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Abstract. Symmetry Breaking During Search (SBDS) adds conditional symme-
try breaking constraints (which are nogoods) dynamically upon backtracking to
avoid exploring symmetrically equivalents of visited search space. The constraint
store is proliferated with numerous such individual nogoods which are weak in
constraint propagation. We introduce the notion of increasing nogoods, and give a
global constraint of a sequence of increasing nogoods, incNGs. Reasoning glob-
ally with increasing nogoods allows extra prunings. We prove formally that no-
goods accumulated for a given symmetry at a search node in SBDS and its vari-
ants are increasing. Thus we can maintain only one increasing-nogoods global
constraint for each given symmetry during search. We give a polynomial time fil-
tering algorithm for incNGs and also an efficient incremental counterpart which
is stronger than GAC on each individual nogood. We demonstrate with exten-
sive experimentation how incNGs can increase propagation and speed up search
against SBDS, its variants, SBDD and carefully tailored static methods.

1 Introduction

Symmetries are common in many constraint problems. They can be broken statically [18,
1, 4, 11] or dynamically [3, 8, 19]. While there are pros and cons for each approach, the
focus of the paper is on SBDS (symmetry breaking during search) [8, 6] and its vari-
ants, which add conditional symmetry breaking constraints dynamically during search.
ReSBDS [12] is adapted from SBDS that tries to break extra symmetry compositions
with a small overhead when only a subset of symmetries is given.

An overhead for SBDS and ReSBDS is the addition of a large number of con-
straints with weak pruning power. We observe that the symmetry breaking constraints
added for each symmetry g at a search node are nogoods that are semantically related.
We propose the notion of increasing nogoods. A global constraint (incNGs), which is
logically equivalent to a set of increasing nogoods, is derived. Reasoning globally with
increasing nogoods allows extra prunings. Thus we can maintain only one incNGs for
each given symmetry. Light ReSBDS adds only a subset or implied ones of the nogoods
added by ReSBDS but has a smaller overhead both in time and space. We give a polyno-
mial time filtering algorithm for incNGs and its incremental version which is stronger
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than GAC on each individual. Extensive experimentations are performed to demonstrate
how incNGs can increase propagation and speed up search against SBDS, its variants,
GAP-SBDD [7] and carefully tailored static methods.

2 Background

A constraint satisfaction problem (CSP) P is a tuple (X,D,C) where X is a finite
set of variables, D is a finite set of domains such that each x ∈ X has a D(x) and C
is a set of constraints, each is a subset of the cross product

⊗
i∈X D(i). A constraint

is generalized arc consistent (GAC) iff when a variable in the scope of a constraint
is assigned any value in its domain, there exist compatible values (called supports) in
the domains of all the other variables in the scope of the constraint. A CSP is GAC iff
every constraint is GAC. An assignment x = v assigns value v to variable x. A full
assignment is a set of assignments, one for each variable in X . A partial assignment is
a subset of a full assignment. A solution to P is a full assignment that satisfies every
member of C.

A nogood is the negation of a partial assignment which cannot be contained in any
solution. Nogoods can also be expressed in an equivalent implication form. A directed
nogood ng ruling out value vk from the initial domain of variable xk is an implication of
the form (xs1 = vs1) ∧ · · · ∧ (xsm = vsm)⇒ (xk 6= vk), meaning that the assignment
xk = vk is inconsistent with (xs1 = vs1) ∧ · · · ∧ (xsm = vsm). When a nogood,
ng, is represented as an implication, the left hand side (LHS) (lhs(ng) ≡ (xs1 =
vs1) ∧ · · · ∧ (xsm = vsm)) and the right hand side (RHS) (rhs(ng) ≡ (xk 6= vk))
are defined with respect to the position of⇒. If lhs(ng) is empty, ng is unconditional.
From now on, we call directed nogoods simply as nogoods when the context is clear.

In this paper, we consider search trees with binary branching, in which every non-
leaf node has exactly two children. If a node P0 is in a subtree under node P1, P0 is the
descendant node of P1 and P1 is the ancestor node of P0.

We assume that the CSP associated with a search tree node is always made GAC
using an AC3-like [13] constraint filtering algorithm except our global constraint.

Here we consider symmetry as a property of the set of solutions. A solution symme-
try [20] is a solution-preserving permutation on assignments.

Symmetry breaking method m1 is stronger in nodes (resp. solutions) pruning than
method m2, denoted by m1 �n (resp. �s) m2, when all the nodes (resp. solu-
tions) pruned by m2 would also be pruned by m1. Symmetry breaking method m1

is strictly stronger in nodes (resp. solutions) pruning than method m2, denoted by
m1 �n (resp. �s) m2, when m1 �n (resp. �s) m2 and m2 6�n (resp. 6�s) m1.
Note that �n and �n imply �s and �s respectively.

Symmetry breaking during search (SBDS) [8, 6] adds constraints to a problem dur-
ing search so that after backtracking from a search node, the added constraints ensure
that no symmetric equivalent of that node is ever allowed in subsequent search. An ad-
vantage is that this method can break symmetries of arbitrary kind. Partial SBDS (ParS-
BDS) [4, 16] is SBDS but deals with only a given subset of all symmetries. LDSB [14]
is a further development of shortcut SBDS [8] which handles only active symmetries
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and their compositions. Recursive SBDS [12] (ReSBDS) extends ParSBDS by breaking
not only the given symmetries but also some symmetry compositions.

SBDD [3, 7] is another widely used dynamic symmetry breaking method by check-
ing whether the current state is dominated by recorded nogoods.

3 A Global Constraint for Increasing Nogoods

A set of directed nogoods is increasing if the nogoods can form a sequence

ng0 ≡ A0 ⇒ xk0 6= vk0

ng1 ≡ A1 ⇒ xk1 6= vk1
...

ngt ≡ At ⇒ xkt 6= vkt

(1)

such that (i) for any i ∈ [1, t], Ai−1 ⊆ Ai and (ii) no nogoods are implied by another.
We consider the nogoods as a set or a sequence according to the context.

Every sequence of increasing nogoods has the following form:

ng0 ≡ xs00 = vs00 ∧ · · · ∧ xs0r0 = vs0r0 ⇒ xk0 6= vk0

ng1 ≡ lhs(ng0) ∧ xs10 = vs10 ∧ · · · ∧ xs1r1 = vs1r1 ⇒ xk1 6= vk1

...
...

ngt ≡ lhs(ng0) ∧ · · · ∧ lhs(ngt−1) ∧ xst0 = vst0 ∧ · · · ∧ xstrt = vstrt ⇒ xkt 6= vkt .
(2)

A sequence of increasing nogoods can be encoded compactly, using 3 integer lists:
I (index), E (equal) and N (not equal).

I = 〈 s00, . . . , s0r0 , k0, E = 〈 vs00 , . . . , vs0r0 ,⊥, N = 〈 ⊥, . . . ,⊥, vk0 ,
s10, . . . , s1r1 , k1, vs10 , . . . , vs1r1 ,⊥, ⊥, . . . ,⊥, vk1 ,

...
...

...
st0, . . . , strt , kt〉 vst0 , . . . , vstrt ,⊥〉 ⊥, . . . ,⊥, vkt〉

(3)

We encode in order every equality on the LHS and every disequality on the RHS of
every nogood. The lists have the same length. Consider the ith tuple (Ii, Ei, Ni) from
the 3 lists. If Ni = ⊥, then the tuple is encoding xIi = Ei on the LHS of a nogood. If
Ei = ⊥, then it is encoding xIi 6= Ni on the RHS of a nogood.

Suppose we have the four nogoods

ng0 ≡ x1 6= 2,

ng1 ≡ x2 = 1⇒x3 6= 1,

ng2 ≡ x2 = 1 ∧ x4 = 1 ∧ x5 = 1⇒x3 6= 2,

ng3 ≡ x2 = 1 ∧ x4 = 1 ∧ x5 = 1 ∧ x6 = 2⇒x1 6= 1.

(4)
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These nogoods are increasing because ∅ ⊆ {x2 = 1} ⊆ {x2 = 1 ∧ x4 = 1 ∧ x5 =
1} ⊆ {x2 = 1 ∧ x4 = 1 ∧ x5 = 1 ∧ x6 = 2} and none is implied by another. The 3
lists are derived as follows.

0 1 2 3 4 5 6 7
I = 〈 1 , 2 , 3 , 4 , 5 , 3 , 6 , 1 〉,
E = 〈 ⊥ , 1 , ⊥ , 1 , 1 , ⊥ , 2 , ⊥ 〉,
N = 〈 2 , ⊥ , 1 , ⊥ , ⊥ , 2 , ⊥ , 1 〉.

(5)

The 3 lists derived in (3) have the following feature.

Lemma 1. Each (Ii, Ei, Ni) in I, E,N corresponds to an equality xIi = Ei or dis-
equality xIi 6= Ni, which can be considered as a variable-value pair. All pairs are
distinct.

An immediate consequence is to ensure the size of these 3 lists has an upper bound.

Theorem 1. Suppose P = (X,D,C) is a CSP with |X| = n, and I , E and N are
constructed from a sequence of increasing nogoods. The maximum size of these 3 lists
is
∑n−1
i=0 D(xi).

Next we propose a global constraint that is equivalent to these nogoods but has
stronger pruning power than each individual nogood. Suppose P = (X,D,C) is a CSP,
I , E and N are 3 lists with the same size m in the form of (3). An increasing-nogoods
global constraint incNGs(I ,E,N )(X) specifies

∀i ∈ [0,m− 1], Ni = ⊥ ∨ ( (E0 = ⊥ ∨ (xI0 = E0))
∧ (E1 = ⊥ ∨ (xI1 = E1))
∧ . . .
∧ (Ei−1 = ⊥ ∨ (xIi−1

= Ei−1))⇒ xIi 6= Ni)

(6)

meaning that if Ni is a non-⊥ value and all variables with indices before i in I are
assigned to the corresponding value in E when there is a non-⊥ value, value Ni will
be pruned from D(xIi). Note that incNGs(I ,E,N )(X) is a family of global constraints
parameterized by I , E and N .

Due to space limitation, we state without proof that the global constraint constructed
from a sequence of increasing nogoods is logically equivalent to the conjunction of the
increasing nogoods.

Theorem 2. Suppose 〈ng0, . . . , ngt〉 are increasing nogoods. We construct I , E and
N as in (3). Then incNGs(I ,E,N )(X) is logically equivalent to ng0 ∧ · · · ∧ ngt.

4 Deriving incNGs(I ,E,N )(X) from SBDS and Its Variants

In this section, we first introduce an adaptation of ReSBDS with a smaller overhead.
Next, we prove that constraints added by SBDS or its variants accumulated from the
root node to a search node for the same symmetry forms a set of increasing nogoods.
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4.1 Light ReSBDS

Domain filtering prune values by an AC3-like [13] constraint filtering algorithm. If a
value v is pruned during the propagation of a constraint c, we say this pruning is effected
by constraint c.

Recursive SBDS [12] (ReSBDS) uses a backtrackable set T to record all the assign-
ments whose violations can indicate that a symmetry breaking constraint is already sat-
isfied. Extra constraints would be added according to these violations. Suppose xj = a
is recorded in T since the constraint Ag ⇒ (xi 6= v)g is added at node P0. Suppose
further this assignment is violated at a descendant node P1, i.e. a is pruned fromD(xj).
The pruning indicates thatAg ⇒ (xi 6= v)g is already satisfied. This pruning is effected
either by a problem constraint or a symmetry breaking constraint. Considering the latter
case only, we propose a light version of the ReSBDS method without T as follows.

[Light ReSBDS (LReSBDS)] Suppose G is a set of symmetries. LReSBDS
always adds constraints added by ParSBDS. Once a value v is pruned from
D(xi) effected by a symmetry breaking constraint at node P0 with a partial
assignment A, symmetry breaking constraint Ag ⇒ (xi 6= v)g for all g ∈ G is
added.

Here the recursive addition of constraints is done by the propagation mechanism
which stops propagation only when every variable domain does not change anymore.

Due to space limitation, we state without proof the comparison between ReSBDS
and LReSBDS.

Theorem 3. ReSBDS �n LReSBDS and ReSBDS �s LReSBDS when given the same
set of symmetries and both use the same static variable and value orderings.

We conjecture that ReSBDS �s LReSBDS, but we have not found an example yet.

4.2 Deriving incNGs(I ,E,N )(X)

In the following, by variants of SBDS, we mean ReSBDS and LReSBDS.
All the constraints added by SBDS or its variants down a search path for the same

symmetry g forms a set of increasing nogoods.

Theorem 4. Suppose G is a set of symmetries. Suppose further at a search node P1,
the constraints added by SBDS (or its variants) accumulated from root node to P1 for
symmetry g is R, where g ∈ G. R is a set of increasing nogoods.

During search, all children nodes inherit I , E and N from their parent node. Every
time a nogood is introduced by SBDS or its variants, the 3 lists are extended to record
the nogood. Supposingly, each node should post a new increasing-nogoods constraint
when a new nogood is added. We show in the following, however, that an increasing-
nogoods constraint for a symmetry g posted in a parent node will always be subsumed
by the corresponding one posted in its child node. Thus, each search node only has to
deal with one increasing-nogoods constraint for each given symmetry.

All symmetry breaking constraints added to the parent node would also be added to
the child node. It is straightforward to have the following theorem.
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Theorem 5. Suppose g is a symmetry and P0 and P1 are search nodes, where P1 is a
descendant of P0. Suppose P0 constructs I , E, N and P1 constructs I ′, E′, N ′ corre-
spondingly by SBDS (or its variants). We have incNGs(I ′,E′,N ′)(X)⇒ incNGs(I ,E,N )(X).

To implement LReSBDS, we need to know whether the pruning is effected by prob-
lem constraints or symmetry breaking constraints. We therefore need to get access to
the filtering algorithm of the symmetry breaking constraints. This can be easily imple-
mented in the constraint filtering algorithm of incNGs for LReSBDS.

5 A Filtering Algorithm

Suppose 〈ng0, . . . , ngt〉 is a sequence of increasing nogoods. A nogood ngi is lower
than nogood ngj iff i < j, and ngj is higher than ngi.

Suppose Λ is a sequence of increasing nogoods with the current domain D. A
nogood ng is generated by Λ iff (i) ∃ng′ s.t. Λ generates ng′ and Λ ∪ {ng′} gen-
erates ng, or (ii) we can find an x ∈ X and a subsequence 〈ngs1 , . . . , ngsp〉 of Λ
where p = |D(x)|, such that ∀v ∈ D(x),∃j ∈ [1, p], x 6= v ≡ rhs(ngsj ) and
ng ≡ ¬lhs(ngsp) with rhs(ng) being the rightmost assignment in lhs(ngsp).

A sequence Λ of increasing nogoods is in reduced form iff Λ can generate no no-
goods. In the rest of the paper, we assume that Λ is always a sequence of increasing
nogoods of the form 〈ng0, . . . , ngt〉.

Theorem 6. Λ is either in reduced form or has an equivalent sequence of increasing
nogoods which is in reduced form. The size of the equivalent sequence never increases.

The reduction procedure repeatedly checks for condition (ii) to generate a new no-
good as appropriate. Assume a new nogood ng is generated from Λ according to con-
dition (ii) and ngk is the lowest nogood in Λ such that ¬ng ⊆ lhs(ngk). Clausal reso-
lution ensures that 〈ng0, . . . , ngk−1, ng, ngk, . . . , ngt〉 is equivalent to 〈ng0, . . . , ngt〉.
As ng implies 〈ngk, . . . , ngt〉, 〈ng0, . . . , ngk−1, ng〉 is equivalent to 〈ng0, . . . , ngt〉. If
〈ng0, . . . , ngk−1, ng〉 cannot generate a new nogood, it is in reduced form. Otherwise,
we continue to generate new nogood from 〈ng0, . . . , ngk−1, ng〉.

Consider the nogoods given in (4) with D(x1) = D(x2) = D(x3) = D(x6) =
{1, 2} and D(x4) = D(x5) = {1}. Consider ng1 and ng2. Between x3 6= 1 and
x3 6= 2, one of them must be false since x3 must take a value. Thus we can generate the
nogood (¬lhs(ng1)∨¬lhs(ng2))⇔ ¬lhs(ng2), which is ¬(x2 = 1∧x4 = 1∧x5 = 1)
and can be expressed as a directed nogood ng4 ≡ x2 = 1 ∧ x4 = 1 ⇒ x5 6= 1 by
putting the rightmost assignment of lhs(ng2) to the right. Now 〈ng0, ng1, ng4〉 is a new
sequence of increasing nogoods equivalent to 〈ng0, ng1, ng2, ng3〉. Consider ng4. Do-
main of x5 is a singleton. Directed nogood ng5 ≡ x2 = 1⇒ x4 6= 1 is generated. Now
〈ng0, ng5〉 is a new sequence of increasing nogoods equivalent to 〈ng0, ng1, ng4〉. Do-
main of x4 is a singleton. Directed nogood ng6 ≡ x2 6= 1 is generated. Now 〈ng0, ng6〉
is a new sequence of increasing nogoods equivalent to 〈ng0, ng5〉. No new nogood can
be generated and 〈ng0, ng6〉 is the reduced form of 〈ng0, ng1, ng2, ng3〉.

It might happen that more than one subsequence of Λ satisfies condition (ii). We
give the shortest nogood rule: whenever more than one nogood can be generated from
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Λ according to condition (ii), we choose the shortest one to generate. In other words,
we generate using a subsequence, the highest nogood of which is the lowest in Λ.

An assignment x = v satisfies the covering condition in Λ iff x = v ∈ lhs(ngk) ∧
x = v 6∈ lhs(ngk−1) ∧ (∀v′ ∈ D(x) − {v},∃j ∈ [0, k − 1], rhs(ngj) ≡ x 6= v′). In
other words, when an assignment x = v appears for the first time in the sequence in
the LHS of a nogood (say, ng), x 6= v′ would have appeared on the RHSs of nogoods
lower than ng for all v′ ∈ D(x) except v.

For a sequence of increasing nogoods Λ in reduced form, we consider only a single
pruning condition: when the LHS of a nogood in Λ is true, its RHS is enforced to
effect value pruning.

The reduction procedure as described seems to call for scanning the sequence of
increasing nogoods repeatedly, which is inefficient. In the following, we explain how
the covering condition allows us to scan the nogood sequence only once to transform it
into reduced form.

Consider the nogoods in (4) again. If, instead,D(x5) = {1, 2}, ng4 in 〈ng0, ng1, ng4〉
cannot generate ng5 since condition (ii) is not met. This is because x5 = 2 does not
satisfy the covering condition. We state without proof the following theorem.

Theorem 7. Assume Γ is a new and equivalent sequence of increasing nogoods trans-
formed from Λ according to the shortest nogood rule with the current domain. Γ can
generate further new nogoods only if the assignment ¬rhs(ng) satisfies the covering
condition in Λ, where ng is the highest nogood in Γ .

Consider the nogoods in (4) again with the variable domains on page 6: D(x1) =
D(x2) = D(x3) = D(x6) = {1, 2} and D(x4) = D(x5) = {1}. We scan from ng0
and up. Assignment x2 = 1 does not satisfy the covering condition since rhs(ng0) 6≡
x2 6= 2. In ng2, assignments x4 = 1 and x5 = 1 satisfy the covering condition since
they have singleton domains. Now the new nogood ng4 ≡ ¬lhs(ng2) is generated
whose RHS is x5 6= 1. Another new nogood ng5 ≡ ¬lhs(ng4) can be generated imme-
diately without rescanning from the first nogood. Since ¬rhs(ng5) ≡ x4 6= 1, another
new nogood ng6 ≡ ¬lhs(ng5) can be generated immediately. Now ¬rhs(ng6) ≡ x2 6=
1, which does not satisfy the covering condition. We can stop and 〈ng0, ng6〉 is equiva-
lent to the original sequence and in reduced form.

As a result, we only have to scan the sequence from ng0 and up. For every nogood,
we check if condition (ii) is met for nogoods from ng0 up to here. In addition, we also
check and record whether new assignments on the LHS satisfies the covering condition
or not. Once the first reduction step is launched, there is no further need to check for
condition (ii). We stop once ¬rhs(ng) does not satisfy the covering condition, where
ng is the last generated nogood.

In our filtering algorithm, the first step is to effect prunings using nogoods whose
LHSs are true under the current domain. These nogoods can then be thrown away. The
remaining nogoods still form an increasing sequence, which can be turned into reduced
form. The single pruning condition for reduced forms is still expensive to check. It turns
out that if the leftmost assignment in the LHS of the first nogood in a sequence is not
true under the current domain, we can detect pruning in the reduced form much more
efficiently. This form is easy to get.
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Lemma 2. Suppose x = v in lhs(ng0) is the leftmost assignment which is not true
under the current domain and ∆ is the set of assignments before x = v in lhs(ng0).
Suppose further Γ ≡ 〈ngs0 , . . . , ngst〉 is a sequence of increasing nogoods such that
∀i ∈ [0, t], lhs(ngsi) = lhs(ngi) − ∆, rhs(ngsi) = rhs(ngi). Γ is equivalent to Λ
and is the simplified version of Λ.

Suppose we have an increasing sequence with the form as given in the last lemma.
By repeated applications of the single pruning condition, we get the following result
which gives a much simplified pruning condition.

Theorem 8. Suppose Γ is the reduced form ofΛ where the first assignment in lhs(ng0)
is not true under the current domain D. A value v ∈ D(x) is pruned in Γ if Γ ≡ 〈x 6=
v〉, where x 6= v is an unconditional nogood.

In the following, we give an efficient filtering algorithm based on the following
two major steps: effect prunings for nogoods whose LHSs are true and transform the
simplified version of the remaining sequence of increasing nogoods into reduced form.
We explain our algorithm using the I , E and N encodings of Λ. Pointer α is used to
index into the 3 lists to effect prunings for nogoods whose LHSs are true.

– Pointer α is set to the largest index such that (∀i ∈ [0, α), Ei = ⊥ ∨ xIi = Ei).
Note that α points at an unsatisfied equality in lhs(ngp) − lhs(ngp−1) where p ∈
[0, t] and ngp is the lowest nogood whose LHS is not true. For all the nogoods lower
than ngp, their RHSs can be enforced to prune values.

Therefore, we examine the LHSs of remaining nogoods starting from α. To trans-
form the simplified version 〈ng′p, . . . , ng′t〉 of remaining increasing nogoods 〈ngp, . . . , ngt〉
into reduced form, two pointers β and γ are used to index into the 3 lists with the fol-
lowing conditions.

– Pointer β is used to find the shortest nogood generated by Λ according to condition
(ii). If a new nogood is generated, γ is then used to check whether there are extra
nogoods that can be generated according to Theorem 7 and find the last generated
nogood. If extra nogoods can be generated, β is set to γ. Initially, β is set to the
largest index such that ∀i ∈ [0, β), Ei ∈ D(xIi) ∨ (Ei = ⊥ ∧ D(xIi) 6= SIi),
where SIi = {Nj |Ij = Ii, Nj 6= ⊥, Nj ∈ D(xIi), j ∈ [0, i]}. The key concept is
SIi , which is the collection of all values Nj still in D(xIi) such that xIi 6= Nj is
a RHS disequality that appears before or at the nogood encoded at i. Note that β
points to either
(a). an equality in lhs(ngq) − lhs(ngq−1) where q ∈ [0, t], in which case Eβ 6=
⊥ and Eβ 6∈ D(xIβ ), i.e. ngq is the lowest nogood whose LHS is false.
All nogoods ngi where t ≥ i ≥ q are satisfied. We only need to enforce
〈ng′p, . . . , ngq−1〉. No new nogoods can be generated and this increasing no-
goods is in reduced form. We say β satisfies condition (a); or

(b). the disequality in rhs(ngq) where q ∈ [0, t], in which case D(xIβ ) = SIβ , i.e.
ngq with rhs(ngq) ≡ xkq 6= vkq is the lowest nogood such that all values in
the domain of xkq (= xIβ ) have appeared in rhs(ngj) for all j ∈ [0, q]. Now
new nogood ng ≡ ¬lhs(ngq) is generated and is the shortest one. Increasing
nogoods 〈ng′p, . . . , ng〉 are formed. We say β satisfies condition (b).
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– If β satisfies condition (b), the first reduction step is launched since the new nogood
ng is generated. Pointer γ is set in such a way that all equalities xIi = Ei for
i ∈ [γ, s], where ¬rhs(ng) ≡ xIs = Es, satisfy the covering condition. Pointer
γ is set to the smallest index such that (∀i ∈ (γ, β), (Ei = ⊥) ∨ (D(xIi) =
SIi ∪ {Ei})) ∧ D(xIγ ) = SIγ ∪ {Eγ}. Note that γ points to the disequality in
rhs(ng′) where ¬lhs(ng′) is the highest nogood of increasing nogoods in reduced
form (e.g. for nogoods in (4) with variable domains on page 6, ng′ is ng5 and
¬lhs(ng′) is ng6). If γ takes a value, new nogoods can be generated and β is set to
γ. Otherwise, we do not need to update β. Now β still satisfies condition (b).

After updating β according to the above, we have found the increasing nogoods in
reduced form. If β still satisfies condition (b), i.e. new nogoods have been generated,
we need to check whether values can be pruned according to Theorem 8.

Consider the nogoods given in (4) with variable domains on page 6. If incNGs(I ,E,N )(X)
has m as the size of the 3 lists, we do propagation in the following ways.

1. Pointer α = 0, β = m = 3 and γ =⊥.
2. To find α, we scan with i from 0 to m− 1.

– i = 0: prune N0 from D(x1) (= D(xI0)).
– i = 1: E1 6= ⊥ and E1 has not been assigned to x2(= xI1). Stop scanning and

set α = 1.
3. To find β, we scan with i from α to m− 1.

– i = 1: E1 ∈ D(x2) (= D(xI1)).
– i = 2: E2 = ⊥ but value 1 in domain D(x3)(= D(xI2)) is not in Nj for all
j ≤ i and Ij = I2.

– i = 3: E3 ∈ D(x4) (= D(xI3)).
– i = 4: E4 ∈ D(x5) (= D(xI4)).
– i = 5: D(xI5) = D(x3) ⊆ {1, 2} = {N2, N5} = S3 since I2 = I5 = 3. Stop

scanning and set β = 5. Now β satisfies condition (b).
4. Pointer β satisfies condition (b), the first reduction step is launched. To find γ, we

scan with i from α to β − 1.
– i = 1: E1 ∈ D(x2) (= D(xI1)) but S2 ∪ {E1} 6= D(x2).
– i = 2: E2 = ⊥.
– i = 3: E3 ∈ D(x4) (= D(xI3)) and S4 ∪ {E3} = D(x4), set γ = 3.
– i = 4: E4 ∈ D(x5) (= D(xI4)) and S5 ∪ {E4} = D(x5), γ is still 3.

5. Pointer β satisfies condition (b) and γ 6= ⊥, set β = γ. Now β points to the
disequality in RHS of the newly generated nogood ng′ ≡ x2 = 1 ⇒ x4 6= 1 and
ng ≡ ¬lhs(ng′) is the final generated nogood. Since lhs(ng) is empty, value 1 is
pruned from D(x2). The propagation is done.

After the propagation, D(x1) = {1}, D(x2) = {2}, D(x3) = {1, 2}, D(x4) =
D(x5) = {1}, D(x6) = {1, 2}. GAC on individual nogoods can only prune value 2
from D(x1). Our filtering prunes also 1 from D(x2). The step to find β and γ can be
done at the same time. We only need to check whether β should be set to γ or not.

Suppose P = (X,D,C) is a CSP where the size of X is n. We give the filtering
algorithm for an incNGs(I ,E,N )(X) as follows. For the moment, please ignore high-
lighted codes in frame boxes, which are reserved for the incremental version of the
algorithm.
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Algorithm 1 InGEnforce()

Require:
X , D, I , E, N
m: the size of I , E and N
α = 0

β = m Nβ =
∑n−1
i=0 D(xi)

γ =⊥
p = 0: reason of why β is updated

1: if m = 0 then
2: return ENTAILED;
3: end if
4: UpdateAlpha();

5: UpdateBeta();
6: if α = β then
7: if p = 1 then
8: return ENTAILED;
9: end if

10: if p = 2 then
11: return FAILED;
12: end if
13: end if
14: if p = 2 then
15: return CheckE();
16: end if

Algorithm 1 is the top level of the filtering algorithm. This algorithm is called when-
ever the domain of a variable in X is modified or I , E and N are extended. The pointer
α is initialized to 0, β is initialized to the size of the 3 lists and γ is set to ⊥. Integer
variable p tells the reason of why β is updated, i.e. β satisfies which condition. If the 3
lists are empty (Lines 1-3), the constraint is automatically ENTAILED, which means
the constraint can be disposed. Line 4 calls the function UpdateAlpha() to update the
pointer α. Line 5 calls the function UpdateBeta() to update the pointer β according to
shortest nogood rule and Theorem 7. Lines 6-13 check whether α = β or not. If it is
true and β is updated as a result of condition (a), this constraint is ENTAILED since
future pruning can take place only between α and β − 1. If the two pointers are equal
and β is updated because of the condition (b), this constraint is FAILED since LHS of
nogood at α (= β) is satisfied but the negation of the LHS of this nogood is a nogood.
Thus the current node should fail. Lines 14-16 calls the function CheckE() to check
whether the last generated nogood satisfies the condition in Theorem 8.

In the following, Prune(v, x) prunes value v fromD(x). While x.assigned(v) checks
whether x is assigned with value v, x.in(v) checks whether v ∈ D(x) and x.size() re-
turns |D(x)|. We assume the last three functions have constant time complexity.

Algorithm 2 UpdateAlpha()

1: int i = 0; Nint i = α;

2: while i < m �and i < β do
3: if Ei = ⊥ then
4: Prune(Ni,xIi );
5: else
6: if ¬xIi .assigned(Ei) then

7: break;
8: end if
9: end if

10: i = i+ 1;
11: end while
12: α = i;

Algorithm 2 updates α. It starts scanning from index i = 0, and stops only when
xIi is not assigned with non-⊥ value Ei (lines 6-8), in which case α is set to i (line 12).
During scanning, if Ei = ⊥, since the LHS of the nogood at this point is true, Ni can
be pruned from D(xIi) (lines 3-4).
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Algorithm 3 UpdateBeta()

1: int i = α;
2: int S[n];
3: for each j ∈ [0, n− 1] do
4: S[j] = 0;
5: end for
6: while i < m �and i < β do
7: if xIi .in then(Ei)
8: if γ 6=⊥ ∧S[Ii] 6= xIi .size()-1 then
9: γ =⊥;

10: else
11: if γ =⊥ ∧S[Ii] = xIi .size()-1 then
12: γ = i;
13: end if
14: end if
15: continue;
16: end if
17: if Ei 6= ⊥ then
18: if ¬xIi .in(Ei) then
19: p = 1;

20: break;
21: end if
22: else
23: if xIi .in(Ni) then
24: S[Ii] + +;
25: end if
26: if S[Ii] = xIi .size() then
27: p = 2;
28: break;
29: end if
30: end if
31: i = i+ 1;
32: end while
33: if i 6= m then
34: if p = 2 ∧ γ 6=⊥ then
35: β = γ;
36: else
37: β = i;
38: end if
39: end if

Algorithm 3 updates β. As β ≥ α, the scan starts from α. We use an array S[], so
that S[i] records the number of encountered values during scanning for each variable xi
in the disequalities on the RHS of nogoods. S[i] does not count values already pruned
from the domain of xi (lines 23-25). Lines 7-16 updates γ. Lines 8 and 9 reset γ to ⊥ if
the covering condition is not satisfied. Lines 11-13 set γ to i if γ is ⊥ and the covering
condition is satisfied. Lines 17-21 check if scanning should stop due to condition (a) and
set the reason p for updating β, before updating β in lines 33-39. Lines 26-29 check if
scanning should stop due to condition (b) and set the reason p for updating β, before
updating β in lines 33-39. If the scanning is stopped due to condition (b) and γ is a
non-⊥ value (line 34), β is set to γ (line 35). Or else, β is set to the interrupted i.

Algorithm 4 CheckE()

1: int i = β − 1;
2: while i > α do
3: if Ei 6= ⊥ then
4: break;
5: end if
6: i = i− 1;

7: end while
8: if i = α then
9: Prune(Eα,xIα );

10: return ENTAILED;
11: end if
12: return CONSISTENT;

If β is updated because of condition (b), Algorithm 4 is called. Lines 2-7 first check
whether there exists non-⊥ value in E from α+ 1 to β − 1. If yes (line 12), xIα = Eα
must be in the LHS of the last generated nogood which does not satisfy the condition in
Theorem 8. This constraint is CONSISTENT means that the domain filtering is done.
Now the nogoods between α and β consist of the increasing nogoods in reduced form.
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If not (lines 8-11), value Eα is pruned from its corresponding variable’s domain since
xIα 6= Eα is the only nogood in the increasing nogoods in reduced form. Now this
constraint is ENTAILED as β = α.

We do not have an exact characterization on Algorithm 1’s consistency level yet, but
it is stronger than GAC on individual nogoods and has a polynomial time complexity.

Theorem 9. Algorithm 1 terminates and enforces a consistency on incNGs(I ,E,N )(X)
that is strictly stronger than GAC on each individual nogood.

Theorem 10. Algorithm 1 runs in O(db|X|) for constraint incNGs(I ,E,N )(X), where
d is the largest domain size and b is the cost of pruning a value from a variable domain.

6 Incremental Filtering Algorithm

Though polynomial, Algorithm 1 is expensive to execute from scratch at every invoca-
tion of the global constraint during (a) constraint propagation within an AC3-like algo-
rithm and (b) adding new increasing nogoods during search (advancing to child nodes
during search and generating extra nogoods during propagation in recursive methods).
We can make Algorithm 1 incremental using the following theorems.

Theorem 11. For a global constraint incNGs(I ,E,N )(X), whenever Algorithm 1 is
invoked during AC3-like constraint filtering algorithm, the two pointers α and β can be
carried over from the last invocation.

Theorem 12. Suppose I , E and N are constructed from increasing nogoods Λ. Sup-
pose further that I ′,E′ andN ′ are constructed from increasing nogoods 〈ng0, . . . , ngt, ngt+1〉.
The two pointers α′ and β′ for enforcing incNGs(I ′,E′,N ′)(X) can be initialized to the
values of α and β respectively after domain filtering of incNGs(I ,E,N )(X) with Algo-
rithm 1.

The incremental filtering algorithm can be obtained by adding the highlighted ones
marked by � and substituting codes by ones marked by N to the right. Note that at the
start of Algorithm 1, the initialization for α, β, γ and p is only for the root node. In
subsequent nodes, these four are initialized from the ones after the latest propagation or
from the ones of the previous global constraint after its domain filtering.

7 Experiments

This section gives four experiments to demonstrate empirically how globalized SBDS,
ParSBDS and ReSBDS can improve the runtime substantially over their original ver-
sions. We also implemented the global version of LReSBDS but not the one using de-
composed nogooods. When available, we compare our results also against state of the
art static methods. All experiments are conducted using Gecode Solver 4.2.0 on Xeon
E5620 2.4GHz processors.

SBC uses the static method by Puget [17] to break all variable symmetries and the
value symmetries in all-different problems. Doublelex [4] lexicographically orders the
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rows and columns in increasing order. SBDS uses SBDS to break all symmetries. ParS-
BDS and ReSBDS handle the given symmetries by ParSBDS and ReSBDS respectively.
For matrix problems, ReSBDS[c] is given as symmetries that adjacent rows (columns)
are interchangeable and also cartesian-product of adjacent row symmetries and adja-
cent column symmetries. The globalized version of SBDS, ParSBDS, ReSBDS and
ReSBDS[c] are denoted by [incNGs]S , [incNGs]P , [incNGs]R and [incNGs]R[c] re-
spectively. By using the globalized version of LReSBDS and give the same symmetries
as ReSBDS and ReSBDS[c] respectively, we have [incNGs]LR and [incNGs]LR[c].
For decomposed nogood implementation, we use clause constraint whose propagation
uses two-watched literals [15, 21]. For GAP-SBDD and GAP-SBDS, we do not have
their implementation in Gecode, and provide an indirect but machine-independent com-
parison using results in the literature. LDSB is discarded in the comparison here since
ReSBDS is substantially more efficient [12]. Unless otherwise specified, we search with
input variable order and minimum value order.

In all experiments, we show only the runtime to find all solutions. Runtime is lim-
ited to 1 hour. The number of backtracks and number of solutions are in line with the
theoretical predictions. We did not report them only because of lack of space. All results
are shown in graphical form for easy visualization. The horizontal axis shows instances,
and the vertical axis shows the runtime in seconds. N -Queens instances are sorted by
size. In the other three experiments, instances are sorted by the runtime of static meth-
ods. The last two experiments use log graph for better visualization. Dashed lines give
the results of methods using decomposed nogoods and solid lines are for methods using
global constraints. Solid lines with ’+’ shows the results for static methods.

7.1 N -Queens

We model the N -Queens problem the standard way using one variable per column. All
8 geometric symmetries are given to SBDS. ParSBDS and ReSBDS are only given the
two generators rx (reflection on the vertical axis) and d1 (reflection on the diagonal),
which can generate all 8 geometric symmetries.
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Fig. 1 shows the results. For complete methods, [incNGs]S is up to 1.82 times
faster than SBDS, and [incNGs]S has up to 434825 less failures than SBDS. For par-
tial symmetry breaking methods, only two symmetries are given and these two sym-
metries would be broken high up in the search tree. For partial SBDS, [incNGs]P is
up to 1.23 times faster than ParSBDS. For ReSBDS, [incNGs]R improves only a lit-
tle over ReSBDS due to the overhead to get to know when I , E and N are updated.
And [incNGs]LR is the most efficient and faster than ReSBDS. Note that [incNGs]S is
complete and comparable with ReSBDS and [incNGs]LR. This shows how the global
constraint can help to prune all symmetric solutions in a competitive manner.

7.2 Graceful Graph

The graceful graph problem is an all-different problem [16]. A Kn × Pm graph has
intra-clique permutations, inter-clique permutations, complement symmetry, and their
combinations. ParSBDS is given n ∗ (n− 1)/2 symmetries to describe any two nodes
in each clique being permutable simultaneously and two more symmetries to describe
inter-clique permutation and complement symmetry. ReSBDS is given (n − 1) sym-
metries to describe simultaneous permutation of adjacent nodes in each clique and also
one inter-clique permutation and one complement symmetry.

Fig. 2 shows the results. For complete methods, [incNGs]S runs up to 4.25 times
faster than SBDS, and [incNGs]S has up to 169286 less failures than SBDS. This shows
the global constraint improves our complete method dramatically. For ParSBDS and
ReSBDS, [incNGs]P and [incNGs]R are up to 1.13 and 1.09 times faster than ParS-
BDS and ReSBDS respectively as only a small subset of symmetries are given. Using
LReSBDS, [incNGs]LR is up to 1.16 times faster than ReSBDS and is even up to 1.71
times faster than SBC. Literature results [17] show that SBC is up to 15 times faster than
GAP-SBDD and GAP-SBDS. This demonstrates LReSBDS with global constraints can
beat GAP-SBDD, GAP-SBDS and carefully tailored static methods.

7.3 Balanced Incomplete Block Design

A BIBD instance can be determined by its parameters (v, k, λ). We use the 0/1 model [5],
which has row and column symmetries since we can permute any rows or columns
freely without affecting any of the constraints. ParSBDS is given the symmetry that
any two rows (columns) are interchangeable. ReSBDS is given interchangeability of
adjacent rows (columns). All are solved with the maximum value heuristic.

Fig. 3 shows the results for BIBD. For partial SBDS, [incNGs]P runs up to 2.26
times faster than ParSBDS. For ReSBDS, the global constraint cannot help much due
to the overhead to get to know when I ,E andN are updated. Note that [incNGs]R[c] is
even 1.58 times slower than ReSBDS[c]. For light ReSBDS, however, [incNGs]LR and
[incNGs]LR[c] are up to 1.46 and 1.32 times faster than ReSBDS and ReSBDS[c] re-
spectively. The light version improves a lot over ReSBDS. Note that [incNGs]LR[c] is
even 3.03 times faster than DoubleLex. The gains come from the advantage of LReS-
BDS by posting more symmetries and the efficiency of the global constraint. Litera-
ture results [7, 6] show that GAP-SBDD is about 4 times faster than GAP-SBDS and
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DoubleLex is at least 10 and up to 38 times faster than GAP-SBDS, we can conclude
indirectly that [incNGs]LR[c] can beat GAP-SBDD and GAP-SBDS dramatically.

7.4 Cover Array Problem (CA)

The Cover Array Problem CA(t, k, g, b) is prob045 in CSPLib [9]. We use the inte-
grated model [10], which channels an original model and a compound model. ParSBDS
and ReSBDS are given the same set of symmetries as in BIBD.

Fig. 4 shows the results. For dynamic methods, [incNGs]P , [incNGs]R and [incNGs]R[c]
run up to 2.91, 1.46 and 1.37 times faster than the decomposed ones, and have up to
3014, 3938 and 33383 less failures than the decomposed ones. While [incNGs]LR and
[incNGs]LR[c] are up to 1.92 and 1.91 times faster than ReSBDS and ReSBDS[c]
respectively. Note that for the case CA(2, 4, 4, 16), ReSBDS[c], [incNGs]R[c] and
[incNGs]LR[c] leave 2250, 2076 and 2100 solutions respectively. This demonstrates
that with global constraint, ReSBDS prunes more solutions than LReSBDS, and our
domain filtering on global constraint can prune more solutions than GAC on each indi-
vidual nogood. When compared with static methods, the best one [incNGs]LR[c] runs
up to 1.72 times faster than DoubleLex. This shows how LReSBDS with global con-
straint is competitive against static methods.

8 Conclusion and Future Work

Our contributions are five-fold. First, based on the special semantics and structures
of increasing nogoods, we propose a global constraint with equivalent meaning but
stronger pruning power. Second, we demonstrate that nogoods added by SBDS and its
variants are increasng so that the methods can be adapted with the global constraints.
Third, benefitting from the global constraint, we devise a light version of ReSBDS with
smaller space and time overheads. Fourth, we give a polytime filtering algorithm for
the increasing-nogoods constraint, which also has an efficient and simple incremental
version. Fifth, extensive experimentations confirm the efficiency of our proposals.
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ReSBDS has the advantage that a substantial number of symmetries can be broken
with only a small given subset of them. The increasing-nogoods global constraint reduce
the overhead of SBDS and its variants dramatically, making it possible to handle larger
set of given symmetries which in turn can prune more search space.

Nogood learning is a general technique for improving backtracking search [2]. We
envision that the increasing-nogoods constraint is applicable to other scenarios in CP,
in addition to symmetry breaking.
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