tractable r-projection-safety global cost functions, which remain tractable after applying r-EPTs.

Definition 11. We say that a global cost function W_GCF(S, A1, . . . , At) is tractable r-projection-safe iff:

• it is tractable and;
• any global cost functions that can be derived from W_GCF(S, A1, . . . , At) by a series of r-EPTs is also tractable.
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The tractability after r-EPTs depends on r. We divide the discussion of tractable r-projection-safety into three cases: 
r = 0, r ≥ 2 and r = 1. In the following, given a tractable global cost function W S , we denote by ∇r(W S ) the global cost 
function resulting from the application of an arbitrary finite sequence of r-EPTs on W S .

3.1. Tractability and 0-EPTs

When r = 0, EPTs are performed to/from W∅ . This kind of EPTs is used when enforcing Node Consistency (NC*) [42] but 
also in ∅-inverse consistency [65], and strong ∅-inverse consistency [46,48].

We show that if a global cost function is tractable, it remains tractable after applying such EPTs.

Theorem 1. Every tractable global cost function is tractable 0-projection-safe.

Proof. Consider a tractable global cost function W S = W_GCF(S, A1, . . . , At). Clearly, W S and ∇0(W S ) only differ by a 
constant, i.e. there exists α− and α+ , where α−, α+ ∈ {0, . . . , �}, such that:

∇0(W S)(�) = W S(�) ⊕ α+ � α−, for all � ∈ D S

If W S (�) = min{W S } for some � ∈ D S , then ∇0(W S )(�) = min{∇0(W S )}. If W S is tractable, so is ∇0(W S ). �
3.2. Tractability and EPTs of order greater than 2

When r ≥ 2, EPTs are performed to/from r-arity cost functions. This is required for enforcing higher order consistencies 
and is used in practice in ternary cost functions processing [60] and complete k-consistency [22].

If arbitrary sequences of r-EPTs are allowed, we show that tractable global cost functions always become intractable after 
some sequence of r-EPT applications, where r ≥ 2.

Theorem 2. Any tractable global cost function W_GCF(S, A1, . . . , At) returning finite costs is not tractable r-projection-safe for r ≥ 2, 
unless P = N P .

Proof. Let us first define the binary constraint satisfaction problem ArityTwoCSP as follows.

ArityTwoCSP(X , Wh)

Instance. A CSP instance (X , Wh), where every constraint Ch
S ∈Wh involves two variables, i.e. |S| = 2.

Question. Is the CSP (X , Wh) satisfiable?

ArityTwoCSP is NP-hard as graph coloring can be solved through a direct modeling into ArityTwoCSP. We reduce the prob-
lem ArityTwoCSP(X , Wh) to the problem IsBetterThan(∇2(WX ), �), where WX = W_GC(X , A1, . . . , At) is an arbitrary 
global cost function using only finite costs. We first construct a CFN (X , W ∪ {WX }, �). The upper bound � is a suf-
ficiently large integer such that � > WX (�) for every � ∈ D S , which is always possible given that WX remains finite. 
This technical restriction is not significant: if a global cost function W S maps some tuples to infinity, we can trans-
form it to another cost function W ′

S such that the infinity costs are replaced by a sufficiently large integer p such that 
p � max{W S (�) | � ∈ D S ∧ W S (�) �= +∞}.

The cost functions W S ∈W \ {WX } are defined as follows:

W S(�) =
{

0, if � is accepted by Ch
S ∈ Wh;

�, otherwise

From the CFN, ∇2 can be defined as follows: for each forbidden tuple �[S] in each Ch
S ∈Wh , we add an extension of � from 

W S to WX with respect to �[S] into ∇2. Under this construction, ∇2(WX )(�) can be represented as:

∇2(WX )(�) = WX (�) ⊕
⊕

W S ∈W
W S(�[S])

For a tuple � ∈ DX , ∇2(WX )(�) = � iff � is forbidden by some Ch
S in Wh . As a result IsBetterThan(∇2(WX ), �) is sat-

isfiable iff ArityTwoCSP(X , Wh) is satisfiable. As ArityTwoCSP is NP-hard, IsBetterThan(∇2(W_GC), �) is not polynomial, 
unless P = N P . Hence, ∇2(W_GC) is not tractable, and then, W_GC is not tractable 2-projection-safe, unless P = N P . �
3.3. Tractability and 1-EPTs

When r = 1, 1-EPTs cover 1-projections and 1-extensions, which are the backbone of the consistency algorithms of 
(G)AC* [42,46,48], FD(G)AC* [41,46,48], (weak) ED(G)AC* [32,47,48], VAC, and OSAC [19]. In these cases, tractable cost 
functions are tractable 1-projection-safe only under special conditions. For example, Lee and Leung define flow-based 
projection-safety based on a flow-based global cost function.
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Definition 12 (Flow-based [46,48]). A global cost function W_GCF(S, A1, . . . , At) is flow-based iff it can be represented as a 
flow network G such that the minimum cost among all maximum flows between a fixed source and a fixed destination is 
equal to min{W_GCF(S, A1, . . . , At)}.

Definition 13 (Flow-based projection safe [46,48]). A global cost function W_GCF(S, A1, . . . , At) is flow-based projection-safe 
iff it is flow-based, and is still flow-based following any sequence of 1-projections and 1-extensions.

Lee and Leung [46,48] further propose sufficient conditions for tractable cost functions to be flow-based projection-safe. 
Flow-based projection-safety implies tractable 1-projection-safety. We state the result in the following theorem.

Theorem 3. Any flow-based projection-safe global cost function is tractable 1-projection-safe.

Proof. Follows directly from the tractability of the minimum cost flow algorithm. �
However, tractable cost functions are not necessarily tractable 1-projection-safe. One example is W_2SAT, which is a 

global cost function derived from an instance of the polynomial 2SAT problem.

Definition 14. Given a set of Boolean variables S , a set of binary clauses F , and a positive integer c, the global cost function 
W_2SAT(S, F , c) is defined as:

W_2SAT(S, F , c)(�) =
{

0, if � satisfies F
c, otherwise

W_2SAT is tractable, because the 2SAT problem is tractable [39]. However, it is not tractable 1-projection-safe.

Theorem 4. W_2SAT is not tractable 1-projection-safe, unless P = N P .

Proof. Let us first define the WSAT-2-CNF problem.

WSAT-2-CNF
Instance. A 2-CNF formula F (a set of binary clauses) and a fixed integer k.
Question. Is there an assignment that satisfies all clauses in F with at most k variables set to true?

WSAT-2-CNF was shown NP-hard in [31, page 69]. We reduce it to the problem IsBetterThan(∇1(W_2SAT), �).
We construct a particular sequence of 1-projections and/or 1-extensions ∇1 such that the WSAT-2-CNF instance can be 

solved using WX = W_2SAT(X , F , k + 1) from the Boolean CFN N = (X , W ∪ {WX }, k + 1). W only contains unary cost 
functions W i , which are defined as follows:

W i(v) =
{

1, if v = true;
0, otherwise

Based on N , we construct ∇1 as follows: for each variable xi ∈ X , we add an extension of 1 from W i to WX with re-
spect to the value true into ∇1. As a result, a tuple � with ∇1(WX )(�) = k′ ≤ k contains exactly k′ variables set to 
true (because every xi = true incurs a cost of 1) and also satisfies F (or it would have cost k + 1 = �). Thus, the 
WSAT-2-CNF instance with threshold k is satisfiable iff IsBetterThan(∇1(WX ), k + 1) is satisfiable. As WSAT-2-CNF is NP-
hard, IsBetterThan(∇1(W_2SAT), k + 1) is not polynomial, unless P = N P . Hence, ∇1(W_2SAT) is not tractable, and then, 
W_2SAT is not tractable 1-projection-safe, unless P = N P . �

When the context is clear, we use tractable projection-safety, projection and extension to refer to tractable 1-projection-
safety, 1-projection and 1-extension respectively hereafter.

4. Polynomial DAG-filtering

Beyond flow-based global cost functions [46,48], we introduce now an additional class of tractable projection-safe cost 
functions based on dynamic programming algorithms. As mentioned by Dasgupta et al. [25], every dynamic programming 
algorithm has an underlying DAG structure.

Definition 15 (DAG). A directed acylic graph (DAG) T = (V , E), where V is a set of vertices (or nodes) and E ⊆ V × V is a set 
of directed edges, is a directed graph with no directed cycles, and:

• An edge (u, v) ∈ E points from u to v , where u is the parent of v , and v is the child of u;



D. Allouche et al. / Artificial Intelligence 238 (2016) 166–189 173
• A root of a DAG is a vertex with zero in-degree;
• A leaf of a DAG is a vertex with zero out-degree;
• An internal vertex of a DAG is any vertex which is not a leaf;

We now introduce the DAG filterability of a global cost function.

Definition 16 (DAG-filter). A DAG-filter for a cost function W S is a DAG T = (V , E) such that:

• T is connected;
• V = {ωSi }i is a set of cost function vertices each with a scope Si , among which vertex W S is the root of T ;
• Each internal vertex ωSi in V is associated with an aggregation function f i that maps a multiset of costs {α j | α j ∈

[0 . . .�]} to [0 . . .�] and is based on an associative and commutative binary operator;
• For every internal ωSi ∈ V ,

– the scope of ωSi is composed from its children’s scopes:

Si =
⋃

(ωSi ,ωS j )∈E

S j

– ωSi is the aggregation of its children:

ωSi (�) = f i({ωS j (�[S j]) | (ωSi ,ωS j ) ∈ E});
– min is distributive over f i :

min{ωSi } = f i({min{ωS j } | (ωSi ,ωS j ) ∈ E}).

When a cost function W S has a DAG-filter T , we say that W S is DAG-filterable by T . Note that any cost function W S
has a trivial DAG filter which is composed of a single vertex that defines W S as a cost table (with size exponential in the 
arity |S|).

In the general case, a DAG-filter (recursively) transforms a cost function into cost functions with smaller scopes until it 
reaches the ones at the leaves of a DAG, which may be trivial to solve. The (minimum) costs can then be aggregated using 
the f i functions at each internal vertex to get the resultant (minimum) cost, through dynamic programming. However, 
further properties on DAG-filters are required to allow for projections and extensions to operate on the DAG structure.

Definition 17 (Safe DAG-filter). A DAG-filter T = (V , E) for a cost function W S is safe iff:

• projection and extension are distributive over f i , i.e. for a variable x ∈ S , a cost α and a tuple � ∈ D S ,
– ωSi (�[Si]) ⊕ νx,Si (α) = f i({ωSk (�[Sk]) ⊕ νx,Sk (α) | (ωSi , ωSk ) ∈ E}), and;
– ωSi (�[Si]) � νx,Si (α) = f i({ωSk (�[Sk]) � νx,Sk (α) | (ωSi , ωSk ) ∈ E}),
where the function ν is defined as:

νx,S j (α) =
{

α, if x ∈ S j ,
0, otherwise.

The requirement of a distributive f i with respect to projection and extension at each vertex in T implies that the 
structure of the DAG is unchanged after projections and extensions. Both operations can be distributed down to the leaves. 
We formally state this as the following theorem. Given a variable x, with a value a ∈ D(x), and a cost function W S , we 
denote as W ′

S the cost function obtained by the application of Project(S, {x}, (v), α) on W S if x ∈ S or W S otherwise.

Theorem 5. For a cost function W S with a safe DAG-filter T = (V , E), W ′
S has a safe DAG-filter T ′ = (V ′, E ′), where each ωSi ∈ V ′ is 

defined as:

ω′
Si

=
{

ωSi � νx,Sk (α), if ωSi is a leaf of T ,
ωSi , otherwise

and (ω′
Si

, ω′
Sk

) ∈ E ′ iff (ωSi , ωSk ) ∈ E, i.e. T ′ is isomorphic to T . Moreover, both ω′
Si

∈ V ′ and ωSi ∈ V are associated with the same 
aggregation function f i .

Proof. Follows directly from Definition 17. �
Two common choices for f i are ⊕ and min, with which distributivity depends on how scopes intersect. In the following, 

we show that the global cost function is safely DAG-filterable if the internal vertices that are associated with ⊕ have children 
with non-overlapping scopes, and those associated with min have children with identical scopes.
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Proposition 2. Any DAG-filter T = (V , E) for a cost function W S such that

• each ωSi ∈ V is associated with the aggregation function f i = ⊕
;

• for any distinct ωS j , ωSk ∈ V , which are children of ωSi , S j ∩ Sk = ∅

is safe.

Proof. We need to show that min, projection and extension are distributive over ⊕. Since the scopes of the cost functions 
do not overlap, min is distributive over ⊕. We further show the distributivity with respect to projection (�), while extension 
(⊕) is similar. We consider an internal vertex ωSi ∈ V . Given a variable x ∈ Si , a cost α, and a tuple � ∈ D S , since the scopes 
of the cost functions {ωSk | (ωSi , ωSk ) ∈ E} are disjoint, there must exist exactly one cost function ωS j such that x ∈ S j , i.e.:

ωSi (�) � α = (ωS j (�[S j]) � α) ⊕
⊕

k �= j∧(ωSi ,ωSk )∈E

ωSk (�[Sk])

=
⊕

(ωSi ,ωSk
)∈E

(ωSk (�[Sk]) � νx,Sk (α))

The result follows. �
Proposition 3. Any DAG-filter T = (V , E) for a cost function W S such that

• each ωSi ∈ V is associated with the aggregation function f i = min;
• ∀ωS j ∈ V , which are children of ωSi , S j = Si

is safe.

Proof. Since the scopes are completely overlapping,

min{ωSi } = min
�∈D Si

{ min
(ωSi ,ωSk )∈E

{ωSk (�)}}
= min

(ωSi ,ωSk )∈E
{ min
�∈D Sk

{ωSk (�)}}
= f i({min{ωSk } | (ωSi ,ωSk ) ∈ E})

It is trivial to see that projection and extension are distributive over f i . The result follows. �
We are now ready to define polynomial DAG-filterability of global cost functions. As safe DAG-filters can be exponential 

in size, we need to restrict to safe DAG-filters of polynomial size by restricting the size of the DAG to be polynomial and by 
bounding the arity of the cost functions at the leaves of the DAG.

Definition 18 (Polynomial DAG-filterability). A global cost function W_GCF(S, A1, . . . , At) is polynomially DAG-filterable iff

1. any instance W S of W_GCF(S, A1, . . . , At) has a safe DAG-filter T = (V , E)

2. where |V | is polynomial in the size of the input parameters of W_GCF(S, A1, . . . , At);
3. each leaf in V is a unary cost function, and
4. each aggregation function f i associated with each internal vertex is polynomial-time computable.

Dynamic programming can compute the minimum of a polynomially DAG-filterable cost function in a tractable way. 
Projections and extensions to/from such cost functions can also be distributed to the leaves in T . Thus, polynomially DAG-
filterable global cost functions are tractable and also tractable projection-safe, as stated below.

Theorem 6. A polynomially DAG-filterable global cost function W_GCF(S, A1, . . . , At) is tractable.

Proof. Let W S be any instance of W_GCF(S, A1, . . . , At), and T = (V , E) be a safe DAG-filter for W S . Algorithm 4 can be 
applied to compute min{W S }. The algorithm uses a bottom-up memoization approach. Algorithm 4 first sorts V topologi-
cally at line 2. After sorting, all the leaves will be grouped at the end of the sorted sequence, which is then processed in the 
reversed order at line 3. If the vertex is a leaf, the minimum is computed and stored in the table Min at line 5. Otherwise, 
its minimum is computed by aggregating {Min[ωSk ] | (ωSi , ωSk ) ∈ E}, which have been already computed, by the function 
f i at line 6. Line 7 returns the minimum of the root node.
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Function Minimum (W S )
1 Form the corresponding filtering DAG T = (V , E);
2 Topologically sort V ;
3 foreach ωSi ∈ V in reverse topological order do
4 if ωSi is a leaf of T then
5 Min[ωSi ] := min {ωSi } ;

else
6 Min[ωSi ] := f i({Min[ωSk ] | (ωSi , ωSk ) ∈ E}) ;

7 return Min[W S ];
Algorithm 4: Computing min{W S }.

The computation is tractable. Leaves being unary cost functions, line 5 is in O (d), where d is the maximum domain size. 
For other vertices, line 6 calls f i , which is assumed to be polynomial time. The result follows. �

Note that Algorithm 4 computes the minimum from scratch each time it is called. In practice, querying the minimum of 
cost function W S when xi is assigned to v for different values v can be done more efficiently with some pre-processing. 
We define Min+[ωS j , xi, v] that stores min{ωS j (�) | xi ∈ S j ∧ �[xi] = v}. Min+[ωS j , xi, v] can be computed similarly to Algo-
rithm 4 by using the equation:

Min+[ωS j , xi, v] =
⎧⎨
⎩

ωS j (v), if ωS j is a leaf of T and S j = {xi}
min{ωS j }, if ωS j is a leaf of T and S j �= {xi}
f j({Min+[ωSk , xi, v]) | (ωSi ,ωSk ) ∈ E}), otherwise

Whenever we have to compute the minimum for xi = v , we simply return Min+[W S , xi, v]. Computing Min+[W S , xi, v]
is equivalent to running Algorithm 4 nd times, where n is the number of variables and d the maximum domain size. 
However, this can be reduced by incremental computations exploiting the global constraint semantics, as illustrated on the 
W_Grammar

var global cost function in Section 5.
We now show that a polynomially DAG-filterable cost function is tractable projection-safe. The following lemma will be 

useful. For a variable x ∈ S and a value v ∈ D(x), we denote as W′_GCF(S, A1, . . . , At) the cost function obtained by applying
Project(S, {x}, (v), α) to a global cost function W_GCF(S, A1, . . . , At).

Lemma 1. If a global cost function W_GCF(S, A1, . . . , At) is polynomially DAG-filterable, W′_GCF(S, A1, . . . , At) is polynomially 
DAG-filterable.

Proof. Suppose W_GCF(S, A1, . . . , At) is polynomially DAG-filterable. Then any instance W S of it has a safe filtering DAG 
T = (V , E). By Theorem 5, we know that W ′

S , the corresponding instance of W′_GCF(S, A1, . . . , At), has a safe DAG filter 
T ′ , which is isomorphic to T , has polynomial size, and polynomial-time computable f i associated with each internal vertex. 
The leaves of T ′ only differ from those of T by a constant. The result follows. �
Theorem 7. A polynomially DAG-filterable global cost function W_GCF(S, A1, . . . , At) is tractable projection-safe.

Proof. Follows directly from Theorem 6 and Lemma 1. �
As shown by Theorem 7, a polynomially DAG-filterable cost function W S remains polynomially DAG-filterable after pro-

jection or extension. Algorithm 5 shows how the projection is performed from W S and W i , where xi ∈ S . Lines 2 to 4
modify the leaves of the filtering DAG, as suggested by Theorem 5.

Lines 4 to 8 in Algorithm 5 show how incrementality can be achieved. If W i or D(xi), xi ∈ S , are changed we update the 
entry Min[ωSi ] at line 4, which corresponds to the leaf ωSi , where xi ∈ Si . The change propagates upwards in lines 7 and 8, 
updating all entries related to the leaf ωSi . The table F W can be updated similarly.

The time complexity of enforcing GAC* on a polynomially DAG-filterable global cost function heavily depends on prepro-
cessing, as stated in the following corollary.

Corollary 1. If the time complexity for pre-computing the table Min+ for a polynomially DAG-filterable cost function W S is O (K (n, d)), 
where K is a function of n = |S| and maximum domain size d, then enforcing GAC* on a variable xi ∈ S with respect to W S requires 
O (K (n, d) + d) time.

Proof. Computing the minimum of W S when xi = v , where xi ∈ S and v ∈ D(xi), requires only constant time by looking up 
from Min+ . By Proposition 1, the time complexity is O (K (n, d) + d) time. �
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Precondition: W S is polynomially DAG-filterable with the filtering DAG T = (V , E);
Procedure Project (S , {xi}, (v), α)

1 W i(v) := W i(v) ⊕ α ;
2 foreach ωS j ∈ V such that S j = {xi} and ωS j is a leaf of T do
3 ωS j (v) := ωS j (v) � α ;
4 Min[ωS j ] := min {ωS j } ;

5 Topologically sort V ;
6 foreach ωS j ∈ V in reverse topological order do
7 if ωS j is not a leaf and xi ∈ S j then
8 Min[ωS j ] := f i({Min[ωSk ] | (ωS j , ωSk ) ∈ E}) ;

Algorithm 5: Projection from a polynomially DAG-filterable global cost function.

We have presented a new class of tractable projection-safe global cost functions. Algorithm 4 gives an efficient algorithm 
to compute the minimum cost. In the next section, we give an example of such a global cost function. More examples can 
be found in the associated technical report [3].

5. A polynomially DAG-filterable global cost function

In the following, we show that W_Grammar
var is polynomially DAG-filterable using the results from the previous section. 

Other examples of polynomially DAG-filterable global cost functions can be found in the extended version [3].
W_Grammar

var is the cost function variant of the softened version of the hard global constraint Grammar [37] defined 
based on a context-free language.

Definition 19. A context-free language L(G) is represented by a context-free grammar G = (�, N, P , A0), where:

• � is a set of terminals;
• N is a set of non-terminals;
• P is a set of production rules from N to (� ∪ N)∗ , where ∗ is the Kleene star, and;
• A0 ∈ N is a starting symbol.

A string τ belongs to L(G), written as τ ∈ L(G) iff τ can be derived from G .

Without loss of generality, we assume that (1) the context-free language L(G) does not contain cycles, and (2) the strings 
are always of fixed length, representing values in tuples.

Assume S = {x1, . . . , xn}. We define τ� to be a string formed by a tuple � ∈ D S , where the ith character of τ� is �[xi]. The 
hard constraint grammar(S, G) authorizes a tuple � ∈ D S if τ� ∈ L(G) [37]. Using the violation measure var by Katsirelos et 
al. [38], the W_Grammar

var cost function is defined as follows.

Definition 20 (W_Grammar
var [38]). Given a context-free grammar G = (�, N, P , A0). W_Grammar

var(S, G) returns 
min{H(τ�, τi) | τi ∈ L(G)} for each tuple � ∈ D S , where H(τ1, τ2) returns the Hamming distance between τ1 and τ2.

Example 1. Consider S = {x1, x2, x3, x4}, where D(xi) = {a, b, c} for i = 1 . . . 4. Given the grammar G = ({a, b, c}, {A0, A, B, C},
P , S) with the following production rules.

A0 → A A

A → a | A A | BC

B → b | B B

C → c | CC

The cost returned by W_Grammar
var(S, G)(�) is 1 if � = (c, a, b, c). The assignment of x1 needs to be changed so that L(M)

accepts the corresponding string aabc.

Theorem 8. W_Grammar
var(S, G) is a polynomially DAG-filterable and thus tractable projection-safe global cost function.

Proof. We adopt the dynamic programming approach similar to the modified CYK parser [38]. Without loss of generality, 
we assume G is in Chomsky normal form, i.e. each production rule always has the form A → α or A → BC , where A ∈ N , 
B, C ∈ N \ {A0} and α ∈ �.

Define ωA = W_Grammar
var(Si, j, G A), where i ≤ j, Si, j = {xi . . . x j} ⊆ S , and G A = (�, N, P , A) for A ∈ N . By definition,
Si, j
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Fig. 1. The DAG corresponding to W_Grammar
var .

W_Grammar
var(S, G)(�) = ω

A0
S1,n

(�)

The base cases ωA
Si,i

is defined as follows. Define �A = {α | A → α} to be the set of terminals that can be yielded from A.

ωA
Si,i

(�) =
{

min{Uα
i (�[xi]) | (A → α) ∈ P }, if �A �= ∅

�, otherwise
(1)

The unary cost function Uα
i (�[xi]) is defined as follows.

Uα
i (v) =

{
0, if v = α;
1, otherwise

(2)

Other cost functions ωA
Si, j

, where i < j, are defined as follows. Let N A = {(B, C) | A → BC} be the set of pairs of non-

terminals that are yielded from A.

ωA
Si, j

(�) =
{

min
k=i,... j−1

{ωB
Si,k

(�[Si,k]) ⊕ ωC
Sk+1, j

(�[Sk+1, j]) | (A → BC) ∈ P }, if N A �= ∅

�, otherwise � (3)

The associated filtering DAG (V , E) is illustrated in Fig. 1 using Example 1. In Fig. 1, leaves are indicated by double circles, 
corresponding to the unary cost function in equation (2). Vertices with min or ⊕ aggregators are indicated by rectangles 
and circles respectively, corresponding to cost functions ωA

Si, j
in equation (3) if i �= j, or equation (1) otherwise. As shown in 

Fig. 1, the root node W_Grammar is first split by the production rule A0 → A A. One of its children ωA
S1,1

leads to the leaf 
U a

1 according to the production rule A → a. The DAG uses only ⊕ or min as aggregations and they satisfy the preconditions 
that allow to apply Propositions 2 and 3. The cost function is therefore safely DAG-filterable. Moreover, the corresponding 
DAG (V , E) has size |V | = O (|P | · |S|3) polynomial in the size of the input. The leaves are unary functions {Uα

i } and by 
Theorem 7, the result follows.

Note that Theorem 8 also gives a proof that W_Regular
var is tractable projection-safe. Indeed, a finite state automaton, 

defining a regular language, can be transformed into a grammar with the number of non-terminals and production rules 
polynomial in the number of states in the automaton. Then, W_Among

var is also tractable projection-safe since the tuples 
satisfying an Among global constraint can be represented using a compact finite state counting automaton [8].

Function GrammarMin in Algorithm 6 computes the minimum of W_Grammar
var(S, G). We first compute the minimum 

of the unary cost functions in the table u[i, c] at lines 1 to 3. The table f of size n × n × |N| is filled up in two separate 
for-loops: one at line 4 according to the equation (1), and another one at line 14 for the equation (3). The result is returned 
at line 8.

Theorem 9. The function GrammarMin in Algorithm 6 computes the minimum of the global cost function W_Grammar
var(S, G =

(�, N, P , A0)) in time O (nd · |�| + n3 · |P |), where n = |S| and d is the maximum domain size.

Proof. Lines 1 to 3 take O (nd · |�|). The first for-loop at lines 4 to 7 requires O (n · |P |), while the second one at lines 9 to 
14 requires O (n3 · |P |). The overall time complexity is O (nd · |�| + n · |P | + n3 · |P |) = O (nd · |�| + n3 · |P |). �
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Function GrammarMin(S, G)
1 for i := 1 to n do
2 for c ∈ � do
3 u[i, c] := min{U c

i };

4 for i := 1 to n do
5 foreach A ∈ N do f [i, i, A] := �;
6 foreach (A, a) such that (A �→ a) ∈ P do
7 f [i, i, A] = min{ f [i, i, A], u[i, a]} ;

8 return GrammarPartialMin(S, G, 1);

Function GrammarPartialMin(S, G, start)
9 for len := 2 to n do

10 for i := start to n − len + 1 do
11 j := i + len − 1 ;
12 foreach A ∈ N do f [i, j, A] := �;
13 foreach (A, A1, A2) such that (A �→ A1 A2) ∈ P do
14 for k := i to j − 1 do
15 f [i, j, A] := min{ f [i, j, A], f [i, k, A1] ⊕ f [k + 1, j, A2]} ;

16 return f [1, n, A0];
Algorithm 6: Finding the minimum of W_Grammar

var .

Procedure GrammarPreCompute(S, G)
1 F [1, n, A0] := GrammarMin(S, G);
2 for i := 1 to n do
3 for j := i to n do
4 foreach A ∈ N do
5 F [i, j, A] := −�;
6 marked[i, j, A] := false;

7 marked[1, n, A0] := true;
8 for len := n down to 2 do
9 for i := 1 to n − len + 1 do

10 j := i + len − 1 ;
11 foreach (A, A1, A2) such that (A �→ A1 A2) ∈ P ∧ marked[i, j, A] do
12 for k := i to j do
13 marked[i, k, A1] := true;
14 F [i, k, A1] := max(F [i, k, A1], F [i, j, A] � f [k + 1, j, A2]);
15 marked[k + 1, j, A2] := true;
16 F [k + 1, j, A2] := max(F [k + 1, j, A2], F [i, j, A] � f [i, k, A1]);

Algorithm 7: Pre-computation for W_Grammar
var .

As for incrementality, Algorithm 7 gives the pre-processing performed on top of Algorithm 6, based on the weighted CYK 
propagator used in Katsirelos et al. [38]. We compute the table f at line 1 using Algorithm 6. Then we compute the table 
F at lines 8 to 16 using the top-down approach. For each production A �→ A1 A2, lines 14 and 16 compute the maximum 
possible costs from their neighbors. An additional table marked[i, j, A] is used to record whether the symbol A is accessible 
when deriving sub-strings at positions i to j in G . Each time we need to compute the minimum for xi = v , we just return 
min{Uα

i (v) � F [i, i, A] ⊕ f [0, n − 1, A0] | (A �→ v) ∈ P ∧ marked[i, i, A]}, or � if such production does not exist.

Corollary 2. Given W S = W_Grammar
var(S, G = (�, N, P , A0)). Enforcing GAC* on a variable xi ∈ S with respect to W_Grammar 

requires O (nd · |�| + n3 · |P |) time, where n = |S| and d is the maximum domain size.

Proof. Using a similar argument to that in the proof of Theorem 9, Algorithm 7 requires O (nd · |�| + n3 · |P |) time. The 
result follows directly from Corollary 1 and Theorem 9. �

Algorithm 8 shows how projection is performed between W_Grammar
var and W p , and how incrementally can be 

achieved. Line 3 modifies the leaves U c
p for each c ∈ �, while lines 4 and 5 update the corresponding entries in the ta-

bles u and f respectively. The change is propagated up in f at line 6, corresponding to derivation of sub-strings with 
positions from p to the end in G .

In this section, we have seen how the minimum of a polynomially DAG-filterable global cost function can be computed 
efficiently, leading to efficient soft local consistency enforcement. However, each newly implemented cost function requires 
to build a corresponding DAG structure with a dedicated dynamic programming algorithm.
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Procedure GrammarProject (S , {xp}, (v), α)
1 W p(v) := W p(v) ⊕ α ;
2 for c ∈ � do
3 U c

p(v) := U c
p(v) � α;

4 u[p, c] := min{U c
p};

5 foreach (A, a) such that (A �→ a) ∈ P do f [p, p, A] = min{ f [p, p, A], u[i, a]} ;
6 GrammarPartialMin (S, G, p);
7 GrammarPreCompute (S, G);

Algorithm 8: Projection from W_Grammar
var(S, G = (�, N, P , A0)).

In the next section, we show that, in some cases, it is also possible to avoid this by directly decomposing a global cost 
functions into a CFN in such a way that local consistency enforcement will emulate dynamic programming, avoiding the 
need for dedicated enforcement algorithms.

6. Decomposing global cost functions into CFNs

In CSPs, some global constraints can be efficiently represented by a logically equivalent subnetwork of constraints of 
bounded arities [13,16], and are said to be decomposable. Similarly, we will show that some global cost functions can be 
encoded as a sum of bounded arity cost functions. The definition below applies to any cost function, including constraints, 
extending the definition in [16] and [13].

Definition 21. For a given integer p, a p-network-decomposition of a global cost function W_GCF(S, A1, . . . , Ak) is a polyno-
mial transformation δp that returns a CFN δp(S, A1, . . . , Ak) = (S ∪ E, F , �), where S ∩ E = ∅, such that ∀W T ∈ F , |T | ≤ p
and ∀� ∈ D S , W_GCF(S, A1, . . . , Ak)(�) = min�′∈D S∪E ,�′[S]=�

⊕
W Si ∈F W Si (�

′[Si]).

Definition 21 above allows for the use of extra variables E , which do not appear in the original cost function scope 
and are eliminated by minimization. We assume, without loss of generality, that every extra variable x ∈ E is involved in 
at least two cost functions in the decomposition.1 Clearly, if W_GCF(S, A1, . . . , Ak) appears in a CFN P = (X , W, �) and 
decomposes into (S ∪ E, F , �), the optimal solutions of P can directly be obtained by projecting the optimal solutions of 
the CFN P ′ = (X ∪ E, W \ {W_GCF(S, A1, . . . , Ak)} ∪F , �) on X .

6.1. Building network-decomposable global cost functions

A global cost function can be shown to be network-decomposable by exhibiting a bounded arity network decomposition 
of the global cost function. There is a simple way of deriving network-decomposable cost functions from known decompos-
able global constraints. The process goes directly from a known decomposable global constraint to a network-decomposable 
global cost function and does not require to use an intermediate soft global constraint with an associated violation mea-
sure μ. Instead, the global cost function will use any relaxation of the decomposed global constraint.

We say that the cost function W S is a relaxation of W ′
S if for all � ∈ D S , W S (�) ≤ W ′

S (�). We then write W S ≤ W ′
S . From 

a network-decomposable global constraint, it is possible to define an associated network-decomposable global cost function 
by relaxing every constraint in the decomposition.

Theorem 10. Let GC(S, A1, . . . , Ak) be a global constraint that p-network decomposes into a classical constraint network (S ∪
E, F , �) and fθ be a function parameterized by θ that maps every CT ∈ F to a cost function fθ (CT ) such that fθ (CT ) ≤ CT . The 
global cost function

W_GCF(S, A1, ..., Ak, fθ )(�) = min
�′∈D S∪E

�′[S]=�

⊕
CT ∈F

fθ (CT )(�′[T ])

is a relaxation of GC(S, A1, . . . , An), and is p-network-decomposable by construction.

Proof. Since (S ∪ E, F) is a network-decomposition of GC(S, A1, ..., Ak), for any tuple � ∈ D S , GC(S, A1, ..., Ak)(�) = 0
if and only if min�′∈D S∪E ,�′[S]=�

⊕
CT ∈F CT (�′[T ]) = 0. Let �′ ∈ D S∪E be a tuple where this minimum is reached. This 

implies that ∀CT ∈ F , CT (�′[T ]) = 0. Since fθ (CT ) ≤ CT , fθ (CT )(�′[T ]) = 0. Therefore 
⊕

CT ∈F fθ (CT )(�′[T ]) = 0 and 
W_GCF(S, A1, . . . , Ak, fθ )(�) = 0. Moreover, the global cost function is p-network-decomposable by construction. �

1 Otherwise, such a variable can be removed by variable elimination: remove x from E and replace the W T involving x by the cost function minx W T on 
T \ {x}. This preserves the Berge-acyclicity of the network if it exists.
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Theorem 10 allows to immediately derive a long list of network decomposable global cost functions from existing 
network decompositions of global constraints such as AllDifferent, Regular [55], Among and Stretch [14]. The parame-
terization through fθ also allows a lot of flexibility.

Example 2. Consider the softened variant W_AllDifferent
dec(S) of the global constraint AllDifferent(S) constraint using 

the decomposition violation measure where the cost of an assignment is the number of pairs of variables taking the same 
value [56]. It is well known that AllDifferent decomposes into a set of n.(n−1)

2 binary difference constraints. Similarly, the 
W_AllDifferent

dec(S) cost function can be decomposed into a set of n.(n−1)
2 soft difference cost functions. A soft difference 

cost function takes cost 1 iff the two involved variables have the same value and 0 otherwise. In these cases, no extra 
variable is required.

AllDifferent can be softened in a different way. Take an arbitrary graph G = (V , E) over V , and consider the violation 
measure where the cost of an assignment is the number of pairs of variables in E taking the same value. This gives rise to 
a global cost function W_AllDifferent

fG (V ) that allows a zero cost assignment if and only if G is colorable, which is an 
NP-hard problem. Enforcing any soft arc consistency on that single global cost function will be intractable as well since it re-
quires to compute the minimum of the cost function. Instead, enforcing soft arc consistencies on the network-decomposition 
into binary cost functions will obviously be polynomial but will achieve a lower level of filtering.

7. Local consistency and network-decompositions

As we have seen with the W_AllDifferent(V , fG) global cost function, the use of network-decompositions instead of a 
monolithic variant has both advantages and drawbacks. Thanks to local reasoning, a decomposition may be filtered more 
efficiently, but this may hinder the level of filtering achieved. In CSP, it was observed that the structure of the decomposition 
has an impact on the level of consistency achieved when filtering the decomposition.

Before going further, we give some extra definitions that are useful to characterize structure of decompositions. The 
hypergraph (X, E) of a CFN (X , W, �) has one vertex per variable xi ∈ X and one hyperedge for every scope S such 
that ∃W S ∈ W . The incidence graph of a hypergraph (X, E) is a bipartite graph G = (X ∪ E, E H ) where {xi, e j} ∈ E H iff 
xi ∈ X, e j ∈ E and xi belongs to the hyperedge e j . A hypergraph (X, E) is Berge-acyclic iff its incidence graph is acyclic.

In CSP, it is known that if the decomposition is Berge-acyclic, then enforcing GAC on the decomposition enforces GAC on 
the global constraint itself [6]. We now show that a similar result can be obtained for cost functions using either a variant 
of Directional Arc Consistency or Virtual Arc Consistency (VAC), whose definitions are given in the two subsections below.

7.1. Berge-acyclicity and directional arc consistency

In this section, we will show that enforcing directional arc consistency on a Berge-acyclic network-decomposition of a 
cost function or on the original global cost function yields the same cost distribution on the last variable and therefore the 
same lower bound (obtained by node consistency) provided a correct variable ordering is used.

Directional Arc Consistency has been originally defined on binary networks. We define Terminal DAC (or T-DAC) which 
generalizes Directional Arc Consistency [21] by removing the requirement of having binary scopes.

Definition 22 (T-DAC). Given a CFN N = (X , W, �) a total order ≺ over variables:

• For a cost function W S ∈W+ , a tuple � ∈ D S is a full support for a value a ∈ D(xi) of xi ∈ S iff W S (�) 
⊕

x j∈S, j �=i
W j(�[x j]) =

0.
• A variable xi ∈ S is star directional arc consistent (DAC*) for W S iff

– xi is NC*;
– each value vi ∈ D(xi) has a full support � for W S .

• N is Terminal Directional Arc Consistent (T-DAC) w.r.t. the order ≺ iff for all cost functions W S ∈ W+ , the minimum 
variable in S is DAC* for W s .

To enforce T-DAC on a cost function W S , it suffices to first shift the cost of every unary cost function W i, i ∈ S inside 
W S by applying Project(S, {xi}, (a), −W i(a)) for every value a ∈ Di . Let x j be the minimum variable in S according to 
≺, one can then apply Project(S, {x j}, (b), α) for every value b ∈ D(x j) with α = min�∈D S ,�[x j ]=b W S (�). Let � be a tuple 
where this minimum is reached. Then either α = � and the value will be deleted, or � is a full support for b ∈ D(x j): 
W S (�) 

⊕
xi∈S,i �= j W i(�[xi]) = 0. This support can only be broken if for some unary cost function W i, i ∈ S, i �= j, W i(a)

increases for some value a ∈ D(xi). Since j is minimum, i � j.
To enforce T-DAC on a CFN (X , W, �), one can simply sort W in a decreasing order of the minimum variable in the 

scope of each cost function, and apply the previous process on each cost function, successively. When a cost function W S
is processed, all the cost functions whose minimum variable is larger than the minimum variable of S have already been 
processed, which guarantees that none of the established full supports will be broken in the future. Enforcing T-DAC is 
therefore in O (edr) in time, where e = |W| and r = maxW S ∈W |S|.
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Theorem 11. If a global cost function W_GCF(S, A1, . . . , Ak) decomposes into a Berge-acyclic CFN N = (S ∪ E, F), there exists an 
ordering on S ∪ E such that the unary cost function W xin

on the last variable xin of S produced by enforcing T-DAC on the sub-network 
(S, {W_GCF(S, A1, . . . , Ak)} ∪ {W xi }xi∈S ) is identical to the unary cost function W ′

xin
produced by enforcing T-DAC on the decompo-

sition N = (S ∪ E, F ∪ {W xi }xi∈S ).

Proof. Consider the decomposed network N and IN = (S ∪ E ∪ F , E I ) its incidence graph. As N is Berge-acyclic we know 
that IN is a tree whose vertices are the variables and the cost functions of N . We root IN in a variable of S . The neighbors 
(parent and children, if any) of cost functions W T are the variables in T . The neighbors of a variable xi are the cost 
functions involving xi . Consider any topological ordering of the vertices of IN . This ordering induces a variable ordering 
(xi1 , . . . , xin ), xin ∈ S which is used to enforce T-DAC on N . Notice that for any cost function W T ∈ F , the parent variable of 
W T in IN appears after all the other variables of T .

Consider a value a ∈ D(xin ) of the root. Since NC* is enforced, W xin
(a) < �. Let W T be any child of xin and � a full 

support of value a on W T . We have W xin
(a) = W T (�) 

⊕
xi∈T W xi (�[xi]), which proves that W T (�) = 0 and ∀xi ∈ T , i �=

in, W xi (�[xi]) = 0. IN being a tree, we can inductively apply the same argument on all the descendants of xin until leaves 
are reached, proving that the assignment (xin = a) can be extended to a complete assignment with cost W xin

(a) in N . In 
both cases, W xin

(a) is the cost of an optimal extension of (xin = a) in N .
Suppose now that we enforce T-DAC using the previous variable ordering on the undecomposed sub-network 

(S, {W_GCF(S, A1, . . . , Ak)} ∪ {W xi }xi∈S ). Let � be a full support of value a ∈ D(xin ) on W_GCF(S, A1, . . . , Ak). By defini-
tion, W xin

(a) = W_GCF(S, A1, . . . , Ak)(�) 
⊕

xi∈S W xi (�[xi]) which proves that W xin
(a) is the cost of an optimal extension of 

(xin = a) on (S, {W_GCF(S, A1, . . . , Ak)} ∪ {W xi }xi∈S ). By definition of decomposition, and since xin /∈ E , this is equal to the 
cost of an optimal extension of (xin = a) in N . �

T-DAC has therefore enough power to handle Berge-acyclic network-decompositions without losing any filtering strength, 
provided a correct order is used for applying EPTs. In this case, T-DAC emulates a simple form of dynamic programming on 
the network-decomposition.

Example 3. Consider the Regular ({x1, . . . , xn}, M) global constraint, defined by a (not necessarily deterministic) finite au-
tomaton M = (Q , �, δ, q0, F ), where Q is a set of states, � the emission alphabet, δ a transition function from �× Q → 2Q , 
q0 the initial state and F the set of final states. As shown in [15], this constraint decomposes into a constraint network 
({x1, . . . , xn} ∪ {Q 0, . . . , Q n}, C) where the extra variables Q i have Q as their domain. The set of constraints C in the net-
work decomposition contains two unary constraints restricting Q 0 to {q0} and Q n to F and a sequence of identical ternary 
constraints c{Q i ,xi+1,Q i+1} each of which authorizes a triple (q, s, q′) iff q′ ∈ δ(q, s), thus capturing δ. A relaxation of this 
decomposition may relax each of these constraints. The unary constraints on Q 0 and Q n would be replaced by unary cost 
functions λQ 0 and ρQ n stating the cost for using every state as either an initial or final state while the ternary constraints 
would be relaxed to ternary cost functions σ{Q i ,xi+1,Q i+1} stating the cost for using any (q, s, q′) transition.

This relaxation precisely corresponds to the use of a weighted automaton MW = (Q , �, λ, σ , ρ) where every transition, 
starting and finishing state has an associated, possibly intolerable, cost defined by the cost functions λ, σ and ρ [24]. The 
cost of an assignment in the decomposition is equal, by definition, to the cost of an optimal parse of the assignment by 
the weighted automaton. This defines a W_Regular(S, MW ) global cost function which is parameterized by a weighted 
automaton. As shown in [38], a weighted automaton can encode the Hamming and Edit distances to the language of a 
classical automaton. We observe that the hypergraph of the decomposition of W_Regular is Berge-acyclic. Thus, contrary to 
the AllDifferent example, where decomposition was hindering filtering, T-DAC on the W_Regular network-decomposition 
achieves T-DAC on the original cost function.

It should be pointed out that T-DAC is closely related to mini-buckets [26] and Theorem 11 can easily be adapted to this 
scheme. Mini-buckets perform a weakened form of variable elimination: when a variable x is eliminated, the cost functions 
linking x to the remaining variables are partitioned into sets containing at most i variables in their scopes and at most m
functions (with arity > 1). If we compute mini-buckets using the same variable ordering, with m = 1 and unbounded i, we 
will obtain the same unary costs as T-DAC on the root variable r, with the same time and space complexity. Mini-buckets can 
be used along two main recipes: precomputed (static) mini-buckets do not require update during search but restrict search 
to one static variable ordering; dynamic mini-buckets allow for dynamic variable ordering (DVO) but suffer from a lack 
of incrementality. Soft local consistencies, being based on EPTs, always yield equivalent problems, providing incrementality 
during search and are compatible with DVO.

7.2. Berge-acyclicity and virtual arc consistency

Virtual Arc Consistency offers a simple and direct link between CSPs and CFNs which allows to directly lift CSP properties 
to CFNs, under simple conditions.

Definition 23 (VAC [19]). Given a CFN N = (X , W, �), we define the constraint network Bool(N) as the CSP with the same 
set X of variables with the same domains, and which contains, for each cost function W S ∈ W , |S| > 0, a constraint cS with 
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the same scope, which exactly forbids all tuples � ∈ D S such that W S (�) �= 0. A CFN N is said to be Virtual Arc Consistent 
(VAC) iff the arc consistent closure of the constraint network Bool(N) is non-empty.

Theorem 12. If a global cost function W_GCF(S, A1, . . . , Ak) decomposes into a Berge-acyclic CFN N = (S ∪ E, F , �) then enforcing 
VAC on either (S ∪ E, F ∪ {W xi }xi∈S , �) or on (S, {W_GCF(S, A1, . . . , Ak)} ∪ {W xi }i∈S , �) yields the same lower bound W∅.

Proof. Enforcing VAC on the CFN N = (S ∪ E, F ∪{W xi }xi∈S , �) does not modify the set of scopes as it only performs 1-EPTs 
(see Definition 4). Hence it yields an equivalent problem N ′ such that Bool(N ′) has the same hypergraph as Bool(N). Since 
N has a Berge acyclic structure, this is also the case for Bool(N) and Bool(N ′). Now, Berge-acyclicity is a situation where arc 
consistency is a decision procedure. We can directly make use of Proposition 10.5 of [19], which states that if a CFN N is 
VAC and Bool(N) is in a class of CSPs for which arc consistency is a decision procedure, N has an optimal solution of cost 
w∅ .

Similarly, the network Q = (S, {W_GCF(S, A1, . . . , Ak)} ∪ {W xi }xi∈T , �) contains just one cost function with arity strictly 
above 1 and Bool(Q ) will be decided by arc consistency. Enforcing VAC will therefore provide a CFN which also has an op-
timal solution of cost W∅ . Finally, the networks N and Q have the same optimal cost by definition of a decomposition. �

Given that VAC is both stronger and more expensive to enforce than DAC*, the added value of this theorem, compared 
to Theorem 11, is that it does not rely on a variable ordering. Such order always exists but it is specific to each global cost 
function. Theorem 12 becomes interesting when a problem contains several global cost functions with intersecting scopes, 
for which Theorem 11 may produce inconsistent orders.

8. Relation between DAG-filterability and network-decompositions

In this section, we show that Berge-acyclic network-decomposable global cost functions are also polynomially DAG-
filterable.

Theorem 13. Let W_GCF(S, A1, . . . , Ak) be a network-decomposable global cost function that decomposes into a CFN (S ∪ E, F , �)

with a Berge-acyclic hypergraph. Then W_GCF(S, A1, . . . , Ak) is polynomially DAG-filterable.

Proof. We consider the incidence graph of the Berge-acyclic hypergraph of the CFN (S ∪ E, F , �) and choose a root for it 
in the original variables S , defining a rooted tree denoted as I . This root orients the tree I with leaves being variables in S
and E . In the rest of the proof, we denote by I(xi) the subtree of I rooted in xi ∈ S ∪ E . Abusively, when the context is clear, 
I(xi) will also be used to denote the set of all variables in the subtree.

The proof is constructive. We will transform I into a filtering DAG (actually a tree) of nodes that computes the correct 
cost min�′∈D S∪E ,�′[S]=�

⊕
W T ∈F W T (�′[T ]) and satisfies all the required properties of polynomial DAG-filters. To achieve this, 

we need to guarantee that the aggregation function f i = ⊕ is always used on cost functions of disjoint scopes, that f i = min
is always applied on identically scoped functions and that sizes remain polynomial.

We will be using three types of DAG nodes. A first type of node will be associated with every cost function W T ∈ F
in the network-decomposition. Each cost function appears in I with a parent variable xi and a set of children variables 
among which some may be leaf variables. By the assumption that extra variables belong to at least two cost functions (see 
paragraph below Definition 21), leaf variables necessarily belong to S . We denote by leaf (T ) the set of leaf variables in 
the scope T . The first type of node aims at computing the value of the cost function W T combined with the unary cost 
functions on each leaf variable. This computation will be performed by a family of nodes U �

T , where � ∈ DT −leaf (T ) is an 
assignment of non-leaf variables. Therefore, for a given cost function W T and a given assignment � of non-leaf variables, 
we define a DAG node with scope leaf (T ):

U �
T (�′) = W T (� ∪ �′)

⊕
x j∈leaf (T )

W x j (�
′[x j])

These nodes will be leaf nodes of the filtering DAG. Given that all cost functions in I have bounded arity, these nodes 
have an overall polynomial size and can be computed in polynomial time in the size of the input global cost function.

Nodes of the second and third types are associated to every non-leaf variable xi in I . For every value a ∈ D(xi), we will 
have a node ωa

i with scope I(xi) ∩ S . xi may have different children cost functions in I and we denote by Wi the set of all the 
children cost functions of xi in I . For each W T ∈Wi , we will also have a DAG node ωi,a

T with scope S ′
i = (I(W T ) ∪ {xi}) ∩ S . 

Notice that even if these scopes may be large (ultimately equal to S for ωa
i if xi is the root of I), these nodes are not leaf 

nodes of the filtering DAG and do not rely on an extensional definition, avoiding exponential space.
The aim of all these nodes is to compute the cost of an optimal extension of the assignment � to the subtree I(W T ) (for 

ωi,a
T ) or I(xi) (for ωa

i ). We therefore define:

ωa
i (�) =

⊕
ωi,a

T (�[S ′
i])
W T ∈Wi
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Indeed, if ωi,a
T computes the cost of an optimal extension to the subtree rooted in W T , an optimal extension to I(xi) is 

just the ⊕ of each optimal extension on each child, since the scopes S ′
i do not intersect (I is a tree). The DAG node uses 

the ⊕ aggregation operator on non-intersecting scopes.
The definition of the DAG nodes ωi,a

T is more involved. It essentially requires:

1. to combine the cost of W T with the unary cost functions on leaf variables in T (this is achieved by U T nodes) and 
costs of optimal extensions subtrees rooted in other non-leaf variables (this is achieved by ωb

j nodes).
2. to eliminate in this function all extra variables in the scope T except xi if xi ∈ E . In this case, xi ’s value will be set in �

and eliminated on higher levels.

If xi ∈ E or else if �[xi] = a, this leads to the following definition of ωi,a
T (�):

min
�′∈DT ∩E

(xi∈S∨�′[xi ]=a)

[
U (�∪�′)[T −leaf (T )]

T (�[leaf (T )])
⊕

x j∈(T −leaf (T )−{xi})
ω

�[x j ]
j (�[S j])

]
(4)

Otherwise (xi ∈ S and �[xi] �= a), ωi,a
T (�) = �. This captures the fact that there is no optimal extension of � that extends 

(xi, a) since � is inconsistent with xi = a.
If we consider the root variable xi ∈ S of I , the ωa

i nodes provide the cost of a best extension of any assignment � (if 
�[xi] = a) or � otherwise. An ultimate root DAG node using the aggregation operator min over all these ωa

i will therefore 
return the optimal extension of � ∈ D S to all variables in I(xi), including extra variables.

From equation (4), one can see that nodes ωi,a
T use the aggregation operator min on intermediary nodes. These interme-

diary nodes combine the node U T and ω j with ⊕ which have non-intersecting scopes.
Overall all those nodes form a DAG (actually a tree). In this tree, every node with the aggregation operation ⊕ is 

applied to operands with non-intersecting scopes, as required in Property 2. Similarly, every node with the min aggregation 
operation is applied to functions whose scope is always identical, as required by Property 3. Note that the definitions of the 
ωa

i and ωi,a
T are linear respectively in the number of children of W T or xi respectively. So, we have a filtering DAG satisfying 

Definition 18. �
For a global cost function which is Berge-acyclic network-decomposable, and therefore also polynomially DAG-filterable 

(as Theorem 13 shows), a natural question is which approach should be preferred. The main desired effect of enforcing local 
consistencies is that it may increase the lower bound W∅ . From this point of view, Theorems 11 and 12 give a clear answer 
for a single global cost function.

• Since OSAC [19] is the strongest form of arc consistency (implying also VAC), the strongest possible lower bound will 
be obtained by enforcing OSAC on the network-decomposed global cost function. The size of the OSAC linear program 
being exponential in the arity of the cost functions, the bounded arities of the network decomposed version will define 
a polynomial-size linear program. This however requires an LP solver.

• If a network containing network-decomposed global cost functions is VAC, the underlying global cost functions are also 
VAC. As a result, good quality lower bounds can be obtained by enforcing VAC. These lower bounds are not as good as 
those obtained by OSAC, but VAC is usually much faster than OSAC.

• T-DAC is otherwise extremely efficient, easy to implement, offering good lower bounds and incrementality for little 
effort. However, when several global cost functions co-exist in a problem, a variable order that is a topological sort of 
all these global cost functions may not exist. In this case, using a topological order for each scope independently would 
lead to the creation of cycles leading to possibly infinite propagation. It may then be more attractive to use filtering 
DAGs to process these cost functions.

Finally, it should be noted that Theorem 11 only guarantees that T-DAC on a global cost function or its topologically 
sorted Berge-acyclic network-decomposition provide the same bound contribution. If a consistency stronger than DAC* is 
enforced (such as FDAC* or EDAC*), it may be more powerful when enforcedt on the global cost function itself than on its 
network-decomposition, thus giving an advantage to filtering DAGs.

In the end, the only truly informative answer will be provided by experimental results, as proposed in Section 9.

9. Experiments

In this section, we put theory into practice and demonstrate the practicality of the transformations described in the 
previous sections in solving over-constrained and optimization problems. We implemented cost functions with our transfor-
mations in toulbar2 v0.9.8.2 For each cost function used in our benchmark problems, we implemented weak Existential 

2 http :/ /www.inra .fr /mia /T /toulbar2/.

http://www.inra.fr/mia/T/toulbar2/
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Table 1
Car sequencing problem (timeout = 5 min). For each approach, we give the number of instances solved 
(#), the mean number of backtracks only if all the instances have been completely solved (bt.), and the 
mean CPU time over all the instances (in seconds).

n flow&DAG-based DAG-based network-based

# bt. time # bt. time n′ n′′ # bt. time

8 30 19.7 0.10 30 13.6 0.03 154 102 30 210.9 0.11
9 30 58.1 0.31 30 36.4 0.09 198 135 30 798.5 0.41

10 30 109.9 0.88 30 82.1 0.21 245 170 30 3,372 2.0
11 30 193.2 2.1 30 156.7 0.50 293 206 30 17,286 12.2
12 30 522.0 8.0 30 306.1 1.4 344 245 29 – 90.5
13 30 1,251 22.6 30 963.1 4.9 396 285 10 – 233.5
14 26 – 86.4 30 3,227 20.4 451 328 2 – 280.3
15 17 – 160.4 29 – 72.1 507 372 2 – 283.8
16 12 – 204.9 23 – 111.8 566 419 1 – 297.3

Directional Generalized Arc Consistency (EDGAC*) [32,47,48], a local consistency combining AC, DAC and EAC, using DAG-
filtering (called DAG-based approach in the sequel) with pre-computed tables (as described in Section 4). When possible, we 
also implemented a Berge-acyclic network-decomposition to be propagated using EDGAC* (called network-based approach). 
We ignore weaker forms of local consistency such as Arc Consistency or 0-inverse consistency [65] as previous experiments 
with global cost functions have shown that these weak local consistencies lead to much less efficient solving [48].

In the experiments, we used default options for toulbar2, including a new hybrid best-first search strategy introduced 
in [5], which finds good solutions more rapidly compared to classical depth-first search. The default variable ordering strat-
egy is dom/wdeg [17] with Last Conflict [45], while the default value ordering consists, for each variable, in choosing first 
its fully supported value as defined by EDGAC*. At each node during search, including the root node, we eliminate dominated 
values using Dead End Elimination pruning [27,33,44] and we eliminate all variables having degree less than two using 
variable elimination [12,40]. At the root node only, this is improved by pairwise decomposition [30] and we also eliminate 
all variables having a functional or bijective binary relation (e.g., an equality constraint) with another variable. The tests are 
conducted on a single core of an Intel Xeon E5-2680 (2.9 GHz) machine with 256 GB RAM.

We performed our experiments on four different benchmark problems. For the two first benchmarks (car sequencing 
and nonogram), we have a model with Berge-acyclic network-decompositions, whereas for the two others (well-formed 
parentheses and market split), we do not. Each benchmark has a 5-minute timeout. We randomly generate 30 instances for 
each parameter setting of each benchmark. We first compare the number of solved instances, i.e. finding the optimum and 
proving its optimality (no initial upper bound). We report the average run-time in seconds and consider that an unsolved 
problem requires the maximum available time (timeout). When all instances are solved, we also report the average number 
of backtracks (or ‘–’ otherwise). The best results are marked in bold (taking first into account the number of solved instances 
in less than 5 minutes and secondly CPU time).

9.1. The car sequencing problem

The car sequencing problem (prob001 in CSPLib, [54]) requires sequencing n cars of different types specified by a set 
of options. For any subsequence of ci consecutive cars on the assembly line, the option oi can be installed on at most mi
of them. This is called the capacity constraint. The problem is to find a production sequence on the assembly line such 
that each car can be installed with all the required options without violating the capacity constraint. We use n variables 
with domain 1 to n to model this problem. The variable xi denotes the type of the ith car in the sequence. One GCC (global 
cardinality [52]) constraint ensures all cars are scheduled on the assembly line. We post n −ci +1 Among constraints [10] for 
each option oi to ensure the capacity constraint is not violated. We randomly generate 30 over-constrained instances, each of 
which has 5 possible options, and for each option oi , mi and ci are randomly generated in such a way that 1 ≤ mi < ci ≤ 7. 
Each car in each instance is randomly assigned to one type, and each type is randomly assigned to a set of options in such 
a way that each option has 1/2 chance to be included in each type. To introduce costs, we randomly assign unary costs 
(between 0 to 9) to each variable.

The problem is then modeled in three different ways. The first model is obtained by replacing each Among constraint by 
the W_Among

var cost function and the GCC constraint by the W_GCC
var cost function. W_Among

var returns a cost equal to 
the number of variables that need to be re-assigned to satisfy the Among constraint. W_GCC

var is used as a global constraint 
and returns � on violation [48]. This model is called “flow&DAG-based” approach in Table 1.

The second model, identified as “DAG-based” in Table 1, uses a set of W_Among
var cost functions to encode GCC, i.e. 

replacing the single global cost function exploiting a flow network by a set of DAG-based global cost functions [3].
In the third model, identified as “network-based” in Table 1, each of the W_Among

var in the previous DAG-based model 
is decomposed into a set of ternary cost functions with extra variables as described in Section 6.

Table 1 gives the experimental results. Column n′ indicates the sum of the number of original variables (n) and the 
number of extra variables added in the network-based approach. Column n′′ gives the total number of unassigned variables 
after pre-processing. We observe that the network-based approach performed the worst among the three approaches. The 
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Table 2
Nonogram (timeout = 5 min). For each approach, we give the number of instances solved (#), the mean 
number of backtracks only if all the instances have been completely solved (bt.), and the mean CPU time 
over all the instances (in seconds).

n flow-based DAG-based network-based

# bt. time # bt. time n′ n′′ # bt. time

36 30 11.4 0.09 30 11.4 0.01 96 18 30 4.4 0.00
49 30 41.8 0.29 30 41.8 0.05 133 42 30 22.5 0.01
64 30 186.4 2.3 30 186.4 0.26 176 64 30 90.3 0.01
81 30 254.4 4.5 30 254.4 0.50 225 97 30 248.9 0.04

100 25 – 86.0 30 3,581 10.8 280 131 30 3,861 0.47
121 19 – 166.8 26 – 72.8 341 171 30 12,919 1.6
144 3 – 279.6 9 – 233.2 408 224 28 – 44.1
169 0 – 300.0 5 – 266.5 481 267 23 – 116.4
196 0 – 300.0 1 – 297.1 560 330 7 – 257.1

DAG-based approach is up to six times faster than the flow&DAG-based approach on completely solved instances (n ≤ 13) 
and solves more instances within the 5-minute time limit. Surprisingly, it also develops the least number of backtracks 
on completely solved instances. We found that the initial lower bound produced by weak EDGAC on the flow&DAG-based 
approach can be lower than the one produced by the DAG-based approach. This is due to different orders of EPTs done by 
the two approaches resulting in different lower bounds. Finding an optimal order of integer arc-EPTs is NP-hard [20]. Recall 
that EDGAC has a chaotic behavior compared to OSAC or VAC and encoding GCC into a set of W_Among

var will produce 
more EPTs (each W_Among

var moving unary costs differently) creating new opportunities for the overlapping W_Amongsvar

to deduce a better lower bound.

9.2. The nonogram problem

The nonogram problem (prob012 in CSPLIB [36]) is a typical board puzzle on a board of size p × p. Each row and column 
has a specified sequence of shaded cells. For example, a row specified (2, 3) contains two segments of shaded cells, one 
with length 2 and another with length 3. The problem is to find out which cells need to be shaded such that every row and 
every column contain the specific sequence of shaded cells. We model the problem by n = p2 variables, in which xij denotes 
whether the cell at the ith row and jth column needs to be shaded. In the experiments, we generate random instances from 
perturbed white noise images. A random solution grid, with each cell colored with probability 0.5, is generated. A feasible 
nonogram problem instance is created from the lengths of the segments observed in this random grid. To make it infeasible, 
for each row and each column, the list of segment lengths is randomly permuted, i.e., its elements are shuffled randomly. 
If a list is empty, then a segment of random length l is added (0 < l < p). We model and soften the restrictions on each 
row and column by W_Regular

var , resulting in three models: flow-based, DAG-based, and network-based. The flow-based 
model uses the W_Regular

var implementation based on minimum cost flows described in [48], the DAG-based version uses 
the filtering DAG (see [3] for implementation details), and the network-based version uses the decomposition presented in 
Example 3.

Table 2 shows the results of the experiments. For medium-size problems (p ≤ 9, n ≤ 81), the network-based approach 
develops the least number of backtracks on average compared to the two other approaches. Value and variable elimination 
at pre-processing reduces the number of variables by a factor greater than two. The flow-based and DAG-based approaches 
develop the same number of backtracks, producing the same EPTs, but the dynamic programming algorithm implemented 
in the DAG-based approach is about one order-of-magnitude faster than the minimum cost flow algorithm used in the 
flow-based approach. Moreover, the network-based approach is at least one order-of-magnitude faster than the DAG-based 
approach. On the largest instances, because of an exponential increase of the number of backtracks, the network-based 
approach becomes unable to solve all the instances in less than five minutes, but still outperforms the other two approaches.

9.3. The well-formed parentheses problem

In this experiment, we use a network-decomposition of the W_Grammar constraint whose structure is depicted in Fig. 2. 
It is obviously not Berge-acyclic. This experiment will allow us to see the behavior of network-decompositions when they 
are not Berge-acyclic.

Given a set of 2p even length intervals within [1, . . . , 2p], the well-formed parentheses problem is to find a string 
of parentheses with length 2p such that substrings in each of the intervals are well-formed parentheses. We model this 
problem by a set of n = 2p variables. Domains of size 6 are composed of three different parenthesis types: ()[]{}. We post a 
W_Grammar

var cost function on each interval to represent the requirement of well-formed parentheses. We generate 2p −1
even length intervals by randomly picking their end points in [1, . . . , 2p], and add an interval covering the whole range to 
ensure that all variables are constrained. We also randomly assign unary costs (between 0 and 10) to each variable.

We compare two models. The first model, the DAG-based approach, is obtained by modeling each W_Grammar
var cost 

function using a filtering DAG approach.
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Fig. 2. Network associated to the decomposition of W_Grammar
var(x1, x2, x3, x4, x5, x6).

Table 3
Soft well-formed parentheses (timeout = 5 min). For each approach, we give the number 
of instances solved (#), the mean number of backtracks only if all the instances have been 
completely solved (bt.), and the mean CPU time over all the instances (in seconds).

n DAG-based network-based

# bt. time n′ n′′ # bt. time

8 30 3.5 0.06 145 131 30 676.8 0.21
10 30 6.6 0.60 250 228 30 63,084 12.5
12 30 9.1 3.8 392 361 7 – 260.3
14 30 21.1 8.3 580 538 0 – 300
16 29 – 48.9 841 785 0 – 300
18 23 – 115.6 1,146 1,075 0 – 300

In the second network-based model, we decompose each W_Grammar
var cost function involving m variables using 

m(m + 1)/2 extra variables Pi, j (1 ≤ j ≤ m, 1 ≤ i ≤ m − j + 1) whose value corresponds to either a symbol value (for 
j = 1) or a pair of a symbol value S and a string length k (1 ≤ k < j, for j ≥ 2) associated to the substring (i, i + j − 1), 
starting from i of length j. Ternary cost functions link every triplet Pi, j , Pi,k , Pi+k, j−k so that there exists a compatible rule 
S->AB in order to get the substring (i, i + j −1) from the two substrings (i, i +k −1) and (i +k, i + j −1) when Pi, j = (S, k), 
Pi,k = (A, u), Pi+k, j−k = (B, v) with u < k, v < j − k. Binary cost functions are used to encode the terminal rules between 
Pi,1 (i ∈ [1, m]) and the original variables.

Results are shown in Table 3. The network-based approach is clearly inefficient. It has n′ = 1,146 variables on average 
for p = 9 (n = 18). The number of backtracks increases very rapidly due to the poor propagation on a non Berge-acyclic 
network. The DAG-based approach clearly dominates here. Notice that the DAG-based propagation of W_Grammar

var can 
be very slow with around 1 backtrack per second for p = 9.

As a second experiment on well-formed parentheses, we generate new instances using only one hard global grammar 
constraint and a set of p(2p −1) binary cost functions corresponding to a complete graph. For each possible pair of positions, 
if a parentheses pair ((), [], or {}) is placed at these specific positions, then it incurs a randomly-generated cost (between 0 
to 10). A single W_Grammar

var cost function is placed on all the n = 2p variables, which returns � on violation (a Grammar 
constraint), ensuring that the whole string has well-formed parentheses. As in the experiments of Table 3, the two models 
are characterized by how the consistency is enforced on the W_Grammar

var cost function: a filtering DAG for the DAG-based 
approach, a network-decomposition for the network-based approach.

Results are shown in Table 4. The network-based approach still develops more backtracks on average for p ≥ 6 (n ≥ 12) 
than the DAG-based approach but the difference is less important than in the previous experiment because there is a 
single grammar constraint. Surprisingly, for p ≤ 5, the network-based approach develops less backtracks than the DAG-based 
approach. The network-based approach benefits from variable elimination that exploits bijective binary relations occurring in 
the decomposed hard grammar cost function. Moreover, having only one global constraint implies less extra variables for the 
network-based approach than in the previous experiment (n′ = 189 for p = 9 instead of n′ = 1,146). The propagation speed 
of the network-based approach is much better than the DAG-based approach, with ∼4,100 bt./sec instead of ∼23 bt./sec
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Table 4
Well-formed parentheses (single hard global constraint) with additional binary cost func-
tions (timeout = 5 min). For each approach, we give the number of instances solved (#), 
the mean number of backtracks if available (bt.), and the mean CPU time (in seconds).

n DAG-based network-based

# bt. time n′ n′′ # bt. time

8 30 37.4 0.11 44 33 30 19.5 0.04
10 30 105.5 0.51 65 51 30 100.5 0.12
12 30 265.4 2.4 90 73 30 916.5 0.38
14 30 887.7 14.0 119 99 30 6,623 1.7
16 30 3,037 80.6 152 129 30 54,544 12.0
18 13 – 257.9 189 163 30 394,391 95.7

for p = 9, resulting in better overall time efficiency compared to the DAG-based approach, being up to 8 times faster for 
p = 7 to solve all the thirty instances.

9.4. The market split problem

In some cases, problems may contain global cost functions which are not network-decomposable because the bounded 
arity cost function decomposition is not polynomial in size. However, if the network is Berge-acyclic, Theorem 11 still 
applies. With exponential size networks, filtering will take exponential time, but may yield strong lower bounds. The global 
constraint 

∑n
i=1 ai xi = b (a and b being integer coefficients) can be easily decomposed by introducing n − 3 intermediate 

sum variables qi and ternary sum constraints of the form qi−1 + ai xi = qi with i ∈ [3, n − 2] and a1x1 + a2x2 = q2, qn−2 +
an−1xn−1 + anxn = b. More generally, ternary decompositions can be built for the more general case where the right hand 
side of the constraint uses any relational operator, including any Knapsack constraint. In this representation, the extra 
variables qi have b values in their domain, which is exponential in the size of the representation of b (in log(b)). As for the 
pseudo-polynomial Knapsack problem, if b is polynomially bounded by the size of the global constraint, propagation will be 
efficient. It may otherwise be exponential in it.

As an example, we consider a generalized version of the Knapsack problem, the Market Split problem defined in [23,64]. 
The goal is to minimize 

∑n
i=1 oi xi such that 

∑n
i=1 ai, j xi = b j for each j ∈ [1, m] and xi are Boolean variables in {0, 1} (o, a

and b being positive integer coefficients). We compared the Berge-acyclic decomposition in toulbar2 (version 0.9.8) with 
a direct application of the Integer Linear Programming solver cplex (version 12.6.3.0). We used a depth-first search with 
a static variable ordering (in decreasing oi∑m

j=1 ai, j
order) and no pre-processing (options -hbfs: -svo -o -nopre) for toulbar2. 

We generated random instances with random integer coefficients in [0, 99] for o and a, and b j = � 1
2

∑n
i=1 ai, j�. We used a 

sample of 30 problems with m = 4, n = 30 leading to max b j = 918. The mean number of nodes developed in toulbar2
was 29% higher than in cplex, which was on average 4.5 times faster than toulbar2 on these problems. The 0/1 knapsack 
problem probably represents a worst case situation for toulbar2, given that cplex embeds much of what is known about 
0/1 knapsacks (and only part of these extend to more complicated domains). Possible avenues to improve toulbar2 results 
in this unfavorable situation would be to use a combination of the m knapsack constraints into one as suggested in [64].

10. Conclusion

Existing tools for solving optimization on graphical models are usually restricted to cost functions involving a reasonably 
small set of variables, often using an associated cost table. But problem modeling may require to express complex conditions 
on a non-bounded set of variables. This has been solved in Constraint Programming by using Global Constraints. Our results 
contribute to lift this approach to the more general framework of cost function networks, allowing to express and efficiently 
process both global constraints and global cost functions, using dedicated soft arc consistency filtering.

Our contributions are four-fold. First, we define the tractability of a global cost function, and study its behavior with re-
spect to projections/extensions with different arities of cost functions. We show that tractable r-projection-safety is always 
possible for projections/extension to/from the nullary cost function, while it is always impossible for projections/extensions 
to/from r-ary cost functions for r ≥ 2. When r = 1, we show that a tractable cost function may or may not be tractable 
1-projection-safe. Second, we define polynomially DAG-filterable cost functions and show them to be tractable 1-projection-
safe. We give also a polytime dynamic programming based algorithm to compute the minimum of this class of global cost 
functions. We also show that the cost function W_Grammar

var is polynomially DAG-filterable and tractable 1-projection-
safe. The same results apply to W_Among

var , W_Regular
var , and W_Max/W_Min as shown in the associated technical 

report [3]. Third, we show that dynamic programming can be emulated by soft consistencies such as DAC and VAC if a 
suitable network decomposition of the global cost function into a Berge-acyclic network of bounded arity cost functions 
exists. In this case, local consistency on the decomposed network is essentially as strong as on the global cost function. This 
approach is shown to be a specific case of the previous approach in the sense that any Berge-acyclic network-decomposable 
cost function is also polynomially DAG-filterable. Finally, we perform experiments and compare the DAG-based and network-
based approaches, in terms of run-time and search space. The DAG-based approach dominates when there are several 
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overlapping global cost functions. On the contrary, the network-based approach performs better if there are few global cost 
functions resulting in a reasonable number of extra variables. This is complexified by additional techniques such as boost-
ing search by variable elimination [40], Weighted Degree heuristics [17], and Dead-End Elimination [33] which work better 
with the low-arity cost functions of the network-based approach. We also compare against the flow-based approach [48]
and show that our approaches are usually more competitive. On Berge acyclic network-decomposable cost function just as 
W_Regular

var , this is not unexpected as the dynamic programming based propagation or its emulation by T-DAC essentially 
solves a shortest path problem, which can easily be reduced to the more general min-cost flow problem used in [48] which 
can itself be reduced to LP [1]. As problems become more specific, algorithmic efficiency can increase.

An immediate possible future work is to investigate other sufficient conditions for polynomially DAG-filterable and also 
tractable 1-projection-safety. Our results only provide a partial answer. Whether there exists necessary conditions for poly-
nomially DAG-filterable is unknown. Besides polynomially DAG-filterable, we would like to investigate other form of tractable 
1-projection-safety and techniques for enforcing typical consistency notions efficiently.
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