
Noname manuscript No.
(will be inserted by the editor)

Adding Laziness in BnB-ADOPT+

Jimmy H. M. Lee · Pedro Meseguer · Wen Su

the date of receipt and acceptance should be inserted later

Received: date / Accepted: date

Abstract In distributed constraint optimization, agents executing BnB-ADOPT+ re-

act eagerly to cost changes: they send non-redundant COST messages to their parents

as soon as they receive new messages. We have observed that a lazier reaction (not

sending COST messages until a condition is met) substantially decrements the num-

ber of messages sent and causes only a small variation in ENCCCs. This approach

combines nicely with soft arc consistency maintenance during search. We provide

experimental evidence of the benefits of this approach on several benchmarks.

1 Introduction and Background

BnB-ADOPT+ [6,3] is a solving algorithm for Distributed Constraint Optimization

Problems (DCOPs) that optimizes a global utility function composed of joint utilities

of subsets of agents. Each agent executes a copy of the algorithm, which communi-

cates with the other agents using three kinds of messages: VALUE, COST and TER-

MINATE. In this letter we consider the reduction in communication requirements of

BnB-ADOPT+ (reducing the number of messages) made possible by not sending out

every COST message. This lazy strategy sends out only those COST messages that

satisfy some extra conditions (in contrast to the eager strategy of the original BnB-

ADOPT+ that sends out a COST message as soon as some change has been pro-

duced). Interestingly, this lazy approach combines nicely with soft arc consistency

maintenance [2], producing an algorithm that uses fewer messages than any of these

approaches taken separately. Regarding ENCCCs [1], experimentally we observe a

slight variation that does not harm performance.

Jimmy H. M. Lee, Wen Su

Dept Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

E-mail: {jlee,wsu}@cse.cuhk.edu.hk

Pedro Meseguer

IIIA - CSIC, Campus UAB, 08193 Bellaterra, Spain

E-mail: pedro@iiia.csic.es

2 Jimmy H. M. Lee et al.

DCOP. A DCOP is defined by 〈X ,D,F ,A,α〉, where X = {x1, . . . , xn} is a set

of variables; D = {D1, . . . , Dn} is a set of finite domains, where Di is the do-

main of variable xi; F is a set of binary cost functions, where each cost function

fij : Di × Dj 7→ N ∪ {0,∞} specifies the cost of each combination of values of

variables xi and xj ; A = {a1, . . . , ap} is a set of agents and α : X → A maps

each variable to one agent. We assume that each agent controls only one variable.

The cost of an assignment of a subset of variables is the evaluation of all cost func-

tions on that assignment. Agents communicate through messages, which are never

lost and delivered in the order that they were sent between every pair of agents. In

the constraint graph of a DCOP instance, nodes correspond to variables and edges

connecting pairs of variables correspond to cost functions on these variables. A depth-

first search (DFS) pseudo-tree arrangement of that graph differentiates edges in two

classes: tree edges such that they form a rooted tree of the constraint graph and pseu-

doedges formed by the remaining edges. This arrangement should satisfy that every

pair of constrained variables appears in the same branch of the rooted tree. Edges

connect nodes as parent-child relation, while pseudoedges connect nodes as pseudo-

parent-pseudochild relation.

BnB-ADOPT . The BnB-ADOPT algorithm [6], inspired by the ADOPT algorithm

[4], computes an optimal solution of a DCOP instance. Both work on a pseudotree

of the constraint graph, but they differ in the search strategy: ADOPT uses best-first

search, while BnB-ADOPT implements a depth-first branch-and-bound search strat-

egy. As a consequence, agents change their value assignments differently. The use

of thresholds is also different (in ADOPT a threshold is a lower bound but in BnB-

ADOPT a threshold is an upper bound). BnB-ADOPT messages are VALUE(i, j, val, th),
for ai to inform child or pseudochild aj that it has taken value val with threshold th,

COST(k, j, context, lb, ub) for ak to inform parent aj that with context its bound

are lb and ub, and TERMINATE(i, j), for ai to inform child aj that ai terminates. A

BnB-ADOPT agent executes the following loop: it reads and processes all incoming

messages, and assigns a value. Then, it sends the following messages: a VALUE mes-

sage per child or pseudochild, and a COST message to its parent. The agent located

at the pseudotree root selects values in sequence. It changes value when either (i) the

lower and upper bounds of the currently assigned value are equal (meaning that this

is the exact minimum cost for that value; in its original form BnB-ADOPT is a min-

imization algorithm) or (ii) the lower bound of that value is higher than the lowest

exact cost already found for a value previously explored. The same strategies are used

for agents in non-root nodes, where assignments of agents higher in the pseudotree

have to be taken into account when computing costs (they also generate thresholds for

children agents). When an agent changes value, this causes to reinitialize all descen-

dent agents that are constrained with it (for details, see [6]). BnB-ADOPT+ [3] is a

new version that removes most of the redundant messages. Each agent keeps the last

VALUE sent to each child/pseudochild and the last COST message sent to its parent.

When this agent has to send a new VALUE/COST message, it sends that message

when it is different from the last VALUE/COST message sent for that destination

(unless the last COST received from that child contains the boolean field ThReq =
true, see [3] for details).

Adding Laziness in BnB-ADOPT+ 3

2 Lazy BnB-ADOPT

The basic idea behind the lazy version of BnB-ADOPT+ is that, instead of reacting

eagerly to each received message and sending non-redundant VALUE and COST

messages, some COST messages can be avoided as long as the one with the highest

lower bound contribution is sent, for any agent and context. Intuitively, we want to

avoid sending those COST messages that contain a smaller lower bound as they are

likely not to contribute enough to effectively prune a value at higher levels of the

pseudotree. We implement this idea by adding extra conditions for COST messages to

be sent. First of all, we prove that such conditions do not compromise the correctness,

termination and optimality of the modified algorithm. In the following, we discuss

different conditions for sending COST messages. We prove our results first on the

original BnB-ADOPT, and then we prove that they also hold for BnB-ADOPT+.

Here we assume some familiarity with BnB-ADOPT+. We adopt the notation of [6]

(a is a generic agent, da is its current value, Xa is its current context, formed by the

current values of constrained agents located higher than a in the pseudotree, THa is

its threshold, LBa(d) and UBa(d) are its lower and upper bounds for value d, and

LBa and UBa are the minimum lower and upper bounds of its values).

BASIC APPROACH. We consider the limit condition for agent a to send COST mes-

sages: LBa ≥ min{THa, UBa}.1 We start with the following Lemma, which is

needed to prove our main result: a modified BnB-ADOPT that sends COST mes-

sages only when LBa ≥ min{THa, UBa} remains complete and terminates with

the minimum cost.2

Lemma 1 If the context Xa of agent a executing BnB-ADOPT does not change, after

trying all its values, agent a will eventually satisfy that for each value d LBa(d) ≥
min{THa, UBa}.

Proof. If the context Xa does not change, agent a tries all its values. According to

the BnB-ADOPT pseudocode [6], for each value d, agent a performs search until

LBa(d) ≥ min{THa, UBa}. This is a consequence of how BnB-ADOPT works

(see the pseudocode in [6], specially from line 23 in the Backtrack procedure): a

value da is pursued by agent a until its lower bound reaches min{THa, UBa}; then

a changes value, selecting a new current value da. �

Proposition 1 BnB-ADOPT remains complete and terminates with the minimum so-

lution cost when only COST messages with LBa ≥ min{THa, UBa} are sent.

Proof. By Lemma 1, if the context Xa does not change, an agent a executing BnB-

ADOPT, after trying all its values, satisfies that for each value d LBa(d) ≥ min{THa, UBa}.

The last COST message that a potentially sends for context Xa is when LBa ≥ UBa

1 It is a kind of limit condition because failing to send a COST message satisfying this condition may

result in incompleteness of the modified algorithm (imagine that the current value of every agent is one

that minimizes total cost; if an agent a does not send a COST to its parent when LBa ≥ UBa, the parent

will wait infinitely and the algorithm would not terminate).
2 Here, the COST message contains LBa and UBa, which are copied from the sender agent a.

4 Jimmy H. M. Lee et al.

or when LBa ≥ THa. If agent a sends this COST message, everything that can

be achieved with previous messages can be achieved with this one, since the mes-

sage contains the highest/lowest possible contribution to the lower/upper bound of

the cost that any value of this agent a may cause in context Xa. Therefore, re-

placing previous COST messages with inferior lower bounds by this one satisfying

LBa ≥ min{THa, UBa} does not affect the termination of BnB-ADOPT with the

minimum solution cost. If context Xa changes before agent a finishes trying all its

values, it happens that the condition LBa ≥ min{THa, UBa} is not satisfied, and

no COST message is sent. A context change means that an ancestor of a has realized

that its current value contained in the context Xa is too costly. Thus another value

must be tried, which causes a context update. Agent a is reinitialized, computing the

costs of each value according to the new context. Observe that a not sending any

COST message for context Xa causes no problem, because that ancestor agent is

no longer interested in the cost of a for Xa (any such message would be discarded

anyway when it will arrive to such ancestor, because it contains an outdated context).

Therefore, no matter whether there is a context change or not, sending COST mes-

sages when the condition LBa ≥ min{THa, UBa} is satisfied does not affect the

termination of BnB-ADOPT with the minimum solution cost. �

Proposition 2 BnB-ADOPT+ remains complete and terminates with the minimum

solution cost when only COST messages with LBa ≥ min{THa, UBa}∨ThReq =
true are sent.

Proof. BnB-ADOPT+ [3] is simply BnB-ADOPT where some messages proved re-

dundant have been removed, keeping the completeness and termination with mini-

mum cost of the original algorithm. Therefore, the arguments used to justify the extra

condition LBa ≥ min{THa, UBa} also apply to BnB-ADOPT+. Regarding the

second condition ThReq = true, this is included for efficiency purposes (in BnB-

ADOPT+, COST messages have ThReq as an extra field, which indicates when the

parent has to send the threshold to a child in the next VALUE message; this condition

is included to propagate the right thresholds after a context change). �

The lazy basic version, that we call BnB-ADOPT+

lb, sends only COST messages

satisfying the condition LBa ≥ min{THa, UBa} ∨ ThReq = true. This does not

compromise the completeness and termination of the new algorithm. However, not

sending out every possible COST message implies that some opportunities for value

pruning at higher levels of the pseudotree might be lost. Pruning a value is equivalent

to give up traversing the search tree rooted at that value, which may result in saving

some VALUE and COST messages needed to traverse that search tree at lower levels,

as well as saving search effort recorded in ENCCCs. This motivates the next part.

STOCHASTIC APPROACH. It is easy to see that any disjunction involving the condi-

tion(s) we have devised for sending COST messages in Propositions 1 and 2 main-

tains the completeness and termination with minimum cost of the modified algorithm.

This allows us a wide spectrum of possibilities for the degree of laziness, since any

disjunction including LBa ≥ min{THa, UBa} (in BnB-ADOPT+ in disjunction

with ThReq = true) can be used as prerequisite to send COST messages. Aiming to

Adding Laziness in BnB-ADOPT+ 5

find an extra condition that is efficient in practice, we have considered the following

desirable criteria:

– As the number of nodes in a search tree grows exponentially with depth, the

condition for deep nodes should be stronger than for shallow nodes, in order to

keep under control the amount of COST messages from deep nodes.

– Pruning a value implies savings in messages and ENCCCs. The higher an agent is

in the pseudotree, the more savings may cause value pruning. To enforce pruning,

agents at higher levels should have a weaker condition than other agents lower in

the pseudotree.

– Agents at leaf nodes in the pseudotree must always send their COST messages.

This is always satisfied since we always have LBa = UBa at a leaf agent a.

We have produced a lazy random version, called BnB-ADOPT+

lr, that, in disjunc-

tion with the conditions mentioned in Propositions 1 and 2, includes a new condition

of stochastic nature, satisfying that the deeper the agent is in the pseudotree, the

smaller the probability of satisfaction of that new condition. This new condition 3 is

random(tree-height) + 1 ≥ agent-depth, where tree-height is the height of the

pseudotree, agent-depth is the depth of the agent in the pseudotree and random(x)
generates a random integer in [0, x−1]. Experimentally, this stochastic condition has

given good results.

COMBINING WITH SOFT ARC CONSISTENCY MAINTENANCE. The connection of

this approach with maintaining soft arc consistency (AC) during search [2] does not

present any theoretical difficulty. On the one hand, the lazy approach keeps the com-

pleteness and termination of the BnB-ADOPT+ algorithm, so that soft AC mainte-

nance can work on top of the lazy versions without any trouble. On the other hand,

since distributed search is done on original cost functions (soft AC is enforced on

copies of original cost functions), the action of soft AC maintenance is limited to

value deletions in domains, without interference with distributed search.

Although the extra condition on sending COST messages may not have a theoret-

ical impact, it may offset the good performance obtained by the addition of soft AC

maintenance. The point here is that COST messages contain elements needed to en-

force soft AC. Limiting the sending of COST messages may cause to work with old

values of these elements, but not the most updated version. However, experimental

results indicate that in practice this is not a big issue. In particular, the lazy random

version achieves a good performance, combining message savings obtained from ei-

ther soft AC maintenance or COST messages limitations. We provide specific results

on this in Section 3.

3 Testing other conditions of the same kind, we observe that there is a trade-off here: the easier it is to

send a COST message, the more pruning is obtained and less ENCCCs are incremented (on average over

30 or 50 instances depending on the benchmark). In the limit, sending every possible COST message takes

advantage of every opportunity for pruning, at the cost of sending many COST messages (although not all

of them would effectively contribute for pruning a value).

6 Jimmy H. M. Lee et al.

3 Experimental Results

We assess the efficiency gain of adding laziness into BnB-ADOPT+ by comparing

the performance of the original algorithm with its lazy versions, also including the

combination with soft AC maintenance (MAC), on the following benchmarks:

– Binary random DCOP. Instances are characterized by 〈n, d, p〉, where n is the

number of variables, d is the domain size and p is the network connectivity. We

have generated four classes of random DCOP instances: 〈n = 10, d = 10, p =
0.2, 0.3, 0.4, 0.5〉, 50 instances for each class. Costs are selected from a uniform

cost distribution. Two types of binary cost functions are used, small and large.

Small cost functions extract costs from the set {0, . . . , 10} while large ones ex-

tract costs from the set {0, . . . , 1000}. The proportion among them is 3/4 small

and 1/4 large (this is done to introduce some variability among tuple costs).

– Soft graph coloring. Same as binary random DCOP, instances are also character-

ized by 〈n, d, p〉 with the same parameter meaning. This is the softened version

of the graph coloring problem, where the assignment of values vi and vj to agents

ai and aj has a cost equal to d2 − |vi − vj |
2. We generated several classes with

the following parameters: 〈n = 6, 7, 8, 9, d = 8, p = 0.4〉, 50 instances for each

parameter setting.

– Meeting scheduling. Obtained from the DCOP repository [7], this benchmark

presents 4 classes, all with domain 9: case A (8 variables), case B (10 variables),

case C (12 variables) and case D (12 variables). Each class contains 30 instances.

– Sensor networks. Also from the DCOP repository [7], this benchmark considers

4 classes, all with domain 9: case A (16 variables), case B (16 variables), case C

(10 variables) and case D (16 variables). Each class contains 30 instances.

Execution was in a discrete event simulator, evaluating performance in terms of

communication cost (total number of messages exchanged) and computation effort

(equivalent non-concurrent constraint checks, ENCCC [1]). Inspired by [5], upon

receiving a message, the receiving agent updates its ENCCC counter using the fol-

lowing rule ENCCCagent = max{ENCCCagent , ENCCCmessage + 1000}.

Results appear in Table 1, where we can see the benefits of our approach. At first

sight, we see a clear reduction in the number of messages sent by the implementa-

tions including the lazy idea (the larger and more difficult instances, the higher the

reduction in number of messages sent). We also observe a trade-off between message

saving and ENCCC increment.

Specifically, considering the lazy basic approach, we observe a clear trend in

all classes of all benchmarks tested: BnB-ADOPT+

lb, requires substantially less mes-

sages than the original BnB-ADOPT+, at the extra cost of increasing its ENCCCs by

a small amount. The lazy approach decrements the number of COST messages used,

but increases the number of VALUE messages. The final balance is a total message

reduction. These data allow a clear interpretation. Since we are limiting at maximum

the COST messages that can be sent, this has a clear impact in the number of val-

ues pruned. Less pruning means more search effort, so more messages are required

(which justifies the increment in VALUE messages) and more ENCCCs are done.

Adding Laziness in BnB-ADOPT+ 7

The lazy random algorithm, BnB-ADOPT+

lr, allows for some more pruning op-

portunities, because it is sending COST messages under weaker conditions than the

lazy basic one. This explains why the number of VALUE messages decreases, while

the number of COST messages increases. The total balance is slightly higher than

the lazy basic algorithm. More pruning opportunities means less search effort. And

this is reflected in the decrement of ENCCCs with respect to BnB-ADOPT+

lb. The

lazy random algorithm appears as an intermediate point between the original one

and the lazy basic one: it requires more messages but performs less ENCCCs than

BnB-ADOPT+

lb. If compared with original BnB-ADOPT+, the reduction in number

of messages is still substantial, while the increment in ENCCCs is quite small. Inter-

estingly, when adding soft AC maintenance (MAC), results follow the same trend.

4 Conclusions

From this work we conclude that a lazy approach is a simple but powerful method to

decrement the communication requirements inside the BnB-ADOPT+ solving algo-

rithm, at the extra cost of a small increment in ENCCCs on average. We expressed

this idea by adding some particular conditions in the BnB-ADOPT+ code that should

be satisfied prior to sending a COST message. Regarding the algorithmic extensions

presented, the lazy random one shows a more balanced behavior than the lazy basic

one in the four benchmarks tested. This approach is not only supported by experi-

mental results, but we have proved that the above mentioned conditions maintain the

completeness and termination with minimum cost of the modified algorithms.

Acknowledgements

This research has been supported by the following grants: CUHK413808, CUHK413710

and CUHK413713 from the Research Grants Council of Hong Kong SAR, the CSIC/RGC

Joint Research Scheme grants S-HK003/12 and 2011HK0017, TIN2013-45732-C4-

4-P from Spanish MINECO, and Generalitat de Catalunya SGR-2014-118.

References

1. A. Chechetka and K. Sycara. No-commitment branch and bound search for distributed constraint

optimization. In Proc. AAMAS 2006, pages 1427–1429, 2006.
2. P. Gutierrez, J. Lee, K. Lei, T. Mak, and P. Meseguer. Maintaining soft arc consistency in BnB-

ADOPT+ during search. In Proc. CP 2013, LNCS 8124, pages 365–380, 2013.
3. P. Gutierrez and P. Meseguer. Removing redundant messages in N -ary BnB-ADOPT. Journal of

Artificial Intelligence Research, pages 287–304, 2012.
4. P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous distributed constraint

optimization with quality guarantees. Artificial Intelligence, 161:149–180, 2005.
5. O. Peri and A. Meisels. Synchronizing for performance - DCOP algorithms. In Proc. ICAART 2013,

pages 5–14, 2013.
6. W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asynchronous branch-and-bound DCOP algo-

rithm. Journal of Artificial Intelligence Research, 38:85–133, 2010.
7. Z. Yin. USC DCOP repository. Meeting scheduling and sensor net datasets,

http://teamcore.usc.edu/dcop, 2008.

8 Jimmy H. M. Lee et al.

(a) Binary Random n = 10, d = 10

no MAC MAC

p Algorithm #msg #V #C ENCCC #msg #V #C ENCCC

BnB-ADOPT+ 587 (100%) 207 370 159417 (100%) 365 (100%) 95 182 84050 (100%)

0.2 BnB-ADOPT
+

lb
476 (-19%) 209 258 160948 (+1%) 309 (-15%) 105 122 90649 (+8%)

BnB-ADOPT
+

lr
525 (-11%) 208 308 159899 (+0%) 328 (-10%) 97 143 85573 (+2%)

BnB-ADOPT+ 12587 (100%) 3589 8988 2820305 (100%) 5496 (100%) 1345 3597 1200343 (100%)

0.3 BnB-ADOPT
+

lb
7970 (-37%) 3667 4294 2874389 (+2%) 4104 (-25%) 1558 1687 1395567 (+16%)

BnB-ADOPT
+

lr
9305 (-26%) 3598 5698 2826676 (+0%) 3944 (-28%) 1366 2013 1218497 (+2%)

BnB-ADOPT+ 204721 (100%) 45289 159423 36938269 (100%) 46868 (100%) 8367 30700 7707417 (100%)

0.4 BnB-ADOPT
+

lb
105844 (-48%) 46842 58992 38381195 (+4%) 41526 (-11%) 12353 14679 11557117 (+50%)

BnB-ADOPT
+

lr
125419 (-39%) 45473 79937 37108586 (+0%) 32330 (-31%) 8863 14712 8205229 (+6%)

BnB-ADOPT+ 1252953 (100%) 265956 986978 226314029 (100%) 162098 (100%) 29172 114581 26672325 (100%)

0.5 BnB-ADOPT
+

lb
611318 (-51%) 280120 331190 238771208 (+6%) 110036 (-32%) 40862 45666 38394064 (+44%)

BnB-ADOPT
+

lr
676398 (-46%) 268323 408066 228806919 (+1%) 91572 (-44%) 29602 43736 27366962 (+3%)

(b) Soft Graph Coloring

no MAC MAC

n,m, p Algorithm #msg #V #C ENCCC #msg #V #C ENCCC

BnB-ADOPT+ 520 (100%) 173 342 178563 (100%) 305 (100%) 78 150 77168 (100%)

6, 8, 0.4 BnB-ADOPT
+

lb
376 (-28%) 174 197 179688 (+1%) 248 (-18%) 83 87 80830 (+5%)

BnB-ADOPT
+

lr
434 (-17%) 173 256 178183 (- 0%) 272 (-11%) 81 111 78753 (+2%)

BnB-ADOPT+ 3796 (100%) 1065 2725 1131350 (100%) 1913 (100%) 438 1111 476447 (100%)

7, 8, 0.4 BnB-ADOPT
+

lb
2347 (-38%) 1091 1251 1170465 (+3%) 1344 (-30%) 468 489 514292 (+8%)

BnB-ADOPT
+

lr
2783 (-27%) 1076 1701 1145571 (+1%) 1492 (-22%) 449 659 492034 (+3%)

BnB-ADOPT+ 29483 (100%) 6579 22897 7559987 (100%) 17220 (100%) 3354 11598 3921667 (100%)

8, 8, 0.4 BnB-ADOPT
+

lb
15058 (-49%) 6850 8200 7973947 (+5%) 9868 (-43%) 3539 3900 4226683 (+8%)

BnB-ADOPT
+

lr
18190 (-38%) 6620 11563 7636022 (+1%) 11269 (-35%) 3420 5488 4029280 (+3%)

BnB-ADOPT+ 200250 (100%) 42491 157301 42120374 (100%) 80792 (100%) 15595 55800 15182978 (100%)

9, 8, 0.4 BnB-ADOPT
+

lb
95624 (-52%) 44881 50735 44342293 (+5%) 44323 (-45%) 16561 17669 16535342 (+9%)

BnB-ADOPT
+

lr
106844 (-47%) 43366 63470 42582980 (+1%) 47654 (-41%) 15843 21983 15549240 (+2%)

(c) Meeting Scheduling

no MAC MAC

Class Algorithm #msg #V #C ENCCC #msg #V #C ENCCC

BnB-ADOPT+ 8040 (100%) 1993 6040 2243596 (100%) 5589 (100%) 1190 3624 1430625 (100%)

A BnB-ADOPT
+

lb
4619 (-43%) 2139 2474 2462052 (+10%) 3994 (-29%) 1533 1515 1941389 (+36%)

BnB-ADOPT
+

lr
5448 (-32%) 2013 3427 2283774 (+2%) 3879 (-31%) 1254 1827 1527059 (+7%)

BnB-ADOPT+ 5205 (100%) 1305 3891 936467 (100%) 6093 (100%) 936 2972 845143 (100%)

B BnB-ADOPT
+

lb
3258 (-37%) 1360 1890 990148 (+6%) 5119 (-16%) 1123 1355 1082620 (+28%)

BnB-ADOPT
+

lr
3876 (-26%) 1313 2553 947579 (+1%) 4857 (-20%) 976 1670 905592 (+7%)

BnB-ADOPT+ 2544 (100%) 859 1674 518977 (100%) 2315 (100%) 592 1196 397394 (100%)

C BnB-ADOPT
+

lb
1941 (-24%) 881 1049 536246 (+3%) 2077 (-10%) 698 745 489370 (+23%)

BnB-ADOPT
+

lr
2188 (-14%) 861 1315 522289 (+1%) 2045 (-12%) 618 883 424978 (+7%)

BnB-ADOPT+ 2733 (100%) 883 1839 553076 (100%) 3216 (100%) 574 1222 441624 (100%)

D BnB-ADOPT
+

lb
2073 (-24%) 920 1142 583868 (+6%) 3338 (+4%) 704 819 554044 (+25%)

BnB-ADOPT
+

lr
2382 (-13%) 884 1487 553878 (+0%) 2971 (-8%) 587 941 449040 (+2%)

(d) Sensor Networks

no MAC MAC

Class Algorithm #msg #V #C ENCCC #msg #V #C ENCCC

BnB-ADOPT+ 615 (100%) 174 426 155183 (100%) 970 (100%) 147 389 154379 (100%)

A BnB-ADOPT
+

lb
417 (-32%) 175 228 155718 (+0%) 794 (-18%) 154 193 158737 (+3%)

BnB-ADOPT
+

lr
496 (-19%) 174 306 155183 (+0%) 847 (-13%) 148 265 155898 (+1%)

BnB-ADOPT+ 809 (100%) 218 575 176339 (100%) 1266 (100%) 193 541 179225 (100%)

B BnB-ADOPT
+

lb
513 (-37%) 219 279 177210 (+0%) 1016 (-20%) 207 250 189543 (+6%)

BnB-ADOPT
+

lr
585 (-28%) 218 352 176406 (+0%) 1042 (-18%) 195 312 181111 (+1%)

BnB-ADOPT+ 577 (100%) 202 366 166895 (100%) 538 (100%) 125 236 113288 (100%)

C BnB-ADOPT
+

lb
462 (-20%) 207 246 170781 (+2%) 475 (-12%) 137 152 122745 (+8%)

BnB-ADOPT
+

lr
511 (-11%) 202 300 166962 (+0%) 488 (-9%) 128 185 115268 (+2%)

BnB-ADOPT+ 1319 (100%) 452 852 286133 (100%) 1652 (100%) 348 676 235921 (100%)

D BnB-ADOPT
+

lb
1025 (-22%) 458 552 289385 (+1%) 1483 (-10%) 376 430 261095 (+11%)

BnB-ADOPT
+

lr
1182 (-10%) 451 715 284828 (-1%) 1531 (-7%) 350 548 238227 (+1%)

Table 1 Experimental results of (a) Binary Random DCOP, (b) Soft Graph Coloring, (c) Meeting Schedul-

ing and (d) and Sensor Networks benchmarks, indicating the percentage of variation (increment or decre-

ment of #msg and ENCCCs) of the lazy versions with respect to the original algorithm (whose values are

taken as the reference, 100%). Averages and percentages are rounded to integers (+0% and -0% indicate

very small positive and negative variations). #V and #C count for number of VALUE and COST messages

respectively. In the MAC part, #msg is clearly higher than the sum of VALUE and COST messages be-

cause in this case more message types are used (not reported in the tables for space reasons). Observe that

for some instances of (c) and (d), the number of messages required with MAC is higher than that without

MAC: in easy instances, maintaining soft AC does not pay off (savings do not compensate the overhead).

