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Abstract The task at hand is that of a soft constraint problem with adversarial conditions.
By amalgamating the weighted and quantified constraint satisfaction frameworks, a Mini-
max Weighted Constraint Satisfaction Problem (formerly Quantified Weighted Constraint
Satisfaction Problem) consists of a set of finite domain variables, a set of soft constraints,
and a min or max quantifier associated with each of these variables. We formally define the
framework, suggest three solution concepts, and propose a complete solver based on alpha-
beta pruning techniques. We discuss in depth our novel definitions and implementations of
node, arc and full directional arc consistency notions to help reduce search space on top of
the basic tree search with alpha-beta pruning for solving ultra-weak solutions. In particu-
lar, these consistencies approximate the lower and upper bounds of the cost of a problem
by exploiting the semantics of the quantifiers and reusing techniques from both Weighted
and Quantified Constraint Satisfaction Problems. Lower bound computation employs stan-
dard estimation of costs in the sub-problems used in alpha-beta search. In estimating upper
bounds, we propose two approaches based on the Duality Principle: duality of quantifiers
and duality of constraints. The first duality amounts to changing quantifiers from min to
max, while the second duality re-uses the lower bound approximation functions on dual
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constraints to generate upper bounds. Experiments on three benchmarks comparing basic
alpha-beta pruning and the six consistencies from the two dualities are performed to confirm
the feasibility and efficiency of our proposal.

Keywords Constraint optimization · Soft constraint satisfaction · Minimax game search ·
Consistency algorithms

1 Introduction

The task at hand is that of a constraint optimization problem with adversaries controlling
parts of the variables. As an example, we begin with a generalized version of the Radio Link
Frequency Assignment Problem (RLFAP) [8] consisting of assigning frequencies to a set
of radio links located between pairs of sites, with the goal of preventing interferences. The
problem has two types of constraints. One type prevents radio links that are close together
from interfering with one another, by restricting the links not to take frequencies with abso-
lute differences smaller than a threshold. In practice, the threshold is measured depending
on the physical environment, and is often overestimated. The second type of constraints are
technological constraints, where each constraint ensures the distance between frequencies
of a radio link from site A to B and its reverse radio link from site B to A must be equal to
a constant. If the problem is unsatisfiable, one approach is to find assignments violating the
first type of constraints as little as possible. Suppose now a certain set of links are placed in
unsecured areas, and adversaries (e.g. terrorists/spies) may hijack/control these links. One
interesting question for this type of scenarios is to find frequency assignments such that
we can minimize the degree of radio links affected for the worst possible case (i.e. find-
ing the best-worst case). In practice, we may not even be able to immediately respond by
re-adjusting the frequency assignments in order to minimize the interferences and planning
how to defend is also important. The prime goal of our work is to understand how well we
can defend against the worst adversaries for planning purposes.

The example is optimization in nature, and the adversaries originate from the uncon-
trollable frequencies being assigned on the links in unsecured areas. The question can be
modeled as minimizing the interferences for all possible combinations of frequency adjust-
ments the adversaries can control. One way to solve this problem is by tackling many
COPs [2]/Weighted CSPs [17], where each of them minimizes the interferences conditioned
on a specific combination of frequency adjustments controlled by the adversaries. Another
way is to model the problem as a Quantified CSP [6] by finding whether there exists combi-
nations of frequency adjustments for us for all frequency placements by the adversaries such
that the costs of interferences is less than a cost k. To avoid solving multiple sub-problems,
Minimax Weighted Constraint Satisfaction Problems (MWCSPs) (previously Quantified
Weighted Constraint Satisfaction Problems) [15, 21] are proposed to tackle such problems,
combining quantifier structures from Quantified CSPs to model the adversaries and soft
constraints from Weighted CSPs to model costs information.

The generalized RLFAP described above can be viewed as a zero-sum two-player game
played in two turns. When tackling such game problems, more specifically two-person
zero-sum games with perfect information [25, 33], games can be solved at different levels.
Allis [1, 14] proposes three solving levels for games: ultra-weakly solved, weakly solved,
and strongly solved. Ultra-weakly solved means the game-theoretic value of the initial posi-
tion has been determined, which means we can determine the outcome of the scenario when
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both players are playing perfectly (i.e. best-worst case). Weakly solved means a strategy,
noted as winning strategy [5] in Quantified CSPs, has been determined for the initial posi-
tion to achieve the game-theoretic value against any opposition. Strongly solved is used for
a game for which such a strategy has been determined for all legal positions. Once a game
is solved at a stronger level, the game is automatically solved at weaker ones. Finding solu-
tions at stronger levels, however, implies substantially higher computation requirements. In
particular, in terms of space, ultra-weak solutions are linear in size, while the other two
stronger ones are exponential. In bi-level programs, there are cases in which we can assume
there is a unique optimum for the follower or we are concerned with only the moves for the
leader [12]. Finding ultra-weak solutions for these cases are sufficient. In the generalized
RLFAP example, we can see that operators setting the frequencies are classified as leaders
and adversaries controlling the unsecured links are classified as followers. In adversarial
game playing, many game search algorithms, e.g. minimax and alpha-beta [30], compute
strategies assuming optimal plays to reduce computation costs. In fact, even determining
just the ultra-weak solution in an offline manner is also an important and interesting line of
research, e.g. a recent breakthrough on checkers [31].

We define three solution concepts: ultra-weak solutions, weak solutions, and strong solu-
tions, corresponding to each of the three solving levels for Minimax Weighted CSPs, and
our work focus on finding ultra-weak solutions. We describe how to adopt alpha-beta prun-
ing to tackle the problem, and suggest two sufficient pruning conditions to achieve prunings
and backtrackings. We also introduce novel consistency notions and algorithms for solving
ultra-weak solutions, by approximating the lower and upper bounds of the cost of the prob-
lem. Lower bound computation employs standard estimation of costs in the sub-problems
used in alpha-beta search. In estimating upper bounds, we adopt the Principle of Duality [24,
35] in (integer) linear programming, which suggests to convert an original (primal) problem
to its dual form and tackle the problem using both forms. We consider two dualities: dual-
ity of quantifiers and duality of constraints. The first approach allows us to formulate upper
bound approximation functions by changing quantifiers in the lower bound functions from
min to max, while the second approach re-uses the lower bound approximation functions
on dual constraints to generate upper bounds. Algorithms and examples to explain these
notions are given throughout the paper. Discussions on whether our proposed techniques
are applicable to the computation of the two stronger solutions are also given. Experimental
evaluations on three benchmarks are performed to compare six consistencies defined using
the two dualities to confirm the feasibility and efficiency of our proposal.

This journal paper combines and improves two of our previous work: Lee, Mak, and
Yip [21] and Lallouet, Lee, and Mak [15]. We have added and/or improved the following
items:

1. Examples to illustrate the concepts of our consistencies,
2. Algorithms and pseudo-codes to enforce the proposed consistency notions,
3. Fuller and corrected proofs for our proposed lemmas and theorems,
4. Theoretical runtime results on our consistency algorithms, and
5. Extended experimental evaluations.

The rest of the paper is organized as follows. Section 2 gives the background definitions
for Weighted CSPs and Quantified CSPs. We then define our framework Minimax Weighted
CSPs in Section 3, followed by giving descriptions of the basic alpha-beta search. Based
on the alpha-beta search, Section 4 proposes two sufficient pruning conditions to achieve
prunings and backtrackings. Section 5 gives consistency notions and algorithms for solving
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Minimax Weighted CSPs, followed by performance evaluations on three benchmarks in
Section 6. In Section 7, we conclude our work.

2 Background

We first give basic definitions for Weighted CSPs and Quantified CSPs.
A Weighted Constraint Satisfaction Problem [17] (WCSP) is a tuple (X ,D,C,k), where

X ={x1, . . . , xn} is a finite set of variables and D={D1, . . . ,Dn} is a set of finite domains
of possible values. We denote xi = vi an assignment assigning value vi ∈Di to variable xi ,
and the set of assignments l = {x1 = v1, x2 = v2, . . . , xn = vn} a complete assignment on
variables in X , where vi is the value assigned to xi . A partial assignment l[S] is a projection
of l onto variables in S⊆ X . C is a finite set of (soft) constraints (also called cost functions),
each CS of which represents a function mapping tuples corresponding to assignments on a
subset of variables S, to a cost valuation structure V (k)= ([0...k],⊕,≤). The structure V (k)

contains a set of integers [0...k] with standard integer ordering ≤. Addition ⊕ is defined by
a ⊕ b = min(k, a + b). For any integer a and b where a ≥ b, subtraction � is defined by
a � b = a − b if a �= k, and a � b = k if a = k. Note that for the rest of the paper, +
and − refer to standard addition and subtraction while ⊕ and � refer to the addition and
subtraction for the valuation structure. Without loss of generality, we assume the existence
of C∅ denoting the lower bound of the minimum cost of the problem. If it is not defined,
we assume C∅=0. The cost of a complete assignment l in X is defined as:

cost (l) = C∅ ⊕
⊕

Cs∈C
Cs(l[S])

A complete assignment l on X is feasible if cost (l) < k, and is a solution of a WCSP if l
has the minimum cost among all tuples.

A Quantified Constraint Satisfaction Problem [6] (QCSP) P is a tuple (X ,D,C,Q),
where X = (x1, . . . , xn) is an ordered finite sequence of variables, D = (D1, . . . , Dn)

is an ordered sequence of finite domains, C = {C1, . . . , Ce} is a finite set of constraints,
and Q = (Q1, . . . ,Qn) is a quantifier sequence in which each Qi is either ∃ (existential,
‘there exists’) or ∀ (universal, ‘for all’) associated with xi . A constraint Ck ∈ C consists of
a sequence Xk = (xk1, . . . , xkr ) of r > 0 variables s.t. Xk is a subsequence of X . Ck has
an associated set A[Ck] ⊆ Dk1 × . . .×Dkr of tuples which specify allowed combinations
of values for the variables in Xk . Let firstx(P) be a function returning the first unassigned
variable in the variable sequence. If there are no such variables, it returns ⊥. The semantics
of a QCSP P is defined recursively as follows:

(1) In case firstx(P) = ⊥, if all constraints Ck ∈ C are satisfied, P is satisfiable; and if
any constraint fails, P is unsatisfiable.

(2) Otherwise, let firstx(P) = xi . If Qi = ∃ then P is satisfiable iff there exists a value
a ∈ Di such that the simplified problem P with a assigned to xi is satisfiable. If
Qi = ∀ then P is satisfiable iff for all values a ∈ Di the simplified problem P with a

assigned to xi is satisfiable.

3 Minimax weighted constraint satisfaction problems

In this section, we give definitions and semantics of MWCSPs. We then further describe the
alpha-beta search for MWCSPs.
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3.1 Definitions and semantics

Standard Weighted CSPs are minimization in nature. We aim at optimizing problems with
adversarial conditions by modeling adversaries using max quantifiers. A Minimax Weighted
Constraint Satisfaction Problem (MWCSP) [15, 21] P is a tuple (X ,D, C,Q, k), where
X = (x1, . . . , xn) is defined as an ordered sequence of variables, D = (D1, . . . , Dn) is an
ordered sequence of finite domains, C is a set of soft constraints, Q = (Q1, . . . ,Qn) is a
quantifier sequence where Qi is either max or min associated with xi , and k is the global
upper bound. We re-use the definition of assignments, partial and complete assignments,
(soft) constraints, and costs of a complete assignment for Weighted CSPs.

In an MWCSP, ordering of variables is important. Without loss of generality, we assume
variables are ordered by their indices. We define a variable with min (max resp.) quanti-
fier to be a minimization variable (maximization variable resp.). Let P[xi1 = ai1 ][xi2 =
ai2] . . . [xim = aim] be the sub-problem obtained from P by assigning value ai1 to variable
xii , assigning value ai2 to variable xi2, . . . , assigning value aim to variable xim . We re-use the
function firstx from the definition of Quantified CSPs. The aggregated costs of an MWCSP
P , A-cost(P), is defined recursively as follows:

A-cost(P) =
⎧
⎨

⎩

cost (l), if firstx(P) = ⊥
max(Mi ), if firstx(P) = xi and Qi = max
min(Mi ), if firstx(P) = xi and Qi = min

where l is the complete assignment of the completely assigned problem P (i.e. firstx(P) =
⊥), and Mi = {A-cost(P[xi = v])|v ∈ Di}. An MWCSP P is satisfiable iff A-cost(P) < k.
We define a block of variables in an MWCSP P to be a maximal subsequence of variables
in X which has the same quantifiers. Changing the variable ordering within the same block
of variables does not change the A-cost of an MWCSP.

We now define three solution concepts [15] for MWCSPs based on the definition
of A-costs. An ultra-weak solution of an MWCSP P is a complete assignment {x1 =
v1, . . . , xn = vn} s.t. A-cost(P) = A-cost(P[x1 = v1] . . . [xi = vi]),∀1 ≤ i ≤ n. Finding
an ultra-weak solution corresponds to finding one scenario when both players are playing
perfectly. To capture weak (strong resp.) solutions, we re-use the concept of winning strate-
gies [5]. Without loss of generality, we assume the max player is the adversary. A weak
solution (strong solution resp.) is a set of functions F , where each function fi ∈ F corre-
sponds to a min variable xi . Let Gi be the set of domains of max variables (all variables
resp.) preceding xi , i.e. Gi = {Dj ∈ D|Qj = max∧j < i} (Gi = {Dj ∈ D|j < i}
resp.). We define fi : ×Dj∈Gi

Dj 
→ Di . If Gi is an empty set, then fi is a constant func-
tion returning values from Di . Let P ′ be a sub-problem of an MWCSP P , where the next
unassigned variable xi is a min variable, and l be the set of assigned values for max vari-
ables (all variables resp.) xj where j < i. For weak solutions, we can further assume the
assigned values of min variables xk where k < i in P ′ follow fk . We require all fi to sat-
isfy: A-cost(P ′[xi = fi(l)]) = A-cost(P ′). In other words, we require fi(l) to return the
best value for the min player, and the set of functions F will then be a best strategy for the
min player. This paper focuses on tackling ultra-weak solutions.

Example 1 We use the generalized Radio Link Frequency Assignment Problem introduced
in the previous section as an example to illustrate our concepts throughout the paper. The
problem consists of four links l1, l2, l3, and l4. Two of the links l1 and l2 connect sites
A and B , and the other two links l3 and l4 connect sites B and C. Link l2 (l4 resp.) is
the reverse link for l1 (l3 resp.). There is a variable xi in the MWCSP P for each link
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Fig. 1 Constraints for Example 1

li , which is used to represent the chosen frequency for link li . Site C is not secure and
links l3 and l4 are subject to control. We need to pay costs if two links interfere with each
other. Therefore, we want to find frequency assignments for l1 and l2 such that we can
minimize the total costs for interference in the worst case. We set the quantifier sequence
in P as (Q1 = min,Q2 = min,Q3 = max,Q4 = max). For simplicity, we assume
links l1 and l3 have two frequency choices, and the other two links have three. We measure
the costs for interference only for links l1 and l3, and links l2 and l4. These costs will be
modeled by constraints on variables x1 and x3, and also on variables x2 and x4. In addition,
we maintain the technological constraint between links l1 and l2, which will be modeled
by a binary constraint on variables x1 and x2. We can also add unary constraints to the
problem to indicate known preferences on the link frequencies. In this example, we add one
such constraint to x4. Note that the example is simplified for illustrative purposes. Figure 1
indicates there is one unary constraint C4 and three binary constraints C1,2, C1,3, and C2,4.
For the unary constraint, non-zero unary costs are depicted inside a circle and domain values
are placed above the circle. For binary constraints, non-zero binary costs are depicted as
labels on edges connecting the corresponding pair of values. Only non-zero costs are shown.
We set the global upper bound k to be 11. By following the partial labeling tree in Fig. 2,
we can easily infer the A-cost of the subproblem P ′ = P[x1 = a] is 7, and {x1 = a, x2 =
a, x3 = b, x4 = a} is one of the ultra-weak solutions for the sub-problem P ′.

From the problem definitions of Minimax Weighted CSPs, we can observe that both
Weighted CSPs and Quantified CSPs are special cases of Minimax Weighted CSPs.

Fig. 2 Labeling tree for Example 1
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Lemma 1 A Weighted CSP [17] P can be transformed by polynomial-time (Karp) reduc-
tion [3] to a Minimax Weighted CSP P ′. Finding the A-cost of P ′ is equivalent to finding
the minimum cost of P [21].

By constructing a Minimax Weighted CSP P ′ with the same set of variables, domains, and
soft constraints from the Weighted CSP P and setting all quantifiers of P ′ to min quanti-
fiers, it is easy to observe that finding the A-cost of P ′ essentially finds the minimum cost
of P .

Lemma 2 A Quantified CSP [6] P can be transformed by polynomial-time (Karp) reduc-
tion [3] to a Minimax Weighted CSP P ′. Finding the A-cost of P ′ is equivalent to
determining the satisfiability of P [21].

We construct a Minimax Weighted CSP P ′ which holds the same set of variables and
domains as in the Quantified CSP P . For the quantifiers, if a variable in P has an ∃ quanti-
fier (a ∀ quantifier resp.), the same variable in P ′ will have a min (max resp.) quantifier. The
final step in the transformation involves transforming constraints in P to soft constraints in
P ′. For every constraint C in P , we construct a soft constraint C ′ for P ′ on the same set of
variables, where C ′ returns a cost of 0 (a cost of k resp.) on the same set of assignments if
C is satisfiable (unsatisfiable resp.). We set k to any positive integer larger than 0. It is not
hard to check if the A-cost of P ′ is 0, then P is satisfiable; otherwise, P ′ is unsatisfiable.

Corollary 1 Finding the A-costs and ultra-weak solutions of Minimax Weighted CSPs are
PSPACE-hard [21].

The corollary follows from the fact that Quantified CSPs are PSPACE-complete [6]. Com-
puting ultra-weak solutions for Minimax Weighted CSPs essentially computes the A-costs,
and finding the A-costs of Minimax Weighted CSPs are PSPACE-hard (by Lemma 2).
Therefore, finding ultra-weak solutions are also PSPACE-hard. A special case is that if all
the quantifiers of an MWCSP are min quantifiers, finding an ultra-weak solution is equiva-
lent to finding a complete assignment l with the minimum costs (i.e. argminl cost (l)). The
problem reduces to a Weighted CSP, which is NP-hard.

It is worth to note that Minimax Weighted CSPs are also sub-classes of the multi-
operator framework [26] and can be classified also as a kind of sequential decision making
problems [27]. Since our work directly defined based on Weighted CSPs and Quantified
CSPs, we naturally focus on combing and re-use ideas and techniques from these two
frameworks.

3.2 Alpha-beta prunings in branch & bound

Minimax Weighted CSPs can be solved by applying alpha-beta pruning in branch and bound
search [15, 21], by treating max and min variables as max and min players respectively.
Note that alpha-beta pruning is not new and has long been introduced as pruning strategies
in the game solving community. Admissible heuristics and/or monotonic function have also
been proposed to incorporate with alpha-beta prunings [28, 32]. Our work can be seen
as re-applying these classical principles and ideas from the game solving community to
MWCSPs, which is a constraint-based framework. One main theme of our work is to show
how these ideas could be combined with state-of-the-art constraint propagation techniques
from both Weighted CSPs and Quantified CSPs.
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Alpha-beta pruning utilizes two bounds, α and β , for storing the current best costs for
max and min players. We rename α and β as lower lb and upper ub bounds to fit with the
common notations for bounds in constraint and integer programming. Figure 3 shows the
alpha-beta search for our Minimax Weighted CSP solver. Function local consistency
at line 4 (enclosed in the grey box) is used to invoke routines for enforcing local con-
sistencies. Since we will introduce local consistencies and their enforcing algorithms in
later sections, we now skip the explanation for this function. At current stage, we assume
the function local consistency is empty and only returns a constant return value
NO BTK. In this case, we can further ignore line 5 since the if-condition will always avoid
executing the return statement.

The alpha-beta algorithm starts by initializing lb (ub resp.) to -1 (k resp.), and these
two bounds will be maintained during assignments. Therefore, the search starts with
alpha beta(P,−1, k). Line 2 is the base case in which all variables are bounded. In this
case, alpha-beta pruning will invoke the routine cost, which returns the cost of the current
complete assignment. Lines 6 to 12 give the main routine of the traditional alpha-beta prun-
ing algorithm. We only explain the cost for the min quantifier, since that of max is similar.
The for loop evaluates all sub-problems P[xi = v] by recursively invoking the alpha-beta
algorithm. Since the goal is to find a minimum value, the upper bound is updated. When the
upper bound is less than the lower bound (line 11), it triggers the short-cut to break out of
the remaining search since every value returned by subsequent calls will be dominated by
the current bounds. The function alpha beta ends by returning the upper bound for the
min quantifier (line 12).

Note that when line 4 and 5 are skipped, the algorithm is essentially an ordinary alpha-
beta pruning algorithm. Hence, we could argue the soundness of the algorithm by re-using
the argument for alpha-beta prunings. Recall lb and ub are used to store the current best
costs for max and min players. Suppose the alpha-beta algorithm is now exploring a problem
P with upper bound ub. We assume the first quantifier to be min. The algorithm will only
skip evaluating sub-problems P[xi = v] when the condition at line 11 is triggered. For
line 11 to be triggered, there must exists another sub-problem P[xi = u], u �= v which
gives a better upper bound ub′ comparing to the original upper bound ub, and ub′ is lower
than or equal to lb. According to two-player zero-sum game, this essentially means that the
min player now has found a strategy by playing xi = u to achieve a cost lower than or equal
to lb, which is the current best found costs for the max player. Therefore, the max player has
no hope on finding a cost larger than lb by following the current branch regardless on the

Fig. 3 Alpha-beta for minimax weighted CSPs



Constraints

costs of the alpha-beta search on sub-problems P[xi = v]. In other words, the max player
will tend to follow a previous searched branch leading to his/her current best cost lb and
alpha-beta will therefore prune all the sub-problems P[xi = v]. Similar reasonings can be
applied when the first quantifier is max.

Note that by utilizing the alpha-beta search in Fig. 3, we cannot find all ultra-weak
solutions. Assume we have already found the first ultra-weak solution. Suppose now the
alpha-beta search encounters the second ultra-weak solution. It is not hard to observe that
Line 11 will immediately causing the solver to backtrack as the costs of the second solution
are equal to the costs of the found solution. If we want to gather all ultra-weak solutions, we
may need to relax the backtracking condition by modify line 11 to change the inequality to
a strict inequality (i.e. from ≤ to <).

4 Pruning and backtracking conditions

In traditional CSPs, we enforce different levels of consistency to prune infeasible domain
values and hence reduce the search space. In Weighted CSPs, consistency algorithms fur-
ther take the costs of constraints into account. Various consistency notions (e.g. NC*,
AC* [17], FDAC*, EDAC*, OSAC, and VAC [9]) have been proposed and proven to be use-
ful in improving solver performance. Such techniques, however, cannot be directly applied
to Minimax Weighted CSPs since the quantifiers change the semantics of constraints. In
particular, applying these consistency algorithms on constraints constraining on max vari-
ables may result in unsound prunings. We need to devise consistency notions for Minimax
Weighted CSPs that take quantifiers into account. We first study conditions on when a
pruning/backtracking is sound.

To prune values of Minimax Weighted CSPs, the main idea is that if the A-cost of a sub-
problem is greater than or equal to the upper bound ub (less than or equal to the lower bound
lb resp.), we can apply pruning techniques based on alpha-beta search. Let P[x1..i−1 =
v1..i−1, xi = v] denote the subproblem P[x1 = v1][x2 = v2]...[xi−1 = vi−1][xi = v].
Formally, we consider two conditions: ∃v ∈ Di s.t. ∀v1 ∈ D1, ..., vi−1 ∈ Di−1:

A-cost(P[x1..i−1 = v1..i−1, xi = v]) ≥ ub (1)

A-cost(P[x1..i−1 = v1..i−1, xi = v]) ≤ lb (2)

where ub and lb are the upper and lower bounds in alpha-beta pruning respectively. When
either of the above conditions is satisfied, we can apply prunings/backtrackings according
to Table 1 [15, 21].

Theorem 1 Suppose we were given a Minimax Weighted CSP P . If Condition (1)/(2) for
P is satisfied, applying prunings and backtrackings in alpha-beta pruning according to
Table 1 is sound [21].

Table 1 When can we
prune/backtrack A-cost ≥ ub ≤ lb

Qi = min prune v backtrack

Qi = max backtrack prune v
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Proof (Sketch) Reasons to perform prunings and backtracking for min and max are sym-
metrical. We only describe the case when Qi = min. Suppose Condition (1) holds. We
consider A-cost(s) for sub-problems P[x1..i−1 = v1..i−1]. Without loss of generality, we
write Pi−1 to represent one of these sub-problems P[x1..i−1 = v1..i−1] by fixing values
v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1. We will see that the proof using Pi−1 applies for all
sub-problems P[x1..i−1 = v1..i−1], regardless of which values we fix. Given Qi = min, we
obtain:

A-cost(Pi−1) = min
a∈Di

Pi−1[xi = a]
If A-cost(Pi−1) < ub, the following must be true:

∃v′ ∈ Di where v′ �= v s.t. A-cost(Pi−1[xi = v′]) < ub

Pruning value v does not change the A-cost of Pi−1. If A-cost(Pi−1) ≥ ub, i.e. Pi−1 must
not lead to any ultra-weak solutions, the following must be true:

∀v′ ∈ Di,A-cost(Pi−1[xi = v′]) ≥ ub

After pruning value v, either domain wipe out occurs or A-cost(Pi−1) ≥ ub. For both cases,
the sub-problem Pi−1 cannot lead to solutions. Combining the two cases, pruning value v

does not change the problem from unsatisfiable to satisfiable (and vice versa).
We now discuss Condition (2). Similar to the previous case, we consider the A-cost for

these sub-problems P[x1..i−1 = v1..i−1], and we fix Pi−1 to be one of these sub-problems
similarly. Given Qi = min, we obtain:

A-cost(Pi−1) = min
a∈Di

Pi−1[xi = a]
By Condition (2), Pi−1[xi = v] ≤ lb holds, and therefore:

A-cost(Pi−1) ≤ lb

Recall A-cost(P[x1..i−1 = v1..i−1, xi = v]) ≤ lb applies regardless on which value v1, v2,
. . . , vi−1 we fix. Therefore, we obtain:

∀v1 ∈ D1, ..., vi−1 ∈ Di−1,A-cost(P[x1..i−1 = v1..i−1]) ≤ lb

We can easily obtain the following result using the definition of A-cost: A-cost(P) ≤ lb.
Therefore, we can perform backtrack as the current search must lead to ultra-weak solutions
in which the max player does not have a better move.

Example 2 Suppose we were given a Minimax Weighted CSP P with the ordered set of
variables {x1, x2, x3}, domainsD1 = {a, b, c}, D2 = {a, b}, and D3 = {a, b, c}, the ordered
set of quantifiers {Q1 = max,Q2 = min,Q3 = max}, and the global upper bound 10.
Suppose the A-cost for sub-problem P[x1 = a] is 1. Figure 4 shows the upper bound ub,
lower bound lb, and the A-costs for the remaining sub-problems. By inspecting the figure,
we can see that Condition (2) holds:

∃a ∈ D3,∀v1 ∈ D1, ∀v2 ∈ D2,A-cost(P[x1 = v1][x2 = v2][x3 = a]) ≤ lb

By Table 1, we can prune value a of x3. We can observe that ultra-weak solutions must not
contain the assignment x3 = a, and therefore, we can prune the value. After pruning value
a of x3, we also observe that Condition (1) holds:

∃b ∈ D2,∀v1 ∈ D1,A-cost(P[x1 = v1][x2 = b]) ≥ ub

Similarly, we can prune value b of x2.
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Fig. 4 Labeling tree for
Example 2

Example 3 Suppose the ordered set of quantifiers of Example 2 is replaced by {Q1 =
max,Q2 = max,Q3 = min}, and the A-cost for sub-problem P[x1 = a] remains
unchanged (A-cost(P[x1 = a]) = 1). Figure 5 shows the upper bound ub, lower bound
lb, and the A-costs for the remaining sub-problems. Costs for each complete assignment
remain the same as in Example 2. The only difference is the modified A-costs for sub-
problems, resulting from the change in quantifiers. By inspecting the figure, we can observe
that Condition (2) holds: ∃a ∈ D3 s.t. ∀v1 ∈ D1,∀v2 ∈ D2,

A-cost(P[x1 = v1][x2 = v2][x3 = a]) ≤ lb

As Q3 = min, all the A-costs for sub-problems P[x1 = v1][x2 = v2], ∀v1 ∈ D1, v2 ∈ D2
must be less than or equal to the lb. By induction, we can conclude sub-problems P[x1 =
v1],∀v1 ∈ D1 must be less than or equal to the lb, and obtain A-cost(P) ≤ lb. Therefore
following Table 1, the solver can backtrack.

One way to check Condition (1)/(2) is to find the exact value of the A-cost for each
sub-problem, which is computationally expensive. The problem is essentially equivalent
to determining if a variable assignment is a solution of a classical CSPs in general,
which is NP-hard. A common technique in constraint programming is to formulate consis-
tency notions and devise efficient algorithms, which aim at extracting and making useful
information in a problem explicit (e.g. pruning and cost information).

In Minimax Weighted CSPs, we aim at extracting cost information in the form of
bounds helping us to check whether Condition (1)/(2) is satisfied. Checking these con-
ditions helps us to backtrack or identify non-solution values from domains early in the
search. To extract these bounds, we introduce two approximating functions. Function
ubaf(P, xi = v) (lbaf(P, xi = v) resp.) [15, 21] is an upper bound (a lower bound resp.)

Fig. 5 Labeling tree for
Example 3
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approximation function if it approximates the A-cost for the set S of sub-problems, where
S = {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1} s.t.:

∀P ′ ∈ S,A-cost(P ′) ≤ ubaf(P, xi = v)

(∀P ′ ∈ S,A-cost(P ′) ≥ lbaf(P, xi = v) resp.)

Function ubaf(P, xi = v) is tight iff maxP ′∈S A-cost(P ′) = ubaf(P, xi = v). Similarly,
function lbaf(P, xi = v) is tight iff minP ′∈S A-cost(P ′) = lbaf(P, xi = v).

Corollary 2 Suppose we were given a Minimax Weighted CSP P . If ubaf(P, xi = v) ≤ lb,
we can prune value v of variable xi if Qi = max, and perform backtrack if Qi = min
in alpha-beta pruning. If lbaf(P, xi = v) ≥ ub, we can prune value v of variable xi if
Qi = min, and perform backtrack if Qi = max in alpha-beta pruning [15, 21].

Proof (Sketch) We can check that the following holds from the definition of approximating
functions.

Condition (1): lbaf(P, xi = v) ≥ ub =⇒
∀v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1,P[x1..i−1 = v1..i−1, xi = v] ≥ ub

Condition (2): ubaf(P, xi = v) ≤ lb =⇒
∀v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1,P[x1..i−1 = v1..i−1, xi = v] ≤ lb

We can then apply Table 1 according to the corresponding conditions.

Note that the two functions we define: lbaf() and ubaf() are a specific kind of admis-
sible heuristic functions [32] used by the game-solving community in alpha-beta search.
However, the primary goal in defining such functions is to assist us in devising constraint
propagation algorithms (to prune values and/or backtrack) since our framework is a con-
straint based framework. Exploring other general game solving strategies/principles which
could utilize these two functions will be left as future work.

The main idea is that if we can implement lbaf()/ubaf() with good and efficient
approximations, we can identify non-solution values from variable domains or perform
backtracking earlier in search. We show the high-level propagation routine for function
local consistency in our solver in Fig. 6 to achieve prunings/backtracking accord-
ing to Table 1 by utilizing lbaf() and ubaf(). Line 4 to 17 show the main propagation loop,
which continues to propagate until no more values can be pruned. Since finding the exact
A-cost is difficult, the algorithm utilize the estimated bounds by calling the two approxi-
mation functions (lbaf() in line 8 and ubaf() in line 13). After computing the two estimated
bounds: ap lb for the estimated lower bound and ap ub for the estimated upper bound,
we then perform prunings/backtrackings according to Table 1. Recall in Table 1, there are
a total of four different cases to handle. Line 10, 12, 15, and 16 show the implementation
of the top left, bottom left, top right, and bottom right cases in Table 1 respectively. To per-
form prunings, we use the function P[xj != u] to prune a value u from domain Dj of
variable xj . To perform backtrackings, we use two return values: UB BTK and LB BTK to
distinguish the two different backtracks (i.e. the bottom left and top right case) in Table 1 .
If there are no backtrackings, the function returns NO BTK.

Function local consistency() will be called at line 4 in the main alpha-beta
search (in Fig. 3) before entering the main routine. If no early backtrackings could be found
and detected by checking the conditions (Condition (1) / (2)) in local consistency(),
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Fig. 6 The high-level propagation routine using the two approximation functions

the main alpha-beta search will then enters the main searching routine. If early backtrack-
ing is found (top right or bottom left case in Table 1), we distinguish the two cases by
returning different flags. For the top-right (bottom-left resp.) case, the function will return
LB BTK (UB BTK resp.). This will allow the alpha-beta algorithm backtrack by returning lb

(ub resp.) to indicate that the min player (max player resp.) has a move in the future which
is able to guarantee the costs lower than (higher than resp.) then the current best cost of the
max player (min player resp.). By returning lb (ub resp.), we can force the alpha-beta search
to backtrack to the latest assigned max variable (min variable resp.) to allow the max player
(min player resp.) finding a better action.

5 Consistency techniques

This section discusses how we utilize costs information from unary constraints and binary
constraints to formulate node and (full directional) arc consistencies. We start by giving
an lbaf () for node consistency called nclb(), which formulates lower bounds by gathering
unary costs. We then further describe a stronger lbaf () for (full directional) arc consistency
called aclb(). To approximate upper bounds, we propose two approaches by utilizing the
Duality Principle: duality of quantifiers and duality of constraints. In the last part, we dis-
cuss how to strengthen our consistency notions, by incorporating techniques from Weighted
CSPs.

We write Ci for the unary constraint on variable xi , Ci,j for the binary constraint on vari-
ables xi and xj where i < j , Ci(u) for the cost returned by the unary constraint when u is
assigned to xi , and Ci,j (u, v) for the cost returned by the binary constraint when u and v are
assigned to xi and xj respectively. To simplify our notations, we write the minimum costs
minu∈Dj

Cj (u) and maximum costs maxu∈Dj
Cj (u) of a unary constraint Cj as minCj and

maxCj respectively. We further write QjCj to mean minCj if Qj = min, and maxCj

if Qj = max. Algorithms for finding minCj , maxCj , and QjCj (via functions min(),
max(), and Q() resp.) are shown in Fig. 7. The time complexity of these algorithms are in
O(d), where d is the maximum variable domain size.
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Fig. 7 Common routines for finding minimum and maximum costs for unary constraints

5.1 Node consistency: lower bound

We first give the definition for nclb(). We then sketch the proof showing nclb() is an lbaf()
using two lemmas. Without loss of generality, we now consider unary MWCSPs, which
are MWCSPs with unary constraints only. We will show that computing A-costs for any
sub-problems of unary MWCSPs are efficient (linear time), and therefore, computing the
lower bound for these sub-problems are efficient. We then show using the same procedure
on general MWCSPs, by viewing unary constraints only, the bound is still correct.

Definition 1 The nclb(P, xi = v) function approximates the A-cost for a set S of sub-
problems {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

nclb(P, xi = v) ≡ C∅ ⊕ (
⊕

j :j<i

minCj)⊕ (Ci(v))⊕ (
⊕

j :i<j

QjCj )

where Qj ∈ Q is the quantifier for variable xj where j > i.

Lemma 3 The A-cost of an MWCSP P with only unary constraints is equal to⊕n
i=1 QiCi [15].

The proof of Lemma 3 follows directly from the definition of A-costs for MWCSPs.

Lemma 4 Suppose we were given an MWCSP P = (X ,D, C,Q, k). Let E to be an arbi-
trary subset of constraints from C and we define P ′ to be an MWCSP obtained from P by
removing all constraints in E (i.e. P ′ = (X ,D, C − E,Q, k)).

A-cost(P ′) ≤ A-cost(P)

Proof (Lemma 4) We first consider the simplified case where E contains only one
constraint C ′, i.e. E = {C ′}. Suppose C ′ has a scope of S′. We have

C∅ ⊕
⊕

CS∈C
CS(l[S]) = C∅ ⊕ C ′(l[S′])⊕

⊕

CS∈C−E

CS(l[S])

≥ C∅ ⊕
⊕

CS∈C−E

CS(l[S])
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for all possible complete assignments l. Note that we can re-write the definition of A-costs
as:

A-cost(P) = Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C
CS(l[S])]

where l = {x1 = v1, x2 = v2, . . . , xn = vn}. In MWCSPs, all quantifiers are either min or
max which are monotonic aggregators/functions. By monotonic properties, this allow us to
achieve,

Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C
CS(l[S])]

≥ Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C−E

CS(l[S])]

Observe that C∅ ⊕ ⊕
CS∈C−E CS(l[S]) is the cost function for P ′, this gives

A-cost(P) ≥ A-cost(P ′)

where E contains a constraint (i.e. |E|= 1). We now have established the lemma for
removing one constraint from the problem. In general E has more than one constraint.
Since removing multiple constraints can be viewed as removing a series of constraints, and
therefore, the lemma holds.

Theorem 2 Function nclb(P, xi = v) is a lower bound approximating function
lbaf(P, xi = v) [15].

Proof Lemma 3 suggests the computation of A-costs for unary MWCSPs can be done in
O(nd), where n is the number of variables and d is the maximum domain size. Therefore,
computing the A-costs for any sub-problems is also efficient. The function nclb() can be
seen as a function extracting A-costs for the sub-problem in S with minimal A-costs fol-
lowing Lemma 3, by partitioning unary constraints into three groups: (a) Cj where j < i;
(b) Ci ; and (c) Cj where j > i.

(a) 2nd term (
⊕

j :j<i minCj): C1, C2, . . . , Ci−1

Recall each sub-problem in the set S will be obtained from P by assigning a com-
bination of assignments from D1, D2, . . . , Di−1. We should consider the sub-problem
in the set having the lowest costs. Therefore, we choose the minimum costs for these
unary constraints.

(b) 3rd term (Ci(v)): Ci

All sub-problems in the set share a common assignment xi = v, and therefore, we
include the costs Ci(v).

(c) 4th term (
⊕

j :i<j QjCj ): Ci+1, Ci+2, . . . , Cn

For the max player, he/she could have a strategy which selects values maximiz-
ing the unary constraint on his/her variables. On the other hand, whatever values the
min player is choosing, the min player must at least incur a cost which is equal to the
summation of the minimum costs of the unary constraints on the min variables. There-
fore, this would guarantee the max player must be able to achieve a cost of at least⊕

j :i<j QjCj .
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Fig. 8 Constraints for Example 4

If P has only unary constraints, we can observe that function nclb() will always give a tight
lower bound approximation for the set of problems. Note that MWCSPs may have binary
constraints or even high-arity constraints. However, Lemma 4 shows that we can infer the
lower bound of a problem by estimating the lower bound of a sub-problem with parts of
the constraints being ignored. Since nclb() is a lower bound approximation function for the
sub-problem containing unary constraints only, it will also be a lower bound approximation
function for general MWCSPs.

Example 4 We re-use Example 1. Suppose we were at sub-problem P ′ = P[x1 = a] and
we have just visited the further sub-problem P ′[x2 = a] which has a new upper bound
of 7. Before visiting P ′[x2 = b], we try to prune some values according to Table 1 using
the new upper bound. Note that since x1 is assigned, we assume the solver will reduce all
binary constraints constraining on variable x1 to unary constraints and merge with existing
unary constraints. Figure 8 shows the sub-problem P ′. Suppose now nclb() is applied and
no unary costs for bounded variables, i.e. C∅ = 0. We want to check if the value b can
be pruned from D2. In the sub-problem P ′[x2 = b], the quantifier Q3 and Q4 are both
max, and they will take at least the maximum unary cost maxC3 and maxC4. We have
C∅ + minC1 + C2(b)+ maxC3 + maxC4 = 0 + 0 + 0 + 4 + 3 = 7 ≥ ub. The cost of
any ultra-weak solution assignment in the sub-problem P ′[x2 = b] is at least 7. The value
b can therefore be removed from domain D2. Notice that such a node cannot be pruned by
basic alpha-beta pruning.

Some might suggest the following to achieve a tighter bound: 1) replace i < j in the
last term by i �= j to remove the second term, and 2) modify nclb(P, xi = v) such that it
returns a lower bound of the A-cost of the sub-problem P[xi = v] (instead of a set S of
sub-problems). However, these changes may lead to incorrect prunings, as we demonstrate
in Example 5.

Example 5 Suppose we were given an MWCSP P with the ordered sequence of two vari-
ables (x1, x2), domains D1 = D2 = {a, b}, two unary constraints C1 and C2, one binary
constraint C1,2, and a quantifier sequence (Q1 = max,Q2 = min). We denote the global
upper bound by k. Non-zero costs given by constraints are listed as follows: C1(a) = 50,
C2(a) = 9, C1,2(b, b) = k. If k = 59, the A-cost of P is 50. Figure 9 (left picture) shows
the labeling tree for P . If i < j is replaced by i �= j in Definition 1, nclb(P, x2 = a)

returns 59 > A-cost(P[x1 = b][x2 = a]) = 9. If nclb(P, x2 = a) returns a lower bound
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Fig. 9 Example 5: before and
after pruning a of x2

approximation of A-cost(P[x2 = a]), it may return 59. Both cases may cause value a of x2
to be pruned. The right picture in Fig. 9 shows the labeling tree after pruning, and we can
easily observe that the A-cost of the new problem changes from 50 to 59. The pruning is
unsound.

We show the function NC LB(P, xi = v) for implementing nclb() in Fig. 10. A
direct approach in computing nclb() is to directly compute all the terms in the func-
tion for each of the different assignments xi = v. However, it is easy to note some
of these terms, e.g.

⊕
j :j<i minCj and

⊕
j :i<j QjCj , can be pre-computed to avoid

unnecessary re-computations for each of the different assignments xi = v. In addition,
it is easy to observe that after computing

⊕
j :j<i minCj for a variable xi , computing

the same term for the next variable xi+1 is essentially: (
⊕

j :j<i minCj ) + minCi . That
means we only need to compute minCi and add up the previous result to compute the
term for the next variable. Similar approach could be used for the term

⊕
j :i<j QjCj .

For each variable xi , we will compute and maintain the term
⊕

j :j<i minCj and the
term

⊕
j :i<j QjCj by calling function computeArrayOfMinCosts() and function

computeArrayOfQuantifiedCosts() respectively. Array M and Q will then store
the results for these terms respectively. Both functions run in O(nd), where n is the num-
ber of variables and d is the maximum variable domain size. After pre-processing the two
arrays M and Q, each query to the function NC LB() to obtain the lower bound runs only
in O(c), where c is the constant time. In total, querying NC LB() for all variables and their
values in an MWCSP will have a runtime of O(nd). To ease our implementation effort, we

Fig. 10 Algorithms for implementing nclb()
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implement the ⊕ operator using standard addition and the � operator using standard sub-
traction in all our consistency implementations. We add extra routine to check all addition
operations to see if the summed value is larger than k and require re-assigning to k.

5.2 Arc consistency: lower bound

To obtain stronger lower bound, we further define function aclb() based on nclb(). Without
loss of generality, we restrict our attention to MWCSPs which have only unary constraints
and one binary constraint. We will show that computing any sub-problems for these MWC-
SPs are efficient (polynomial time), and therefore, computing the lower bound for these
sub-problems are again efficient. By similar argument for justifying nclb(), viewing unary
constraints plus one binary constraint on general MWCSPs, the bound is still correct.

Definition 2 The aclb[Ci,j ](P, xi = v) function approximates the A-cost for the set S of
sub-problems {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

aclb[Ci,j ](P, xi = v) ≡ C∅ ⊕ (
⊕

k:k<i

minCk)⊕ (Ci(v))

⊕(
⊕

k:i<k∧j �=k

QkCk)⊕ ( Qj
u∈Dj

{Cj (u)⊕ Ci,j (v, u)})

where Ci,j is a binary constraint on variable xi and xj where i < j , Qj ∈ Q is the quantifier
for variable xj , and Qk ∈ Q is the quantifier for variable xk where k > i and k �= j .

Comparing to nclb(), the first three terms are the same. The fourth term is equivalent to
the last term in nclb(), except we do not consider costs for constraint Cj , which will be
considered in the fifth term.

Theorem 3 The function aclb[Ci,j ](P, xi = v) for binary constraint Ci,j is a lower bound
approximating function lbaf(P, xi = v) [15].

To prove the function is a lower bound approximation function, we first show Lemma 5.

Lemma 5 The A-cost of an MWCSP P = (X ,D, C,Q, k) with only unary constraints and
one binary constraint Ci,j is equal to

(
⊕

k∈[1...n]\{i,j }
Qk
u∈Dk

Ck(u))⊕ ( Qi
u∈Di

[ Qj
v∈Dj

[Ci(u)⊕ Cj(v)⊕ Ci,j (u, v)]])

where Qi,Qj ,Qk ∈ Q [15].

Lemma 5 follows directly from the definition of A-costs.

Proof From Lemma 5, suppose we were given an MWCSP P with only unary con-
straints and one binary constraint Ci,j , its sub-problem P[x1..i = v1..i] with a fixed value
assignment {x1 = v1, . . . , xi = vi} has the following A-costs:

⊕

k:k<i

Ck(vk)⊕
⊕

k∈[i+1...n]\{j }
Qk
u∈Dk

Ck(u)⊕ Qj
u∈Dj

[Ci(vi)⊕ Cj(u)⊕ Ci,j (vi, u)]
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Since Ci(vi) in the third term is fixed and it is invariant to any value in Dj , we can rewrite
the expression as:

⊕

k:k<i

Ck(vk)⊕ Ci(vi)⊕
⊕

k:i<k∧k �=j

Qk
u∈Dk

Ck(u)⊕ Qj
u∈Dj

[Cj (u)⊕ Ci,j (vi, u)]

One point to note is that only the first term in the above expression
⊕

k:k<i Ck(vk) is variant
towards different values for variables preceding xi (i.e. variable xk where k < i). Therefore,
for the set of sub-problems {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1} which
share the common assignment xi = v, we can observe that the sub-problem(s) which has
the minimum A-costs should have a value assignment x1 = v1, x2 = v2, . . . , xi−1 = vi−1
s.t. the A-costs is equal to

⊕

k:k<i

minCk ⊕ Ci(vi)⊕
⊕

k:i<k∧k �=j

Qk
u∈Dk

Ck(u)⊕ Qj
u∈Dj

[Cj (u)⊕ Ci,j (v, u)]

This gives a tight lower bound for the set S of sub-problems of the original P which has
only unary constraints and one binary constraint Ci,j . Note that general MWCSPs may
have more than one binary constraints and even high-arity constraints. Since aclb[Ci,j ]()
is a lower bound approximation function for a sub-problem which considers only unary
constraints and a binary constraint Ci,j , by Lemma 4, the function is also a lower bound
approximation function for general MWCSPs.

Example 6 We re-use Example 4 and Fig. 8. Recall we are at sub-problem P ′ = P[x1 = a]
and we have already visited the further sub-problem P ′[x2 = a]. Before visiting P ′[x2 =
b], we now try to prune some values according to Table 1 using aclb(). Similarly, we assume
there no unary costs for bounded variables, i.e. C∅ = 0, and we want to check if the value
b can be pruned from D2. Function aclb[C2,4](P, x2 = b) is equal to:

C∅ ⊕ minC1 ⊕ C2(b)⊕ maxC3 ⊕ max
u∈D4

{C4(u)⊕ C2,4(b, u)}
= 0 ⊕ 0 ⊕ 0 ⊕ 4 ⊕ max{C4(a)⊕ C2,4(b, a),C4(b)⊕ C2,4(b, b),C4(c)⊕ C2,4(b, c)}
= 4 ⊕ max{3 ⊕ 0, 1 ⊕ 2, 3 ⊕ 3}
= 4 ⊕ 6 = 10

The cost of any assignment in the sub-problem P ′[x2 = b] is at least 10. In previous exam-
ple (Example 4), nclb(P, x2 = b) returns 7. We can see that considering binary constraint
is worthwhile as the lower bound estimation is more accurate.

Note that Definition 2 is only one possible approach to define a lower bound approx-
imation function for Arc Consistency (AC), following Lemma 5. It is designed in such a
way that only one binary constraint is used in bounds calculation for costs estimation, and
our approach is similar to AC in Quantified CSPs [13, 23]. The only trick in computing the
function is to combine costs on constraints Ci , Cj , and Ci,j efficiently. Some readers might
suggest us to directly transfer the costs computed by aclb() to C∅ or unary constraints.
However, we observe that transferring such costs directly may result in binary constraints
with negative costs and violates the cost range for the valuation structure (i.e. [0..k]). Unfor-
tunately, this may also violate a basic assumption in (M)WCSPs that the minimum possible
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Fig. 11 Algorithms for implementing aclb()

costs a constraint is allowed to return is zero, which is fundamental in designing nclb() and
aclb().

We now show the function AC LB() for computing aclb() in Fig. 11. The function
assumes a common assignment xi = v and a binary constraint Ci,j on xi were given from
the input. The computation of the first three terms: C∅,

⊕
k:k<i minCk , and Ci(v) in aclb()

is the same as nclb(). For the fourth term
⊕

k:i<k∧j �=k QkCk in aclb(), it is essentially similar
to the last term in nclb(). Recall that the last term in nclb() is pre-computed using the array Q
and maintained by function computeArrayOfQuantifiedCosts() (in Fig. 10). To
avoid unnecessary computation, we therefore re-use and modify the result stored in Q for the
computation in aclb(), by Q[i] - Q(Cj) in line 7 and 13. Note that the minus operation
used to compute Q[i] - Q(Cj) is standard subtraction, not � defined in the Weighted
CSP framework, to assure that Q[i] - Q(Cj) truly computes the required term. The for
loops in line 3 to 6 and line 9 to 12 are used to compute the last term in aclb(), which
depends on the quantifiers of the variable xj .

Suppose we were given a binary constraint Cij , it is not hard to check line 3 to line 7
(for Qj = min) and line 9 to line 13 (for Qj = max) run in O(d) assuming the array M and
Q have been pre-computed, where d is the maximum variable domain size. Suppose there
are e binary constraints and n variables in an MWCSP, and the maximum variable domain
size is d . We will need O(ed) queries to call AC LB() for all binary constraints and all
variable assignments xi = v. The overall runtime complexity will then be in O(ed2) which
is bounded by O(n2d2).

It is natural for us to further ask for stronger/tighter functions which consider more than
one binary constraint. Note that in classical local consistency enforcement such as: AC in
CSPs [2]; AC* in Weighted CSPs [17]; and (Q)AC [23] in Quantified CSPs, we usually
handle one (binary) constraint at a time. Consistency enforcement will be performed many
times at each node of the search tree, and considering multiple constraints at a time may
cause a huge increase in time complexity. We have to maintain a balance between amount of
reasoning at each search node and amount of pruning achieved. There are stronger consis-
tency notions with efficient algorithms which consider more than one binary constraint, e.g.
Max Restricted Path Consistency [11] in CSPs and OSAC [10] in Weighted CSPs/Valued
CSPs. Investigations on stronger notions for MWCSPs is an interesting future work. One
possibility to enhance aclb is to consider a subset of constraints that forms a tree, and employ
a dynamic programming approach to enforce such stronger consistencies.
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5.3 Node and arc consistency: upper bounds

In linear programming, duality [24, 35] provides a standard way to obtain lower bounds
(for minimization problems). In fact, the Principle/Theory of Duality [24] suggests that
we can convert the original (primal) problem to its dual form, and tackle the problem by
using both forms. We can often find techniques in many areas utilizing the Principle. In
integer programming, we can obtain the lower bound of the original problem by tackling
the Lagrangian dual [35]. In classical CSPs, hidden variable transformation is a technique
which is used to transform general CSPs into binary CSPs (i.e. dual problem). The technique
reformulates the original problem by expressing each constraint as a variable [2, 29] in the
dual problem. In Quantified CSPs, dual consistency [6] was defined by creating the dual
problem, involving negation of the original constraints. We will now show how to implement
upper bound approximation functions ncub() and acub() by using the duality principle in
MWCSPs.

5.3.1 Duality of constraints

One approach to create ncub()/acub() is to utilize the constraint duality property, which is
similar to dual consistency [6] in Quantified CSPs. We first define a dual problem of an
MWCSP.

Definition 3 Suppose we were given an MWCSP P = (X ,D, C,Q, k). A dual problem
of P is an MWCSP P† = (X ,D,C†,Q†, k) s.t. for a complete assignment l,

C
†
∅
⊕†

⊕

C
†
s ∈C†

† C
†
S(l[S]) = −1 × (C∅ ⊕

⊕

CS∈C
CS(l[S]))

The new valuation structure, called negative valuation structure V †(k), for the dual prob-
lem P† will be defined as ([−k...0],⊕†,≤). The structure contains a set of integers [−k...0]
with standard integer ordering ≤. Addition ⊕† is defined by a⊕† b = max(−k, a+ b). For
any integer a and b where a ≤ b, subtraction �† is defined by a �† b = a − b if a �= −k,
and a �† b = −k if a = −k. We also require Q

†
i = min if Qi = max, and Q

†
i = max if

Qi = min [15]. Note that in the standard definition of valuation structure, the max element
should be an annihilator and the min element should be a neutral element. In the negative
valuation structure, the max element 0 is now a neutral element and the min element −k is
now an annihilator.

We can observe that A-cost(P) = −1 × A-cost(P†), and a straightforward method to
construct the dual constraints is to multiply costs for all constraints in the original problem
by −1. The valuation structure V †(k) for the dual problem are natural extensions from the
original problemV (k), by flipping costs from the positive axis to the negative axis. For the
rest of the paper, we may abuse notations by dropping the † sign if the context is clear that
we are working on the dual problem. In the dual problem definition, we do not require that
every constraint in the dual returns exactly -1 times the costs of its corresponding constraint
in the original problem. The reason behind this is that the set of constraints which is efficient
and effective to estimate bounds in the original problem may not be necessarily efficient
and effective to estimate bounds in the dual problem. We allow solvers and algorithms to
handle the dual problem, in particular constraint representation, separately as long as the
resulting overall A-costs for the original and the dual is related by a multiplication factor
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Fig. 12 Labeling tree for the
original problem

of −1. This would also allow future work focusing on consistencies and transformations on
dual problems.

We then show how we utilize dual problem(s) to check ubaf(P, xi = v) ≤ lb (Condition
2) for an MWCSP P .

Theorem 4 Suppose we were given an MWCSP P and its dual problem P†. Suppose there
is a lower bound approximation function lbaf() [15].

lbaf(P†, xi = v) ≥ −1 × lb =⇒ Condition (2)

The proof of Theorem 4 can be easily constructed from the definition. We can also infer that
lbaf(P†, xi = v)×−1 is an upper bound approximation function for the original problem.
In fact, the upper bound ub† (lower bound lb† resp.) of P† is equal to −1 times the lower
bound lb ( upper bound ub resp.) of P . Therefore, we further define ub† = −1 × lb, and
lb† = −1 × ub.

Example 7 We re-use Example 4 and the constraint shown in Fig. 8. Recall we are at the
sub-problem P ′ = P[x1 = a] and we have already visited P ′[x2 = a]. Figures 12 and 13
show the labeling tree for the sub-problem and its dual problem. It is not hard to check
the A-costs for every sub-problem in the original problem is −1 times the A-costs of its
corresponding sub-problem in the dual problem. It is also not hard to infer a lower bound
(an upper bound resp.) approximation function for a sub-problem in the dual problem is also

Fig. 13 Labeling tree for the
dual problem
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Fig. 14 Dual constraints in
Example 7

an upper bound (a lower bound resp.) approximation function for the original problem (and
vice versa). Figure 14 shows a possible set of constraints for the dual problem obtained by
directly multiplying -1 to the costs return by the constraints in Fig. 8.

We will now show how to implement ncub() and acub(), via checking the nclb() and
aclb() for the dual problem. Recall when we define nclb() and aclb(), we have made the
assumption that the minimum possible costs that can be returned by a constraint is zero. If
we construct a dual constraint by multiplying -1 to the costs of its corresponding constraint
in the original problem, most of the constraints in the dual problem will return costs less
than zero. This would mean that if we need to compute a lower bound approximation for
the dual problem, we cannot directly re-use nclb() and aclb(). In addition, this would also
hinder us from re-using transformation techniques from the WCSP framework since most of
the transformation techniques have the assumption that the minimum possible costs returned
by a constraint is zero. To tackle this issue, we further define normalized form for the dual
problem to satisfy the assumption.

Definition 4 Suppose we were given a dual problem P† = (X ,D,C†,Q†, k). The nor-
malized form of the dual problem is PN = (X ,D, CN,Q†, k). We require all constraints
except CN

∅
to return non-negative costs, i.e.

∀CN
s ∈ CN − {CN

∅
} : 0 ≤ CN

S (l[S]) ≤ k.

Fig. 15 Normalized constraints
in Example 8
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Fig. 16 Algorithms to perform normalization for the dual problem

For all complete assignments l, we have two conditions:

[C†
∅
⊕†

†⊕

C
†
s ∈C†

C
†
S(l[S]) = −k] ⇐⇒ [CN

∅
+

∑

CN
s ∈CN

CN
S (l[S]) ≤ −k], and

[0 ≥ C
†
∅
⊕†

†⊕

C
†
s ∈C†

C
†
S(l[S]) > −k] ⇐⇒

[CN
∅
+

∑

CN
s ∈CN

CN
S (l[S]) = C

†
∅
⊕†

†⊕

C
†
s ∈C†

C
†
S(l[S])]

By observing Definition 4, we can see that all constraints except CN
∅

in the normal-
ized form will return costs from 0 to k. This would allow us to re-use transformation
techniques from WCSPs (with slight modification to handle CN

∅
). We now give the

algorithm to transform a dual problem into its normalized form.

Lemma 6 Function Normalize (in Fig. 16) transforms a dual problem into its normal-
ized form.

Lemma 6 suggests an algorithm to transform a dual problem into its normalized form. The
algorithm assumes the dual problem only contains unary and binary constraints. The trick
we use to maintain the same overall costs of a complete assignment (except those with costs
≤ −k) is to allow CN

∅
(the global costs) to become negative and unbounded. The main

goal of the function is to transfer costs from C
†
∅

to constraints with negative costs until

all constraints (except C†
∅

) return non-negative costs. It is not hard to see all constraints

except C†
∅

will return costs from 0 to k after normalization. We implement and execute
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the function Normalize once during pre-processing in the root node to convert the dual
problem into its normalized form. Since the formulations of nclb() and aclb() do not require
the global costs CN

∅
must be positive, we can re-use nclb() and aclb() on the normalized

form.
One potential drawback in our definition for normalized form is that we cannot reuse

the valuation structure for WCSPs (or the valuation structure for dual problem) to bound
costs within [0..k] (or [−k..0]). The main reason is that the costs range for CN

∅
could be

far less than −k in order to balance the increased costs for the other constraints. A direct
consequence is that now k (or −k in the dual form) cannot be used as annihilator. In other
words, if k (or −k) is found during a sequence of summation operations, we cannot naively
conclude the result is k (or −k). We have to compute the whole sequence of operations
before making any conclusions. To fix this problem, we use standard addition instead of ⊕
on the normalized form. This modification may result in costs of a complete assignment
equal to −k in the dual problem potentially map to costs less than −k in the normalized
form.

Example 8 We use the dual constraints (Fig. 14) in Example 7 to illustrate how to create
the normalized constraints. To translate a dual constraint into the normalized form, we first
compute the minimum possible costs returned by the constraint. If the minimum possible
costsm is less than zero (i.e. m < 0), we then add−m to all costs returned by the constraints.
This will make the constraint return only positive costs (including zero). To maintain costs
equivalence, we then subtract −m from CN

∅
. Figure 15 shows resulting normalized form for

the dual constraints in Fig. 14.

Definitions 5 and 6 show how we modify nclb and aclb to cope with the normalized
form. It is not hard to observe we only change ⊕ operators to standard additions.

Definition 5 The ncNlb(PN, xi = v) function approximates the A-cost for a set S of sub-
problems {PN [x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

ncNlb(PN, xi = v) ≡ CN
∅
+ (

∑

j :j<i

minCN
j )+ (CN

i (v))+ (
∑

j :i<j

Q
†
jC

N
j )

where Q
†
j ∈ Q† is the quantifier in the dual (normalized) problem for variable xj where

j > i.

Definition 6 The acNlb[CN
i,j ](PN, xi = v) function approximates the A-cost for the set S of

sub-problems {PN [x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

acNlb[CN
i,j ](PN, xi = v) ≡ CN

∅
+ (

∑

k:k<i

minCN
k )+ (CN

i (v))

+(
∑

k:i<k∧j �=k

Q
†
kC

N
k )+ ( Qj

u∈Dj

†{CN
j (u)+ CN

i,j (v, u)})

where CN
i,j is the binary constraint in the normalized dual problem on variable xi and xj

where i < j , Q†
j ∈ Q is the dual quantifier for variable xj , and Q

†
k ∈ Q is the dual

quantifier for variable xk where k > i and k �= j .
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Example 9 Recall in Example 8, Fig. 15 shows the resulting normalized form for the dual
constraints in Fig. 14. Suppose we now apply the new ncNlb() on the normalized dual problem
on the assignment x2 = b, the function will become

CN
∅
+ minCN

1 + CN
2 (b)+ minCN

3 + minCN
4

= (−11 − k)+ 0 + k + 0 + 0 = −11

It is not hard to check -1 times −11 is a correct upper bound for the sub-problemP ′[x2 = b]
of the original problem. Similarly, suppose we now apply the new acNlb() for CN

2,4 on the
assignment x2 = b, the function will become

CN
∅
+ minCN

1 + CN
2 (b)+ minCN

3 + min
v4∈D4

{CN
4 (v4)+ CN

2,4(b, v4)}
= (−11 − k)+ 0 + k + 0 + min{4, 4, 1} = −10

Note that -1 times −10 is also a correct upper bound for the sub-problem P ′[x2 = b] of the
original problem.

Theorem 5 The function ncNlb(PN, xi = v) is a lower bound approximating function
lbaf(PN, xi = v). The function acNlb[CN

i,j ](PN, xi = v) for binary constraint CN
i,j is a

lower bound approximating function lbaf(PN, xi = v).

The proof of Theorem 5 is similar to the proofs of Theorem 2 and 3. We can repeat the same
proofs for Theorem 2 and 3 by modifying ⊕ operator to standard addition and considering
that only CN

∅
can hold negative costs for a normalized dual problem.

Definition 7 An MWCSP P is dual constraint node consistent (DC-NC) [15] iff:

∀xi ∈ X , ∀v ∈ Di : nclb(P, xi = v) < ub, and

∀xi ∈ X , ∀v ∈ Di : ncNlb(PN, xi = v) < ub†

Definition 8 An MWCSP P is dual constraint arc consistent (DC-AC) [15] iff:

P is DC-NC,

∀Ci,j ∈ C,∀v ∈ Di : aclb[Ci,j ](P, xi = v) < ub, and

∀CN
ij ∈ CN, ∀v ∈ Di : acNlb[CN

ij ](PN, xi = v) < ub†

Since DC-AC requires DC-NC to be satisfied by definition, DC-AC is automatically
strictly stronger than DC-NC. Readers may think that the second and third conditions of
DC-AC have essentially implied the first condition, and therefore, we can omit the first
condition. Assume now we ignore the first condition. For a variable assignment xi = v,
if there does not exists any binary constraints Ci,j (CN

i,j resp.) on xi , we can see that the
second (and third condition resp.) are not going to check the bounds on the assignment as
aclb() (acNlb() resp.) requires a binary constraint as one of the input. Therefore, we add the
first condition to guarantee even if xi does not have a binary constraint xi , nclb(P, xi = v)

(ncNlb(PN, xi = v) resp.) must still be executed to maintain DC-NC.
Figure 17 shows the algorithm to enforce DC-AC, which can be seen as an imple-

mentation of the high-level propagation routine in Fig. 6. We skip explaining func-
tion strengthening() in line 19 and 31 (enclosed in grey boxes), which are used to



Constraints

Fig. 17 The propagation routine for using duality of constraints

improve the upper and lower bound estimation functions. This function will be explained
in Section 5.4. Function AC LB(P, Cjk, xj = u) (in line 25, defined in Defini-
tion 2) and NC LB(P, xj = u) (in line 28, defined in Definition 2) implement the lower
bound approximation function lbaf(P, xj = u) in the high-level routine (in line 8
of Fig. 6). By the duality of constraints, we can implement the upper bound approxima-
tion function ubaf(P, xj = u) (in line 13 of Fig. 6) by re-using the two functions
AC LB() and NC LB() (in line 37 and line 40) on the (normalized) dual problem PN
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(by using standard addition instead of ⊕ operations). For clarity issues, we abstract the
two pruning/backtracking routines into the two functions: upper bound pruning and
lower bound pruning.

Note that for duality of constraints approach, we have to maintain both the original
problem P and the dual problem PN . If a value is being pruned on the original prob-
lem P , we should also prune the value on the dual problem PN (and vice versa). In this
way, prunings caused by lower bound approximations may tighten upper bound approx-
imations (and vice versa), and triggers more prunings. To handle this case, we slightly
modify the usual pruning/backtracking routines (function upper bound pruning
and lower bound pruning) by adding line 4 and 11. Note that function AC LB and
NC LB will be used to compute bounds for both the original and the dual problem, we
have to update the two arrays M and Q (via calling computeArrayOfMinCosts and
computeArrayOfQuantifiedCosts in line 20–21 and line 32–33) before using
AC LB/NC LB. To enforce DC-NC only, we can just skip calling function AC LB and its
corresponding pruning/backtracking routines, by skipping line 25–26 and line 37–38. Note
that we cannot skip calling NC LB if we want to maintain DC-AC. The reason behind is
that DC-AC by definition requires us to maintain DC-NC and AC LB will not be called
for a variable xi if there are no constraints Ci,j on the variable (as AC LB is designed for
variables with binary constraints).

We now analyze the time complexity of the propagation algorithm, by first evaluating
the while loop from line 16 to line 42. We let c to be the constant time, n to be the num-
ber of variables, e to be the number of constraints, and d to be the maximum variable
domain size. The two functions upper bound pruning and lower bound pruning
for handling the pruning and backtracking routines run in O(c). We ignore the func-
tion strengthening() and assume it runs in unknown time complexity O(s).
From previous sections, we know that function computeArrayOfMinCosts and
computeArrayOfQuantifiedCosts run in O(nd) and each query to NC LB() and
AC LB() run in O(c) and O(d). From the algorithm, we can see that NC LB() will be
queried for each possible value assignments xj = u from the set of future unassigned vari-
ables on both the original problem and the dual problem, its overall running time will be
bounded by O(nd). For AC LB(), the function will be queried for all of the possible binary
constraints and all possible value assignments again on both the original problem and the
dual problem. Therefore, the overall running time for the function will be in O(ed2). Over-
all, the time complexity for running the while loop once is: O(s+nd+ed2) which is bounded
by O(s + n2d2). In case we want to maintain DC-NC only, the runtime for running the loop
once is O(s + nd). In the worst case, we could have the propagation while loop runs for
nd times. Therefore, the worst case time complexity for DC-AC is O(snd + n2d2 + end3)
(which is bounded by O(snd + n3d3)) and for DC-NC is O(snd + n2d2).

5.3.2 Duality of quantifiers

Another way to check Condition (2) for an MWCSP P is to scrutinize functions imple-
menting ubaf(P, xi = v), by repeating similar reasoning for nclb() on unary MWCSPs
(plus a binary constraint). The idea is to use the duality of quantifiers, by replacing min
quantifiers to max in the reasoning process. Recall we have three groups of unary con-
straints to consider. One direct way is to consider the maximum costs, instead of minimum
costs from constraints in the first group (group (a)), hence changing quantifiers from min to
max. However, using the resulting upper bound approximation functions, by reasoning on
unary MWCSPs is incorrect for general MWCSPs. We cannot neglect costs given by binary
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constraints (or even higher arity constraints if exists). One way to make the bound correct is
to add the maximum costs for constraints which will not be covered in the function. Func-
tion ncub(P, xi = v) and acub(P, xi = v) are given as follows, and we write maxC� to
mean the maximum costs for constraints which are not considered in the function.

Definition 9 The ncub(P, xi = v) function approximates the A-cost for a set S of sub-
problems {P [x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1}. Define:

ncub(P, xi = v) ≡ C∅ ⊕ (
⊕

j :j<i

maxCj)⊕ (Ci(v))⊕ (
⊕

j :i<j

QjCj )⊕ (maxC�)

where Qj ∈ Q is the quantifier for xj , j > i.

We can easily observe that maxC� is equal to
⊕

j,k:j �=k maxCjk if there are only unary
and binary constraints.

Definition 10 The function acub[Ci,j ](P, xi = v) approximates the A-cost for the set S of
sub-problems: {P [x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1}. Define:

acub[Ci,j ](P, xi = v) ≡ C∅ ⊕ (
⊕

j :j<i

maxCj)⊕ (Ci(v))⊕ (
⊕

k:i<k∧j �=k

QkCk)

⊕ Qju∈Dj
{Cj(u)⊕ Ci,j (v, u)} ⊕ (maxC�)

where Ci,j is the binary constraint on xi and xj where i < j , Qk is the quantifier for
variable xk where k > i and k �= j , and Qj is the quantifier for variable xj .

If there are only unary and binary constraints, maxC� is equal to
⊕

Ck,l∈B maxCk,l , where
B = {Ck,l ∈ C|k �= l}− {Ci,j }. This paper focuses on efficiently handling unary and binary
constraints only. Handling high order constraints and/or global constraints will be left as
future work.

Theorem 6 Function ncub(P, xi = v) is an upper bound approximating function
ubaf(P, xi = v).

Theorem 7 The function acub[Ci,j ](P, xi = v) for binary constraint Ci,j is an upper
bound approximating function ubaf(P, xi = v).

To prove the two theorems above, we need to introduce one more lemma.

Lemma 7 Suppose we were given an MWCSP P = (X ,D,C,Q, k). Let E to be an arbi-
trary subset of constraints from C and we define P ′ to be an MWCSP obtained from P by
removing all constraints in E (i.e. P ′ = (X ,D,C − E,Q, k)).

A-cost(P) ≤ A-cost(P ′)⊕
⊕

C∈E
maxC

where maxC is the maximum possible costs returned by the constraint C.
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Proof (Lemma 7) We first consider the simplified case where E contains only one
constraint C ′, i.e. E = {C ′}. Suppose C ′ has a scope of S′. We have

C∅ ⊕
⊕

CS∈C
CS(l[S]) = C∅ ⊕ C ′(l[S′])⊕

⊕

CS∈C−E

CS(l[S])

≤ C∅ ⊕
⊕

CS∈C−E

CS(l[S])⊕ maxC ′

for all possible complete assignments l. Note that we can re-write the definition of A-costs
as:

A-cost(P) = Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C
CS(l[S])]

where l = {x1 = v1, x2 = v2, . . . , xn = vn}. In MWCSPs, all quantifiers are either min or
max which are monotonic aggregators/functions. By monotonic properties, this allow us to
achieve,

Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C
CS(l[S])]

≤ Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C−E

CS(l[S])⊕ maxC ′]

= maxC ′ ⊕ Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C−E

CS(l[S])]

Observe that C∅ ⊕ ⊕
CS∈C−E CS(l[S]) is the cost function for P ′, this gives

A-cost(P) ≤ maxC ′ ⊕ A-cost(P ′)

where E contains a constraint (i.e. |E|= 1). We now have established the lemma for remov-
ing one constraint from the problem. In general E has more than one constraint, however,
removing multiple constraints can be viewed as removing a series of constraints and the
lemma therefore holds.

Proof (Theorems 6 and 7) To prove the two functions ncub() and acub() are correct upper
bound approximation functions, we re-use Lemmas 3 and 5 again. Suppose we were given
an MWCSP P with only unary constraints (unary constraints and one binary constraint Ci,j

resp.), its sub-problem P[x1..i = v1..i] with a fixed value assignment {x1 = v1, . . . , xi =
vi} has the following A-costs:

⊕

j :j<i

Cj (vj )⊕ Ci(vi)⊕
⊕

j :j>i

QjCj

(
⊕

k:k<i

Ck(vk)⊕
⊕

k∈[i+1...n]\{j }
Qk Ck ⊕ Qj

u∈Dj

[Ci(vi)⊕ Cj(u)⊕ Ci,j (vi, u)] resp.)

Only the first term in the above expression
⊕

j :j<i Cj (vj ) (
⊕

k:k<i Ck(vk) resp.) is variant
towards different values being assigned for variables preceding xi . Therefore, for the set
of sub-problems {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1} which share
the common assignment xi = v, we can observe that the sub-problem(s) which has the
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maximum A-costs should have a value assignment x1 = v1, x2 = v2, . . . , xi−1 = vi−1 s.t.
the A-costs is equal to:

⊕

j :j<i

maxCj ⊕ Ci(v)⊕
⊕

j :j>i

QjCj

(
⊕

k:k<i

maxCk ⊕ Ci(v)⊕
⊕

k:i<k∧k �=j

Qk Ck ⊕ Qj
u∈Dj

[Cj (u)⊕ Ci,j (v, u)] resp.)

This gives a tight upper bound for the set S of sub-problems of the original P which has
only unary constraints (unary constraints and one binary constraint resp.). However, we
cannot neglect costs given by higher arity constraints. From lemma 7, we know that adding
the maximum costs of all constraints which have not been considered (including C∅ which
is a constant) will give an upper bound to the problem. This completes the proof.

Example 10 We again re-use Example 4 and the constraint shown in Fig. 8. Recall we are
at the sub-problem P ′ = P[x1 = a] and we have already visited P ′[x2 = a]. Function
ncub(P ′, x2 = b) will be:

C∅ ⊕ maxC1 ⊕ C2(b)⊕ maxC3 ⊕ maxC4 ⊕ maxC2,4

which is equal to 11. Function acub[C2,4](P ′, x2 = b) will be:

C∅ ⊕ maxC1 ⊕ C2(b)⊕ maxC3 ⊕ max
u∈D4

{C4(u)⊕ C2,4(b, u)}
= 0 ⊕ 0 ⊕ 0 ⊕ 4 ⊕ max{C4(a)⊕ C2,4(b, a),C4(b)⊕ C2,4(b, b),C4(c)⊕ C2,4(b, c)}
= 4 ⊕ max{3, 3, 6} = 10

By observing the labeling tree in Fig. 12, the two functions return correct lower bound
approximation for P ′[x2 = b].

Note that in general MWCSPs, we may have high-arity constraints and/or global con-
straints. Computing maxC� for ncub()/acub() precisely during search essentially means we
have to find the maximum costs for each of these constraints, which could be extremely
computational expensive. One naive way to deal with high-arity and/or global constraints
is to pre-compute or estimate these maximum costs only once during pre-processing in the
root node. We then re-use these pre-computed costs during search. In this paper, we deal
with unary and binary constraints only. We will maintain and update the maximum costs of
all unary and binary constraints during search. Efficient methods to compute and estimate
the maximum costs for high-arity / global constraints during search will be left as future
works.

Figure 18 shows the algorithm to compute ncub(), which is similar to the algo-
rithm for computing nclb(). We again pre-compute the second and fourth term to
avoid unnecessary re-computations for different assignments xi = v. The second term⊕

j :j<i maxCj is pre-computed using function computeArrayOfMaxCosts, and
results are stored in the array N. It is easy to see computeArrayOfMaxCosts is sim-
ilar to computeArrayOfMinCosts for computing nclb() and the time complexity is
in O(nd), where n is the number of variables and d is the maximum variable domain
size. We re-use the function computeArrayOfQuantifiedCosts in Fig. 10 to com-
pute the fourth term in ncub(). We use function computeBinaryMaxCosts to sum
up all the maximum costs for all binary constraints. It is worth noting that comput-
ing computeBinaryMaxCosts essentially scans all tuples of all binary constraints, and
can be extremely time expensive to compute (especially if it is used frequently). The time
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Fig. 18 Algorithms for implementing ncub()

complexity in the worst case is in O(ed2), where e is the number of binary constraints in the
problem and d is the maximum variable domain size. One way to improve the efficiency
in our solver is to compute the maximum costs of all binary constraints and their total sum
totalSum during pre-processing and then maintain these costs (including totalSum) in
the global memory. We will need O(e) space where e is the number of binary constraints.
We only perform update when a binary constraint is removed/modified, e.g. values being
pruned / value assignments occur. After the modification, function max(Cij) will imme-
diately return costs from the memory instead of computing costs by scanning tuples from
the binary constraint. Function computeBinaryMaxCosts(P) will also immediately
return the total maximum cost totalSum from the global memory. This could reduce
the worst case complexity of computeBinaryMaxCosts(P) to O(c), where c is the constant
time if the global memory is well maintained. If all of the required functions have been
pre-computed, NC UB(P, xi = v) runs in constant time.

Fig. 19 Algorithms for implementing acub()
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We now show the function AC UB() for computing acub() in Fig. 19, which is similar to
function AC LB() in Fig. 11. The function again assumes a common assignment xi = v and
a binary constraint Ci,j on xi were given from the input. The computation of the first three
terms: C∅,

⊕
j :j<i maxCj , and Ci(v) in acub() is the same as ncub(). The fourth term and

the fifth term are essentially the same as in aclb(), and therefore, we adopt the same routine.
The only major new requirement in computing acub() is to compute the last term, which is
the maximum costs of all constraints which are not considered in the function. We compute
the term (in line 2) by utilizing again the two functions computeBinaryMaxCosts(P)
and max(Cij) for the computations of nclb().

Computing maxC∗ in line 2 will use constant time as max(Cij) returns the maximum
costs directly from the maintained global memory. Similar to AC LB(), line 4 to line 8 (for
Qj = min) and line 10 to line 14 (for Qj = max) run in O(d), where d is the maximum
variable domain size.

We now define the node and arc consistencies by utilizing the constructed functions.

Definition 11 An MWCSP P is dual quantifier node consistent (DQ-NC) [15] iff:

∀xi ∈ X , ∀v ∈ Di : nclb(P, xi = v) < ub, and

∀xi ∈ X , ∀v ∈ Di : ncub(P, xi = v) > lb

Definition 12 An MWCSP P is dual quantifier arc consistent (DQ-AC) [15] iff:

P is DQ-NC,

∀Ci,j ∈ C,∀v ∈ Di : aclb[Ci,j ](P, xi = v) < ub, and

∀Ci,j ∈ C,∀v ∈ Di : acub[Ci,j ](P, xi = v) > lb

Since DQ-AC requires DQ-NC to be satisfied by definition, DQ-AC is automatically
strictly stronger than DQ-NC.

We show the algorithm to enforce DQ-NC/AC in Fig. 20, which is similar to the algo-
rithm for DC-NC/AC. Similarly, we skip explaining function strengthening() in
line 17 and 29 (enclosed in the grey boxes), which is used to improve the upper and
lower bound estimation functions. The function will be explained in Section 5.4. The
algorithm can be seen as another implementation of the high-level propagation routine
in Fig. 6. Similar to the previous algorithm for enforcing DC-NC/AC, we abstract the
two pruning/backtracking routines into the two functions: upper bound pruning and
lower bound pruning. For the implementation of the lower bound estimation func-
tion lbaf(P, xj = u) (in line 8 of Fig. 6), the enforcing algorithm for DQ-NC/AC
is the same as DC-NC/AC. The only major difference is on the implementation of the
upper bound estimation function ubaf(P, xj = u) (in line 13 of Fig. 6), where DQ-
NC/AC directly implements ubaf(P, xj = u) by using function AC UB (in line 36)
and NC UB (in line 39). To enforce DQ-NC only, we skip calling function AC LB and func-
tion AC UB (and their corresponding pruning/backtracking routines), by skipping line 25–26
and line 37–38. Similar to the enforcing algorithm for DC-AC (with similar reasons), we
cannot skip calling NC LB / NC UB if we want to maintain DQ-AC.

We now analyze the time complexity of the propagation algorithm, by first eval-
uating the while loop from line 14 to line 41. We let c to be the constant time,
n to be the number of variables, e to be the number of constraints, and d to
be the maximum variable domain size. The two function upper bound pruning
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Fig. 20 The propagation routine for using duality of quantifiers

and lower bound pruning for handling the pruning and backtracking rou-
tines run in O(c). We ignore the function strengthening() and assume it
runs in unknown time complexity O(s). Function computeArrayOfMinCosts,
computeArrayOfQuantifiedCosts, and computeArrayOfMaxCosts run in
O(nd). If function computeBinaryMaxCosts(P) in line 32 computes the maximum
costs of all binary constraints and their summation totalSum via scanning all tuples of
all binary constraints, the function will run in the worst case O(ed2). Note that in prac-
tice, we could reduce the complexity of computeBinaryMaxCosts(P) by updating
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the maximum costs of binary constraints incrementally. We only need to update binary con-
straints which have a variable with values being pruned/assigned. Each query to NC LB()
and NC UB() run in O(c) and each query to AC LB() and AC UB() run in O(d). From the
algorithm, we can see that NC LB() and NC UB() will be queried for each possible value
assignments xj = u from the set of future unassigned variables. Their overall running time
will be bounded by O(nd). For AC LB() and AC UB(), the function will be queried for all
of the possible binary constraints and all possible value assignments. The overall running
time for the function will be in O(ed2). Overall to maintain DQ-AC, the time complexity
for running the while loop once is: O(s + nd + ed2) which is bounded by O(s + n2d2). In
the worst case, we could have the propagation while loop runs for nd times. Therefore, the
worst case time complexity is O(snd + n2d2 + end3) which is bounded by O(snd + n3d3).
If we want to maintain DQ-NC, the time complexity for running the while loop once is still
O(s + nd + ed2) due to the requirement to compute computeBinaryMaxCosts(P).
Suppose we now choose to update the maximum costs of binary constraints (and their total
sum) incrementally. If there are r binary constraints constraining on variables with values
being pruned, computeBinaryMaxCosts(P) would run in O(rd2). The time complex-
ity to maintain DQ-NC for running the loop once would be changed to O(s + nd + rd2).
In the worst case, we could have the propagation while loop runs for nd times. A naive cal-
culation for the worst case complexity would give O(snd + n2d2 + rnd3), where r is an
average number of binary constraints need to be updated per execution of the while loop.

5.4 Strengthening consistencies by projection/extension

Consistency algorithms for Weighted CSPs use an equivalence preserving transformation
called projection [9] to move costs from higher arity constraints to lower arity ones to extract
and store bound information. Some of these consistency algorithms also use extension [9],
which is the inverse of projection, to increase the consistency strength. We propose to re-use
Weighted CSP consistencies, especially the parts related to projections and extensions, to
strengthen [15] the approximating functions for MWCSPs. We will first give an introduction
for projections before showing how we utilize the consistencies for MWCSPs.

Suppose now we have a constraint CS on the set S of variables, and the costs incurred by
CS is at least c for any assignments on CS . We can easily infer CS must be (at least) giving a
cost of c. We can extract c from CS to C∅. The operation performing the extraction is called
0-projections [36], which is an operation transforming (CS , C∅) to (C ′

S, C
′
∅

) by projecting
a cost of c s.t.:

C ′
S(l[S]) = CS(l[S])� c

C ′
∅

= C∅ ⊕ c

for all possible complete assignments l. Similarly, if we have a constraint CS on the set S of
variables, and the costs incurred by CS is at least c for any assignments l where xi = a ∈ l

on CS , we can extract c from CS[l] to Ci(a). The operation performing the extraction is
called 1-projections [36], which is an operation transforming (CS , Ci(a)) to (C ′

S, C
′
i (a)) by

projecting a cost of c s.t.:

C ′
S(l[S]) = CS(l[S])� c, if xi = a ∈ l

= CS(l[S]), if xi = a /∈ l

C ′
i (v) = Ci(v)⊕ c, if v = a

= Ci(v), if v �= a
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for all possible complete assignments l. Recall function nclb() extracts minimum costs
from unary constraints. Performing 0-projections on unary constraints before computing
nclb() helps us to pre-compute these minimum costs. Furthermore, by using 1-projections
on binary constraints, we may further strengthen nclb() as costs from binary constraints are
being transferred to unary constraints. In function aclb, not all binary constraints are taken
into account. If we are able to extract costs from binary constraints to unary constraints by
1-projections, we could also make aclb a tighter bound. Note that we can also define general
k-projections where k is an arbitrary number. However in practice, consistency algorithms
usually focus on utilizing 0-/1-projections.

Weighted CSPs consistencies consist of two kinds of conditions: one for pruning and one
for projection/extension. However, the general pruning conditions in WCSPs are unsound
with respect to MWCSPs. In WCSPs, if an assignment xi = v has a cost of k, we can prune
the assignment. However in MWCSPs, we cannot directly prune value v. We have to fur-
ther consider quantifier information. If Qi = max and we prune the value, the pruning may
change the overall A-costs of the problem. Instead of pruning the value, we should perform
backtrack (or prune all values to trigger backtrack in QCSPs) according to Table 1. There-
fore, we adopt only their projection/extension conditions so as to strengthen DC-NC/AC
and DQ-NC/AC. The projection/extension conditions for NC*, AC*, and FDAC* [16, 17]
are as follows:

proj-NC*: ∀Ci, ∃v ∈ Di : Ci(v) = 0

proj-AC*: proj-NC*, and

∀Ci,j , ∀vi ∈ Di, ∃vj ∈ Dj : Ci,j (vi, vj ) = 0, and

∀Ci,j , ∀vj ∈ Dj , ∃vi ∈ Di : Ci,j (vi, vj ) = 0

proj-FDAC*: proj-AC*, and

∀Ci,j : i < j,∀vi ∈ Di, ∃vj ∈ Dj :Ci,j (vi, vj )⊕ Cj(vj ) = 0

The main idea of these projection conditions is to require certain tuples of unary and/or
binary constraints after transformation by using consistency algorithms have a cost of 0,
i.e. the minimum costs in Weighted CSPs. To satisfy the requirements, consistency algo-
rithms in Weighted CSPs will utilize projections (and further extensions which are the
reverse of projections for proj-FDAC*) to transfer costs from higher arity constraints to
lower arity constraints. Note that in terms of definition, proj-FDAC* has stronger require-
ments/conditions than proj-AC* and proj-AC* has stronger requirements/conditions than
proj-NC*. Similar to classical CSPs, the enforcement algorithm for enforcing stronger
consistencies will usually run slower.

The enforcing algorithm to enforce these conditions have long been developed and dis-
cussed in the Weighted CSP community. In this section, we will discuss on how to adopt
the enforcing algorithms for proj-NC*, proj-AC*, and proj-FDAC* from the Weighted
CSP framework in our implementations. Figures 21, 22, and 23 show three functions:
PROJ-NC*, PROJ-AC*, and PROJ-FDAC*, which are used to enforce proj-NC*, proj-
AC*, and proj-FDAC* respectively. When enforcing DC-NC/AC and DQ-NC/AC, the
appropriate enforcing algorithms: PROJ-NC*, PROJ-AC*, or PROJ-FDAC* will be
selected and invoked via calling function strengthening (line 19 and 31 in Fig. 17 and
line 17 and 29 in Fig. 20). Since we directly adopted these algorithms from Weighted CSP
framework, we will show how to modify these algorithms to cope with MWCSPs.

Function PROJ-NC* enforces proj-NC* by transferring the minimum costs of unary
constraints to C∅ and the function runs in O(nd), where n is the number of variables and d is
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Fig. 21 Algorithms to enforce proj-NC*

the maximum domain size. Similarly, function PROJ-AC* enforces proj-AC* by transfer-
ring the minimum costs of binary constraints to unary constraints, and further enforce proj-
NC* by calling PROJ-NC*. The runtime of the function is in O(ed2), where e is the number
of binary constraints in the propagation queue propQueue and d is the maximum domain
size. For function PROJ-FDAC*, it first enforces proj-AC* by calling function PROJ-AC*.
Then, it maintains proj-FDAC* by a series of extensions (from unary constraints) and pro-
jections (from binary constraints). The runtime of the algorithm is again in O(ed2), where
e is the number of binary constraints in the two propagation queues and d is the maxi-
mum domain size. Note that the above time complexity estimation assumes the procedure
to find and add binary constraints to propFDACQueue runs in constant time (line 9
and 18 in Fig. 22 and line 14 in Fig. 23). Instead of checking whether we need to maintain
proj-AC*/proj-FDAC* for all binary constraints every time, PROJ-AC*/PROJ-FDAC*
maintains a propagation queue propQueue(in line 2 in Fig. 22) / propFDACQueue(in

Fig. 22 Algorithms to enforce proj-AC*
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Fig. 23 Algorithms to enforce proj-FDAC*

line 5 in Fig. 23) for storing all binary constraints which may not satisfy proj-
AC*/proj-FDAC*. To maintain propQueue/propFDACQueue, we will need to fur-
ther modify function upper bound pruning and lower bound pruning in both
Figs. 17 and 20. When a value v for a variable xi is being pruned in func-
tion upper bound pruning/ lower bound pruning, all binary constraints related
to the variable will be added to the array propQueue, i.e. Ci,j , j > i and also Cj,i, j < i.
For the array propFDACQueue, we will only add binary constraints Cj,i where j < i.

After enforcing proj-NC* (proj-AC* resp.), the minimum costs of all unary (unary
& binary resp.) constraints must be zero. Therefore, it is unnecessary for us to com-
pute the minimum costs for a unary (unary and binary resp.) constraint again in
NC LB, AC LB, NC UB, and AC UB if we have already enforced proj-NC* (proj-
AC* resp.). We can then further simplify function computeArrayOfMinCosts and
computeArrayOfQuantifiedCosts in Fig. 10. Note that after enforcing projec-
tion/extension conditions, the maximum costs for a unary/binary constraint may be
changed, and we have to re-compute these maximum costs. For unary constraints, the
re-computations always occur in function computeArrayOfQuantifiedCosts (and
also computeArrayOfMaxCosts for duality of quantifiers routine) after invoking the
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routine strengthening. For binary constraints, their maximum costs will only be used
in acub for the duality of quantifier approach. Function updateBinaryMaxCost(Cij)
is added (enclosed in the grey boxes in Figs. 22 and 23) to update the maximum costs for the
binary constraint Cij. Note that the function should only be invoked if duality of quanti-
fier approach is used. We add a global flag DQ to distinguish the two dualities in our solver,
where the flag is set to true if duality of quantifier approach is enabled.

Suppose we were given a binary constraint Ci,j where xi is a min variable and xj is a
max variable. Notice that when the enforcing algorithm PROJ-FDAC* (in Fig. 23) enforces
proj-FDAC* for Ci,j , extension operations may transfer unary costs from Cj (line 21) to
Ci,j and projection operations may transfer unary costs from Ci,j to Ci (line 24). Decreasing
unary costs for max variables and at the same time increasing unary costs for min variables
may weaken the approximating functions. Weakening the approximating function nclb and
aclb may give a looser lower bound while weakening the approximating function ncub (in
the duality of quantifier approach) may give a looser upper bound. Recall that we also utilize
nclb and aclb for computing upper bounds in the duality of constraint method. Therefore,
we also risk computing looser upper bounds.

The reason behind is that proj-FDAC* will also perform extensions, which are the reverse
of projections, to transfer costs from unary constraints to binary constraints. If we trans-
fer costs from unary constraints to binary constraints and then further perform projections
transferring costs from these binary constraints to other unary constraints, we can see that
costs are being transferred between unary constraints (by using binary constraints). Note
that the transformation is a cost equivalence preserving operation, i.e. the total costs of a
complete assignment remains unchanged. Therefore, incorporating such transformation in
our framework does not affect the soundness of our proposed algorithm. However, trans-
ferring costs from max variable to min variable may weaken the approximation functions
we defined for the framework. One way to tackle and ease the issue is to use a different
ordering for the variables when enforcing proj-FDAC*, with max variables first. The idea is
that if max variables are ordered before the min variables, we can avoid transferring unary
costs from max variables to min variables. Note that applying the algorithm to enforce proj-
FDAC* on a different variable ordering is still costs equivalence preserving (i.e. soundness
still holds). To implement the modification, we only need to add a procedure in the root
node during preprocessing to create a new ordering to order max variables first. Note that
the for-loops in line 3, 4, and 14 in Fig. 23, and also line 9 and 18 in Fig. 22 will need to be
referenced to the newly created ordering. One interesting future work is to devise a variable
ordering heuristic for proj-FDAC* which could order the variable dynamically depending
on the quantifiers and constraint costs.

We now re-define DC-NC, DC-AC, DQ-NC, and DQ-AC, to allow users to plug in
general projection/extension conditions τ .

Definition 13 An MWCSP P is DC-NC[τ] (DC-AC[τ] resp.) iff P is DC-NC (DC-AC
resp.), and all projection/extension conditions τ for bothP and the normalized dual problem
PN are satisfied.

Definition 14 An MWCSP P is DQ-NC[τ] (DQ-AC[τ] resp.) iff P is DQ-NC (DQ-AC
resp.), and all the projection/extension conditions τ for P are satisfied.

Previous work [21] shows experimental results on an implementation of DQ-NC[proj-NC*]
and DQ-AC[proj-AC*], where DQ-NC[proj-NC*] and DQ-AC[proj-AC*] are named as
node and arc consistency respectively.
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5.5 Stronger solution definitions

This section discusses the scopes and limitations of our techniques on solving MWCSPs for
the other two stronger solved levels: weakly solved and strongly solved.

In terms of space, the solution sizes for solving MWCSPs ultra-weakly, weakly, and
strongly vary from O(n), O((n−m)dm), to O(dn) respectively, where n is the total number
of variables, m ≤ n is the number of variables owned by adversaries, and d is the maximum
domain size of the MWCSP. A direct consequence is that we need exponential space to store
weak/strong solutions during search, and most often, compact representations to represent
weak/strong solutions are more desirable.

In terms of prunings in branch and bound tree search, a sound pruning condition when
solving a weaker solution concept may not hold in stronger ones. This is caused by the
removal of the assumption of optimal/perfect plays when dealing with stronger solution
concepts. For example in alpha-beta prunings, when the min player obtains an A-cost which
is lower than the lb (i.e. max player’s last found best), we cannot immediately backtrack if
we want to tackle weakly solved solutions, where we assume the max player is the adver-
sary. The reason behind is that we cannot assume the max player must play a perfect move.
We have to consider all moves for the max player. The situation is similar if we assume
the min player is the adversary. By similar reasoning and inductions, we cannot perform
prunings/backtrackings for the ≤ lb column (≥ ub column resp.) in Table 1 if we want to
tackle weakly solved solutions, assuming the max player (min player resp.) is the adver-
sary. For solving strong solutions, the situation is even worse. We cannot assume optimal
plays for both players. Therefore, we have to find A-costs for all sub-problems, and all
prunings/backtrackings conditions in Table 1 cannot be used. In general, the fewer sound
pruning/backtracking conditions available, the larger the search space we have to search.
By using tree search, we can observe finding stronger solutions is much harder than weaker
ones.

When tackling real-life problems, one can ask for solutions which solve the problem in
an intermediate level. For example, if the adversaries have multiple optimal strategies, we
can require solutions containing responses to every different optimal choice the adversaries
may choose. In this case, the solved level lies between ultra-weak and weak. One way to
handle is to relax the bound updating procedure for the lower bound (upper bound resp.) in
alpha-beta pruning (Line 8 and 10 in Fig. 3), where we assume the max (min resp.) player
is the adversary. When a larger lower bound lb (smaller upper bound ub resp.) is found, we
update the lower bound to lb − 1 (upper bound to ub + 1 resp.). The major focus of this
paper is to give consistency notions to improve the search in finding the best-worst case, i.e.
ultra-weak solutions, of a game.

It is also worthwhile to note that ultra-weak solutions provide the value of the initial state
and the optimal play of the first step. If we are allowed to re-compute ultra-weak solutions
after every step/move from our adversary, we could still achieve an optimal strategy. In this
case, we avoid building exponential weak-solutions by re-computing ultra-weak solutions
multiple times (i.e. trading time for space).

6 Performance evaluation

In this section, we compare our solver in seven modes: Alpha-beta pruning, DC-NC[proj-
NC*], DQ-NC[proj-NC*], DC-AC[proj-AC*], DQ-AC[proj-AC*], DC-AC[proj-FDAC*],
and DQ-AC[proj-FDAC*] [15]. Values are labeled in static lexicographic order. We generate
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20 instances for each benchmark’s particular parameter setting. We set k = ∞ in all of the
benchmarks. To ease our implementation, ∞ will be translated to a large enough constant.
Results for each benchmark are tabulated with the average time used (in sec.) and average
number of tree nodes encountered. We take average for solved instances only. If there are
any unsolved instances, we give the number of solved instances beside the average time
(superscript in brackets). Winning entries are highlighted in bold. Note that even if an entry
runs slower or encounter more search nodes than another entry, the entry will still be win-
ning if it solves more instances than the others. A symbol ‘-’ represents all instances fail to
run within the time limit. The experiment is conducted on a Core2 Duo 2.8GHz with 3.2GB
memory. We have also performed experiments on QeCode, a solver for QCOPs [4], by
transforming the instances to QCOPs according to the transformation in previous work [21].

6.1 Randomly generated problems

We re-use benchmark MWCSP instances by Lee, Mak, and Yip [21]. The random MWCSP
instances are generated with parameters (n, d, p), where n is the number of variables, d is
the domain size for each variable, and p is the probability for a binary constraint to occur
between two variables. There are no unary constraints which makes the instances harder,
and the costs for each binary constraint are generated uniformly in [0..30]. Quantifiers are
generated randomly with half probability for min (max resp.), and the number of quantifier
levels vary from instances to instances. Time limit for the benchmark is set to 900 seconds,
and Table 2 shows the results.

Table 2 Randomly generated problem

(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]

(12, 5, 0.4) 68.20 5,967,461 5.89 131,468 2.54 30,165 2.13 20,397

(12, 5, 0.6) 52.05 4,782,541 4.63 101,690 2.61 26,093 2.24 16,178

(14, 5, 0.4) 263.04(18) 19,770,953 52.72 948,783 19.33 198,476 14.82 117,155

(14, 5, 0.6) 271.72(17) 17,249,858 70.12 1,185,087 29.97 246,459 23.11 143,197

(16, 5, 0.4) 517.24(2) 26,269,025 332.65(19) 4,617,612 121.78 1,047,900 102.82 706,913

(16, 5, 0.6) 693.31(2) 36,315,673 461.68(16) 6,157,070 259.51 1,816,642 208.52 1,054,326

(18, 5, 0.4) – – 624.15(5) 5,850,276 424.34(9) 1,874,750 369.48(12) 1,158,340

(18, 5, 0.6) – – – – 555.48(5) 1,890,490 515.69(9) 1,127,819

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]

(12, 5, 0.4) – – 3.68 158,179 3.23 53,845 4.27 58,619

(12, 5, 0.6) – – 2.85 118,401 3.24 41,596 4.17 45,698

(14, 5, 0.4) – – 33.39 1,135,378 26.20 369,185 41.74 482,053

(14, 5, 0.6) – – 46.81 1,510,946 45.85 450,407 68.63 522,715

(16, 5, 0.4) – – 217.13 5,780,075 141.07 1,654,538 173.96 1,745,527

(16, 5, 0.6) – – 364.51(19) 9,401,844 341.71 3,071,036 362.12(17) 2,659,294

(18, 5, 0.4) – – 381.96(5) 7,007,289 582.85(13) 4,297,854 466.30(8) 2,576,363

(18, 5, 0.6) – – 810.99(3) 14,922,549 544.37(3) 3,271,773 389.58(4) 1,042,342

Winning entries are highlighted in bold
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Table 3 Graph coloring game

(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]

(14, 4, 0.4) 19.88 1,572,978 6.71 122,266 3.20 37,252 1.90 16,732

(14, 4, 0.6) 24.12 1,730,473 10.38 185,111 5.88 59,359 3.48 23,515

(16, 4, 0.4) 167.75 10,050,800 48.37 688,200 22.67 221,484 12.09 92,875

(16, 4, 0.6) 166.83 9,213,029 45.71 625,944 27.03 212,934 15.64 85,920

(18, 4, 0.4) 784.47(3) 33,914,968 288.90 2,839,962 114.63 792,220 65.58 357,457

(18, 4, 0.6) – – 350.29 3,400,265 163.70 993,099 80.06 343,146

(20, 4, 0.4) – – 653.32(8) 5,559,267 545.54(12) 2,206,506 413.91 1,168,221

(20, 4, 0.6) – – – – 724.17(4) 2,498,710 532.10(19) 1,133,238

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]

(14, 4, 0.4) – – 4.52 170,843 3.36 63,298 3.74 53,722

(14, 4, 0.6) – – 7.29 269,179 6.36 99,972 6.88 74,187

(16, 4, 0.4) – – 34.43 1,002,145 23.21 363,539 24.36 281,229

(16, 4, 0.6) – – 33.82 949,861 29.19 352,694 31.99 280,426

(18, 4, 0.4) – – 204.86 4,095,993 118.65 1,315,346 140.95 1,207,566

(18, 4, 0.6) – – 267.23 5,295,433 180.38 1,711,948 182.66 1,270,797

(20, 4, 0.4) – – 542.40(10) 9,356,227 538.00(13) 3,990,062 459.01(12) 2,390,484

(20, 4, 0.6) – – 793.10(4) 13,240,872 761.80(5) 4,698,459 689.72(4) 2,952,531

Winning entries are highlighted in bold

Table 4 Generalized radio link frequency assignment problem

(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]

(0, 24, 4, 0.2) – – 52.98 275,929 17.32 32,088 14.46 20,396

(1, 24, 4, 0.2) – – 86.38 442,362 50.54 74,182 53.85 55,988

(0, 24, 4, 0.4) – – 148.87 828,286 105.95 295,743 128.01 286,122

(1, 24, 4, 0.4) – – 168.54 905,277 122.50 289,965 154.00 277,569

(1, 22, 6, 0.2) – – 618.93 3,580,885 307.58 352,439 309.63 299,361

(0, 24, 6, 0.2) – – 1230.33(19) 6,822,412 500.18 738,245 479.50 651,762

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]

(0, 24, 4, 0.2) – – 28.15 279,590 15.25 35,455 11.77 23,880

(1, 24, 4, 0.2) – – 45.62 449,164 50.75 77,286 47.08 62,734

(0, 24, 4, 0.4) – – 96.55 1,046,150 101.49 451,090 208.79 692,470

(1, 24, 4, 0.4) – – 115.26 1,205,458 109.16 348,040 224.62 576,335

(1, 22, 6, 0.2) – – 338.42 3,719,348 374.34 374,385 309.96 368,643

(0, 24, 6, 0.2) – – 682.60(19) 7,224,677 539.69 803,087 434.99 812,048

Winning entries are highlighted in bold
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6.2 Graph coloring games

We re-use benchmark graph coloring game instances by Lee, Mak, and Yip [21]. We repre-
sent colors by numbers and the graph is numbered by two players. We partition the nodes
into two sets A and B . Player 1 (Player 2 resp.) will number set A (B resp.). The goal
of player 1 is to maximize the total difference between numbers of adjacent nodes, while
player 2 wishes to minimize. The aim is to help player 1 extracting the best-worst case. The
instances are generated with parameters (v, c, d), where v is an even number of nodes in
the graph, c is the range of numbers allowed to place, and d is the probability of an edge
between two vertices. Player 1 (Player 2 resp.) is assigned to play the odd (even resp.) num-
bered turns, and the node corresponding to each turn is generated randomly. Time limit is
set to 900 seconds, and Table 3 shows the results.

6.3 Generalized radio link frequency assignment problem (GRLFAP)

We generate the GRLFAP according to two small but hard CELAR sub-instances [8], which
are extracted from CELAR6. All GRLFAP instances are generated with parameters (i, n, d ,
r), where i is the index of the CELAR sub-instances (CELAR6-SUBi ), n is an even number
of links, d is an even number of allowed frequencies, and r is the ratio of links placed in
unsecured areas, 0 ≤ r ≤ 1. For each instance, we randomly extract a sequence of n links
from CELAR6-SUBi and fix a domain of d frequencies. We randomly choose �(r × n +
1)/2� pairs of links to be unsecured. If two links are restricted not to take frequencies fi and
fj with distance less than t , we measure the costs of interference by using a binary constraint
with violation measure max(0, t−|fi −fj |). We set the time limit to 7200 seconds. Table 4
shows the results.

6.4 Results and discussions

For all benchmarks, all six consistencies are significantly faster and stronger than alpha-beta
pruning.

Comparing the two duality approaches, we observe that duality of constraints (DC) has
a smaller search space than duality of quantifiers (DQ). We conjecture for any projec-
tion/extension conditions τ , DC-NC[τ ] (DC-AC[τ ] resp.) could be stronger than DQ-NC[τ ]
(DQ-AC[τ ] resp.). Note that enforcing projection/extension conditions on DQ-NC/DQ-
AC may strengthen one approximation function, and weaken the other at the same time.
DC-NC/DC-AC extracts costs from different copies of constraints and resolves this issue.

For all benchmarks, DQ-NC[proj-NC*] runs faster than DC-NC[proj-NC*]. In almost
all instances of randomly generated problems and the graph coloring game, DC-AC[proj-
(FD)AC*] runs faster than DQ-AC[proj-(FD)AC*], with DC-AC[proj-FDAC] the fastest.
A notable exception is (18, 5, 0.4) in randomly generated problems, where DQ-AC[proj-
AC*] manages to solve more instances than DC-AC[proj-AC*] and even DC-AC[proj-
FDAC*]. However, for instances (in that parameter setting) which could be solved by both
DQ-AC[proj-AC*] and DC-AC[proj-FDAC*] (a total of 11 instances), we observe that DC-
AC[proj-FDAC*] runs significantly faster. In GRLFAP, DQ-NC[proj-NC*] runs faster than
the others for smaller instances (except (0, 24, 4, 0.2)) and stronger consistencies tend to be
faster for larger ones. Enforcing proj-FDAC* is more computationally expensive than proj-
AC* and proj-NC*, and implementing duality of constraints requires implementing two
copies of constraints. Therefore, stronger consistencies are worthwhile for larger instances,
but not for smaller ones due to the large computational over-head.
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It is worth noting in some particular instances, DQ[proj-FDAC*] prunes less than
DQ[proj-AC*]. This could be explained by the fact that adding stronger projec-
tion/extension conditions from Weighted CSPs naively does not always strengthen our
approximation functions. We may have to further study and consider quantifier information.

All QCOP instances for even the smallest parameter settings for all benchmarks fail to
run within the time limit. QCOPs are, in fact, more general [21] than MWCSPs. By viewing
a more specific problem, it is natural for us to devise consistency techniques outperforming
QeCode.

One interesting observation is that we may be able to combine the two duality approaches
to form a even stronger level of consistencies. However, maintaining a stronger level of
consistencies by naively combining the two enforcing algorithms could incur an expensive
overhead on the propagation routine and increases the overall runtime. We have to balance
the amount of time spending on search and propagations. In this paper, we therefore only
allow the solver to choose either duality of constraints or duality of quantifiers.

7 Concluding remarks

Our contributions are five-fold. First, we formally define the Minimax Weighted CSP frame-
work for modeling optimization problems with adversaries. Our work allows us to model
and solve soft constraint problems with adversaries, such as the graph coloring game and
the generalized radio link frequency assignment problem. Second, we implement a com-
plete solver incorporating alpha-beta pruning into branch-and-bound, and propose sufficient
pruning and backtracking conditions which serve as a basis for our consistency notions.
Third, we define and implement node and (full directional) arc consistency notions to reduce
the search space of an alpha-beta search for Minimax Weighted CSPs, by approximating
lower and upper bounds of the cost of the problem. Lower bound computation employs
standard estimation of costs in the sub-problems and we propose two approaches based on
the Duality Principle to estimate upper bounds. Fourth, we show how to adopt and re-use
Weighted CSP consistencies to strengthen our lower and upper approximation functions,
and also discuss capabilities and limitations of our approach on other stronger solution con-
cepts. Fifth, we perform experiments on comparing basic alpha-beta pruning and the six
consistencies from the two dualities.

There are also two closely related frameworks, where both tackle constraint problems
with adversaries. Brown et al. propose adversarial CSPs [7], which focuses on the case
where two opponents take turns to assign variables, each trying to direct the solution towards
their own objectives. Another related work is Stochastic CSPs [34], which can represent
adversaries by known probability distributions. Their work focuses on seeking actions to
minimize/maximize the expected cost for all the possible scenarios. Our work is similar in
the sense that we are minimizing/maximizing costs for the worst case scenario.

Other possible future work includes: incorporating high arity soft table/global constraints
similar to those for Weighted CSPs [18, 19, 22], value and variable ordering heuristics [20],
theoretical comparisons on different consistency notions, and tackling stronger solutions.
Devising online/distributed algorithms for Minimax Weighted CSPs is also an interesting
future work.
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