
Solving a Judge Assignment Problem Using

Conjunctions of Global Cost Functions

Simon de Givry1 and J.H.M. Lee2 and K.L. Leung2 and Y.W. Shum2

1 MIA-T, UR 875, INRA, F-31320 Castanet Tolosan, France
Simon.Degivry@toulouse.inra.fr

2 Department of Computer Science and Engineering, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong

{jlee,klleung,ywshum}@cse.cuhk.edu.hk

Abstract. The Asia Pacific Information and Communication Technol-
ogy Alliance (APICTA) Awards has been held for 12 years, rewarding
the most innovative solutions in different categories of Information and
Communication Technology (ICT). To maintain professionalism, judges
are nominated from each economy, and appointed to panels of different
categories. Judge assignment is a difficult task, since it has to optimize
between expertise, distribution of workloads, fairness and sometimes even
political correctness. In this paper, we describe our experience in ana-
lyzing and automating the APICTA judge assignment process using Soft
Constraint Programming for the 13th APICTA hosted in Hong Kong on
November, 2013. We chose the weighted constraint satisfaction (WCSP)
framework since both hard constraints and preferences can be modeled
by cost functions. Consistency algorithms can effect strong propagation
by redistributing costs among cost functions. We observe that a num-
ber of restrictions in the judge assignment problem involves counting. In
our first attempt, we utilized the Soft Among

var global cost function
for these counting conditions but we could not solve the problem within
a day. Soft GCC

val is another possible global cost function to model
counting, which is what we used in the second attempt. We can compute
the optimum in a few hours, which is far from practical.
We apply similar techniques as Régin to show that the combination
of Soft GCC

val and Soft Among
var is flow-based. We further prove

that the combination results in a flow-based projection-safe cost function,
meaning that soft arc consistencies can be enforced efficiently. By using
this combination in our final model, we can solve the judge assignment
problem within a few minutes. We consider this a success story where
theory and practice meet.

1 Introduction

The Asia Pacific Information and Communication Technology Alliance (APICTA)
Awards3 is an international Awards Program. It aims at increasing the aware-
ness of Information and Communication Technology (ICT) in the community,

3 http://www.apicta.org/

facilitating technology transfers, and offering business matching opportunities,
by providing networking and product benchmarking opportunities to ICT inno-
vators and entrepreneurs. Up to 2013, 13 economies have joined the APICTA
Awards, including China, Malaysia, Thailand, to name a few. In 2013, the
APICTA Awards was hosted in Hong Kong4. Preparation becomes a hard work
due to limited resources. The APICTA Awards organizers require planning for
two different scenarios.
1. Scheduling the presentations for nominated candidates, and;
2. Assigning judges into panels for each award category representing different

aspects of the current ICT fields.
The former subjects to venue and time constraints, which has been completed
beforehand. The latter involves various logistical and political factors, which are
optimization in nature. Judges are nominated by different economies. After nom-
ination, judges of each category are selected by a standard procedure to ensure
professionalism and fairness. However, the manual procedure is tedious and in-
efficient, resulting in large number of complaints from judges and economies. As
the resources are limited, the organizers seek for automation that can produce
high-quality assignments under a tight schedule.

To eliminate manual and inefficient processes and improve the quality of
assignments, we introduce an automated solution to generate judge assignments
using weighted constraint satisfaction [9]. We identify a number of global cost
functions [1, 5] in the problem model, which help capture all the restriction
and preference requirements much more succinctly. More importantly, global
cost functions provide much stronger propagation. We also benefited further by
conjoining global cost functions into a single global cost function, which utilizes
the flow algorithm from Régin [8]. During the assignment process, we can deliver
a new assignment within a few minutes every time requirements are changed.
With our automation, judge assignments can be finalized in two weeks.

The rest of the paper is arranged as follows. Section 2 further describes the
scenario. We give the current practice in Section 3, which also explains our
choice of solving techniques. Section 4 analyzes the problem and lists all the
constraints and preferences. Section 5 gives the corresponding WCSP model,
and shows how global cost functions can be conjoined in this problem. Section
6 shows that conjoining global cost functions can give optimal solutions in a
few minutes. Section 7 discusses the consequence after introducing automated
approaches. We conclude the paper in Section 8.

2 Problem Description

The APICTA Awards is an international awards program organized by APICTA.
The competition is divided into 16 categories, ranging from School Project to
Industry Application. Each category opens for candidates in 13 economies to
join. Each economy nominates at most three entries in each category. Nomi-
nated candidates travel to the economy hosting the Awards, and present their

4 http://www.apicta2013.com/

ICT solutions to a panel of judges specialized in the corresponding category.
The judge panel picks the award winners of each category from all candidates
according to their innovation and quality of work. The assessment of each cate-
gory usually takes one day, but some categories require two days due to a large
number of entries.

The hosting economy of APICTA Awards needs to plan for the presentation
schedule for each nominated candidate and the assignments of categories for each
nominated judge. The presentation schedule is constrained by the availability of
presentation rooms and the number of entries in each category. In APICTA 2013,
the presentation schedule had been planned by the organizers and given as parts
of the input to the judge assignment process.

To ensure a fair and equitable judging process, the organizers follow a set of
procedures to assign judges. Each economy has nominated at most five special-
ists or experts in ICT fields as judges of the APICTA Awards. The chief judge
panel examines their qualifications and finalizes a list of eligible judges. In the
APICTA Awards 2013, 61 judges from 13 economies are eligible. Each judge has
a set of declared specialties, which corresponds to the categories in the APICTA
Awards. Some judges have experience in judging the APICTA Awards before
but some are new. The judge assignment process begins by assigning judges into
different categories according to their specialties and experiences. Judges com-
ment on the assignments and the organizers make modifications accordingly.
This process iterates until all judges are satisfied. After the judge assignments
have been confirmed, the chief judge and advisory judge panels choose a head
judge for each category. The whole process is completed after all head judges
are chosen. The assignments will then be announced to the public along with
the presentation schedule. Therefore, the process must be completed within one
month before the APICTA Events. However, the assignments usually go through
a series of modifications due to negotiations and political arguments. An auto-
mated solution is desirable to ensure the judge panels can be formed on time.

The assignment of judge panels must satisfy the following criteria.

Size Restriction Each panel must be approximately the same size, consisting
of 3 to 5 judges. Larger judge panels are preferred.

Maintain fairness To ensure no domination of an economy, judges in the same
panel must come from different economies. The assignment must also mini-
mize chances that judges assess entries from their own economies, which are
unavoidable but give an impression of conflicts during evaluation.

Balanced workload As most judges are sponsored by APICTA, the assign-
ment must ensure a reasonable amount of workloads to every judge. No
judges should be left behind, and no judges should be in more than one
panel in a day of the APICTA Events. To avoid work overload, if judges are
in a category spanning two days, they should not serve in other categories
throughout the Events.

Respect expertise To ensure professional judgments, no judges should be as-
signed to categories outside of their declared expertises.

Ensure experienced leaders Each judge panel must have at least one judge
that had been a head judge before, so that their experience can be passed to
inexperienced judges. More experienced judges in each panel are preferred.

Political correctness Due to political issues, judges from some economies should
not be placed together in the same categories.

Allow partial assignments To increase flexibility, the organizers can force or
avoid certain judges to be in a particular category.

3 Current Practice versus Constraint Programming

In the past 12 years, the judge assignments were done purely by hand following
hunches. Since the criteria and objectives are not laid down explicitly, the process
was far from transparent and the initial results were always complained by judges
and economy leaders. The results were revised purely by hand and iterated
for numerous times until (forced) consensus were reached. The processes were
tedious and inefficient, especially when there were always many modifications
due to negotiations and political arguments, but the resources were limited.

We propose a CP approach to develop the optimization engine in solving the
judge assignment problem. A key advantage of CP is the separation of concerns
in modeling and solving. Modeling involves determination of variables, domains,
constraints, and objective functions. The rich constraint language allows for the
model being relatively close to problem statements, making the model easy to
verify and adapt. Indeed, after we delivered the first prototype, the hosting orga-
nization proposed various changes in problem statements before the assignment
was finalized, and we could deliver a new solution by simply changing the model
but not the implementation of solvers.

A number of attempts were tried before we arrived at the final approach and
model. Instead of traditional constraint optimization, we chose the weighted con-

straint satisfaction problem (WCSP) framework after we analyzed the problem.
Due to its optimization nature, the problem contains not just hard constraints
but also a number of preferences. The “soft-as-hard” approach [7] in traditional
constraint optimization is weak when compared with WCSP framework, which
specialized in modeling preferences. As shown by Lee and Leung [5], the strong
∅-inverse consistency [5], which is a weak consistency in WCSP, is stronger
in propagation than the “soft-as-hard” approach [7] in constraint optimization.
We also identified global cost functions in the problem. Global cost functions in
WCSP provide not just a simple language to express complex ideas, but also help
increase propagation power. However, the native WCSP model failed to solve the
problem within a day. We re-modeled the problem by grouping multiple global
cost functions as a single one. The result could be found in a few hours, still far
from being practical. We further conjoined more global cost functions as a single
one. We show that the conjoined global cost function can utilize the flow algo-
rithm from Régin [8]. Eventually, we manage to deliver a new solution within a
few minutes even if the problem statements are changed. The assignment could
be finalized after two weeks of blood and sweat.

4 Domain Analysis

In the following, we formally analyze the judge assignment problem and identify
the corresponding constraints and objectives. The APICTA Events are hosted
during DAY = {day1, . . . , dayP }. In APICTA 2013, P = 2. In dayj , a set
of categories CATj ⊆ CAT , where CAT = {cat1, . . . , catM} and M = 16 in
APICTA 2013, are judged. Each category catk will have a set of entries, denoted
by entry(catk), for judges to assess. We represent a judge as judi ∈ JUD, where
JUD ∈ {jud1, . . . , judN} andN = 61 in APICTA 2013. Each judge judi is nom-
inated from the economy From(judi) ∈ ECO, where ECO = {eco1, . . . , ecoQ}
and Q = 13 in APICTA 2013. Each judge judi ∈ JUD had also declared the spe-
cialties defined as SPi ⊆ CAT . The task at hand is to find out a time table TT ,
where TTi,j represents the set of categories assigned to the judge judi ∈ JUD
at dayj ∈ DAY , subject to a set of hard constraints and preferences.

4.1 Hard Constraints

The judge assignment must obey the following constraints.

Constraints on judge panel sizes

1. The size of each judge panel is at most 5 and at least 3.

Constraints on judge attendance

2. Each judge judi can only be in at most 1 judge panel in each day.
3. Each judge judi must be in at least 1 judge panel throughout the event.
4. To ensure fairness of judging, if judi and judj are in the same judge panel,

they cannot be from the same economy, i.e. From(judi) 6= From(judj).

Constraints on cross-day categories A cross-day category cati ∈ CATcross is one
spanning across two days due to a large number of entries. In APICTA 2013, 3
out of 17 are cross-day categories.
5. Judges in a cross-day category cannot be in another category, and;
6. Each judge can only be in at most 1 judge panel of a cross-day category.

Constraints on experienced judges

7. A judge judi is a previous head judge, i.e. judi ∈ JUDhead ⊆ JUD iff judi
was a head judge in APICTA before APICTA 2013. Each judge panel of a
category must have at least 1 previous head judge.

Constraints on judge placement

8. Given two specific economies ecoX ∈ ECO and ecoY ∈ ECO, where ecoX 6=
ecoY . Judges from ecoX and ecoY cannot be placed in the same panel.

Constraints on specialties

9. A judge judi is in category catk iff catk is a specialty of judi, i.e. catk ∈ SPi.

Constraints on pre-setting We define, for each judge judi ∈ JUD, Assigni ⊆
SPi to be the categories that judi must be in, and Avoidi ⊆ SPi to be the cate-
gories that judi must not be in. In APICTA 2013, |Assigni| ≤ 1 and |Avoidi| ≤ 1
for every judge judi ∈ JUD.
10. A judge judi is in category catk ∈ Assigni iff Assigni 6= ∅, and;
11. A judge judi is not in category catk ∈ Avoidi iff Avoidi 6= ∅.

Constraint on judge workload
12. The workload of a judge judi in a category catk is the number of entries in

catk. All judges evaluate at least 7 entries in total.

4.2 Preferences

The objective is to minimize the weighted sum of the following preference func-
tions. The weights determine the importance of each preference, i.e. the most
important one will have the highest weight. We adjusted the weights through
experiments.

Preference on conflicts Define a conflict as a function conf : JUD×CAT 7→ N,
which returns the number of entries in catk from From(judi), i.e. the same
economy as judi.
13. Minimize the total number of conflicts, i.e.

min
∑

judi∈JUD

∑

dayj∈DAY

∑

catk∈TTi,j

conf(judi, catk)

Preference on maximizing judge panel sizes The assignment prefers larger judge
panels,and penalize the judge panels with size less than 5.
14. Minimize the total penalties due to small panel sizes, i.e.

min
∑

dayj∈DAY

∑

catk∈CATj

(5− |{judi | catk ∈ TTi,j}|)

Preference on maximizing experienced share A judge judi ∈ JUDexp is experi-

enced iff judi has judged in APICTA before. Note that JUDhead ⊆ JUDexp.
More experienced judges in each panel are preferred, and penalize the judge
panels with number of experienced judges less than 5.
15. Minimize the total penalties due to less experienced judges in panels, i.e.

min
∑

dayj∈DAY

∑

catk∈CATj

(5− |{judi | catk ∈ TTi,j ∧ judi ∈ JUDexp|)

5 Problem Modeling

We first give a background on weighted constraint satisfaction problems (WCSP)
and global cost functions. While there are many ways of formulating the judge
assignment problem into WCSP, we give the one that allows natural expression
of cost functions and utilizes global cost functions. Based on the model, we
further propose how the global cost functions can be combined to give stronger
propagation power.

5.1 Weighted Constraint Satisfaction and Global Cost Functions

A WCSP [9] is a tuple (X ,D, C,⊤). X is a set of variables {x1, x2, . . . , xn}. Each
variable has its finite domain D(xi) ∈ D containing possible values for xi. A
tuple ℓ ∈ L(S) = D(xs1) × . . . ×D(xsn) is used to represent an assignment on
S = {xs1 , . . . , xsn} ⊆ X . The notation ℓ[xi] denotes the value assigned to xi in
ℓ, and ℓ[S′] denotes the tuple formed from projecting ℓ onto S′ ⊆ S. C is a set
of cost functions. Each cost function WS ∈ C has its scope S ⊆ X , and maps
ℓ ∈ L(S) to a cost in the valuation structure V (⊤) = ([0 . . .⊤],⊕,≤). V (⊤)
contains a set of integers [0 . . .⊤] with standard integer ordering ≤. ⊤ is a finite
or infinite integer corresponding to forbidden assignments. Addition ⊕ is defined
by a⊕ b = min(⊤, a+ b). Subtraction ⊖ is defined only for a ≥ b, a⊖ b = a− b
if a 6= ⊤ and ⊤ ⊖ a = ⊤ for any a. The cost of a tuple ℓ ∈ L(X) in a WCSP is
defined as cost(ℓ) =

⊕

WS∈C WS(ℓ[S]). A tuple ℓ is an optimal valid solution of
a WCSP if cost(ℓ) is minimum among all tuples in L(X) and cost(l) < ⊤.

A global cost function [1,5] is a cost function with special semantics, based on
which efficient algorithms can be designed for consistency enforcements. In par-
ticular, we denote a global cost function as Soft GCµ

m(S) if it is derived from
the corresponding hard global constraint GC with variable scope S, a violation
measure µ, and a weight constant m. The cost function Soft GCµ

m(S) returns
m ·µ(ℓ) to indicate how much a tuple ℓ ∈ L(S) has violated GC, or 0 if the tuple
satisfies GC. Two examples of violation measures for global constraints involves
counting are µvar and µval: Soft GCvar

1 (S) returns the minimum number of
assignments modified to satisfy GC [7]; while Soft GCval

1 (S) returns the num-
ber of values exceeding the boundaries allowed by GC [11]. We assume m = 1 if
m is not specified. If m = ⊤, a global cost function represents a hard constraint.

5.2 Problem Formulation

Define P = (X ,D, C,⊤) to be the WCSP model for the judge assignment prob-
lems. The variable xi,j ∈ X gives the category that judi assesses on dayj . The
domain D(xi,j) of each variable xi,j is the set of categories CATj ⊆ CAT judged
on dayj , with a dummy category cat0 to indicate no judging on a day. Each con-
straint and preference are enforced as follows.

Constraints on judge panel sizes Constraint 1 can be enforced by the global cost
function soft amongvar(S, lb, ub, V), which returns max(0, lb− t(ℓ), t(ℓ)− ub)
for each tuple ℓ ∈ L(S), where t(ℓ) = |{xi ∈ S | ℓ[xi] ∈ V }| [10]. For each
dayj ∈ DAY , we place one Soft Amongvar

⊤ (Xj , 3, 5, {cati}) for each cati ∈
CATj , where Xj = {xi,j | judi ∈ JUD}.

Constraints on judge attendance Constraint 2 is always satisfied for all valid as-
signments. Constraint 3 can be enforced by placing one Soft amongvar

⊤ ({xi,j |
dayj ∈ DAY }, 1, |DAY |, CAT) for each judi. As |DAY | = 2, binary table cost
functions were used instead. Constraint 4 can be enforced by the global cost
functions Soft GCCval(S,LB,UB) [11]. Given Σ =

⋃

xi∈S D(xi). Define the

number of occurrences of a value v ∈ Σ in ℓ by #(ℓ, v) and two functions s(ℓ, v)
and e(ℓ, v) as follows.

s(ℓ, v) =

{

LB(v)⊖#(ℓ, v), if #(ℓ, v) ≤ LB(v)
0, otherwise

e(ℓ, v) =

{

#(ℓ, v)⊖ UB(v), if #(ℓ, v) ≥ UB(v)
0, otherwise

The global cost function Soft GCCval is defined for each tuple ℓ ∈ L(S) as fol-
lows [11].

Soft GCC
val(S,LB,UB)(ℓ) =

⊕

v∈Σ

s(ℓ, v)⊕
⊕

v∈Σ

e(ℓ, v)

Define {Xj,ecot} to be the partition of X according to the day of the events and
the economies the judges represent, i.e. xi,j ∈ Xj,ecot iff From(judi) = ecok.
For each dayj and economy ecot, we place one Soft GCCval

⊤ (Xj,ecot , LB,UB),
which LB(catk) = 0 for all catk ∈ CATj ∪{cat0} and UB are defined as follows.

UB(catk) =

{

1, k 6= 0,
|X |, otherwise.

(1)

Constraints on cross-day categories Constraints 5 and 6 can be enforced by
the binary cost function JoinOnlyCrossCat placed on each pair of variables
{(xi,h, xi,k) | h 6= k ∧ dayh, dayk ∈ DAY }. The cost function is defined for each
pair of values (vh, vk), where vh ∈ D(xi,h) and vk ∈ D(xi,k) as follows.

JoinOnlyCrossCat{xi,h,xi,k}
(vh, vk) =







0, if vh /∈ CATcross and vk /∈ CATcross

0, if vh ∈ CATcross and vk = vh
⊤, otherwise

Constraints on experienced judges Constraint 7 enforced by placing one
Soft GCCval

⊤ ({xi,j | judi ∈ JUDhead}, LB,UB) for each dayj ∈ DAY , where
LB and UB are defined as follows.

LB(catj) =

{

1, j 6= 0,
0, otherwise.

UB(catj) =

{

1, j 6= 0,
|X |, otherwise.

Constraints on judge placement Constraint 8 can be fused in constraint 4 by
considering ecoX and ecoY as a single economy.

Constraints on specialties Constraint 9 can be enforced by placing the unary
cost function Specialty on each variable xi,j ∈ X . The function Specialty is
defined for each value v ∈ D(xi,j) as follows.

Specialty{xi,j}(v) =

{

0, if v = cat0 or v ∈ SPi

⊤, otherwise

Constraints on pre-setting Constraints 10 and 11 can be enforced by the unary
cost functions Set and Unset placed on each variable xi,j ∈ X , defined for each
value v ∈ D(xi,j) as follows.

Set{xi,j}(v) =







0, if v ∈ Assigni

or Assigni = ∅;
⊤, otherwise.

Unset{xi,j}(v) =







⊤, if v ∈ Avoidi
and Avoidi = ∅;

0, otherwise.

Constraint on judge workload Define entry(cat0) = 0. Since |DAY | = 2, con-
straint 12 can be simply enforced by the binary cost function WLLimit placed
on each pair of variables {(xi,h, xi,k) | h > k ∧ dayh, dayk ∈ DAY }. The cost
function is defined for each pair of values (vh, vk), where vh ∈ D(xi,h) and
vk ∈ D(xi,k), as follows.

WLLimit{xi,h,xi,k}(vh, vk) =







⊤, if entry(vh) + entry(vk) < 7 if vh 6= vk, or
entry(vh) < 7 if vh = vk;

0, otherwise

Preference on conflicts We define the weight of preference 13 as ǫconflict. Pref-
erence 13 can be enforced by the unary cost function Conflict placed on each
variable xi,j ∈ X , which Conflict{xi,j}(v) = ǫconflict · conf(judi, v) for every
v ∈ D(xi,j).

Preference on maximizing judge panel size We observe that preference 14 is
a special case of Soft Among

var. We define the weight of preference 14 as
ǫmaxsize. One Soft Among

var
ǫmaxsize

(Xj , 5, 5, {catk}) is posted for each dayj and
each category catk.

Preference on maximizing experienced share Define the weight of preference 15
as ǫexp. One Soft Among

var
ǫexp

({xi,j | judi ∈ JUDexp}, 5, 5, {catk}) is posted for
each dayj and each category catk.

5.3 Conjoining Cost Functions

As the original WCSP model cannot be solved within a day, we consider conjoin-
ing global cost functions to further reduce the search space. Lee et al. [6] give a
general technique on conjoining global cost functions using linear programs, and
show that enforcing consistencies on a conjoined cost function is stronger than
enforcing the same consistencies on separate cost functions. In this section, we
give a special case on conjoining global cost functions using flow networks.

A flow network G = (V,E,w, c, d) is a connected directed graph (V,E), in
which each edge e ∈ E has a weight we, a capacity ce, and a demand de ≤ ce.
An (s, t)-flow f from a source s ∈ V to a sink t ∈ V of a value value(f) in G is
defined as a mapping from E to real numbers such that:

–
∑

(s,u)∈E f(s,u) =
∑

(u,t)∈E f(u,t) = value(f);

–
∑

(u,v)∈E f(u,v) =
∑

(v,u)∈E f(v,u) ∀ v ∈ V \ {s, t};
– de ≤ fe ≤ ce ∀ e ∈ E.

For simplicity, we call an (s, t)-flow as a flow if s and t have been specified.
The cost of a flow f is defined as cost(f) =

∑

e∈E wefe. A minimum cost flow

problem of a value α is to find the flow f of value(f) = α such that its cost is
minimum. If α is not given, it is assumed to be the maximum value among all
flows.

A global cost function WS is flow-based if WS can be represented as a flow
network G = (V,E,w, c, d) such that min{WS(ℓ) | ℓ ∈ L(S)} = min{cost(f) |
f is the maximum (s, t)-flow of G}, where s ∈ V is the fixed source and t ∈
V is the fixed destination. One example of flow-based global cost function is
Soft GCCval [11].

The global cost functions {Soft Amongvar(Xj , lbi, ubi, {catk}) | catk ∈
CAT } in constraint 1, preferences 14 and 15 can be conjoined respectively as a
single Soft GCCval for each dayj ∈ DAY . We show as follows.

Proposition 1. Given a set {Soft Among
var(S, lbi, ubi, Ωi) | i = 1 . . . h}. If

Ωi ∪ Ωj = ∅ for i 6= j and |Ωi| = 1 for every i, the following holds for every

tuple ℓ ∈ L(S):

Soft GCC
val(S,LB,UB)(ℓ) =

m
⊕

i=0

Soft Among
var(S, lbi, ubi, Ωi)(ℓ)

The lower bound LB is defined as LB(v) = lbi iff v ∈ Ωi, and the upper bound

UB is defined as UB(v) = ubi iff v ∈ Ωi.

Proof. Define vi ∈ Ωi. By definitions, for every tuple ℓ ∈ L(S), max(0, lbi −
t(ℓ), t(ℓ)− ubi) = s(ℓ, vi)⊕ e(ℓ, vi). Results follow. ⊓⊔

By conjoining Soft Among
var into Soft GCC

val, the problem instance
can be solved within a few hours, but is still far from being practical. We further
conjoin Soft Amongvar in constraint 1 and preference 14 and Soft GCCval in
constraints 4 and 8 into a single global cost function Soft GCC Amongval+bvar .
We found that the Soft GCC Amongval+bvar is flow-based, allowing consisten-
cies in WCSP to be enforced by flow networks.

The cost functions {Soft Amongvar
⊤ (Xj , 3, 5, {catk}) | catk ∈ CAT } in

constraint 1 and {Soft Amongvar(Xj , 5, 5, {catk}) | catk ∈ CAT } in prefer-
ence 14 can be conjoined into a single Soft Amongbvar(Xj , 3, 5, CAT) for each
dayi ∈ DAY . The new violation measure µbvar forbids the number of specified
values exceeding the boundaries given by cost functions, and favor the tuple con-
taining more specified values. The cost function Soft Amongbvar(S, lb, ub,Ω)
is defined for each ℓ ∈ L(S) as follows.

Soft Among
bvar(S, lb, ub,Ω) =

{

ub⊖ t(ℓ), if t(ℓ) ≥ lb and t(ℓ) ≤ ub
⊤, otherwise

We further conjoin Soft Among
bvar and Soft GCC

val into
Soft GCC Amongval+bvar . The violation measure µval+bvar is a con-
joined violation measure from µbvar and µval used by Soft Amongbvar

and Soft GCCval respectively. Given a set of global cost func-
tions CGCC = {Soft GCC

val(Si, LBi, UBi) | i = 1, . . . ,m} and
CAmong = {Soft Among

bvar(Kj , lbj, ubj, Ωj) | j = 1, . . . , h}, the cost
function Soft GCC Amongval+bvar({(Si, UBi, LBi)}{(Kj, lbj, ubj, Ωj)}) is

defined as a global cost function formed by conjoining CGCC and CAmong, i.e.

for every tuple ℓ ∈ L(
⋃m

i=1 Si ∪
⋃h

j=1 Kj):

Soft GCC Among
val+bvar(ℓ) =

m
⊕

i=1

Soft GCC
val(Si, LBi, UBi)(ℓ[Si])⊕

h
⊕

j=1

Soft Among
bvar(Kj, lbj, ubj, Ωj)(ℓ[Kj])

We show Soft GCC Amongval+bvar is flow-based as follows.

Theorem 1. The cost function Soft GCC Among
val+bvar({(Si, LBi, UBi)},

{(K, lbj, ubj, Ωj)}) is flow-based if the following condition holds.

– Si ∩ Sj = ∅ if i 6= j;
– LB(v) = 0 for v ∈ Σi, where Σi =

⋃

xj∈Si
D(xj), for each i = 1, . . . ,m;

– Ωi ∩Ωj = ∅ if i 6= j, and;
– K =

⋃m
i=1 Si for each j = 1, . . . , h.

Proof. Without loss of generality, we assume Σ =
⋃h

j=1 Ωj . If there ex-

ists a value u ∈
⋃h

j=1 Ωj that does not exist in Σ, we can add a dummy
Soft Amongvar(K, 0, |K|, {u}) into the set of cost functions.

The flow network can be constructed using the method suggested by Régin [8].
We construct a single flow network G = (V,E,w, c, d) representing a set of
Soft GCCval and Soft Amongvar as follows.

– V = K ∪ {υiv | v ∈ Σi} ∪ {µj | j = 1, . . . , h} ∪ {s, t};
– E = As ∪AK ∪Av ∪At ∪Agcc−ex ∪Aamong−short∪Aamong−vio ∪Aamong−ex,

where:
• As = {(s, xj) | xj ∈ X};
• AK = {(xj , υiu) | xj ∈ Xi ∧ u ∈ D(xj)};
• Av = {(υiu, µj) | u ∈ Vj ∧ j = 1, . . . , h};
• At = {(µj, t) | j = 1, . . . , h};
• Agcc−ex = {(υiu, µj) | u ∈ Σi ∧ u ∈ Ωj} ;
• Aamong−vio = {(s, µj) | j = 1, . . . , h};
• Aamong−short = {(s, µj) | j = 1, . . . , h}, and;
• Aamong−ex = {(µj, t) | j = 1, . . . , h}.

– ce =























UBi(u), if e = (υiu, µj) ∈ Av

ubj, if e = (µj , t) ∈ At

ubj ⊖ lbj, if e = (s, µj) ∈ Aamong−short

|K|, if e ∈ Agcc−ex ∪ Aamong−ex

1, otherwise

– de =

{

ubj, if e = (µj , t) ∈ At

0, otherwise

– we =







⊤, if e ∈ Aamong−vio ∪Aamong−ex

1, if e ∈ Agcc−ex ∪ Aamong−short

0, otherwise

In the flow network, there may exist multiple edges between two nodes. The
edges Av enforce Soft GCCval while Agcc−ex give the corresponding violation
cost. The edges At enforce Soft Among

bvar while Aamong−short give the corre-
sponding violation cost. The edges Aamong−ex and Aamong−vio ensure all tuples
have corresponding maximum flows.

Using the similar reasoning as in Proposition 7 given by Régin [8], a maximum
(s, t)-flow in G corresponds to an assignment to K. With the similar reasoning
by van Hoeve [11], the minimum cost of maximum flows corresponds to the
minimum of Soft GCC Amongval+bvar . Results follow. ⊓⊔

An example of the flow network G is shown in Figure 1, based on a set
of variables S = {xi | i = 1, . . . 5} and D(xi) = {cat1, cat0} ⊆ CAT . The
Soft GCC Amongval+bvar consists of the following cost functions.

– Soft Amongbvar({x1, x2, x3, x4, x5}, 2, 5, {cat1})
– Soft Amongbvar({x1, x2, x3, x4, x5}, 0, 5, {cat0})
– Soft GCCval({x1, x2}, LB,UB), and;
– Soft GCCval({x3, x4, x5}, LB,UB), where LB and UB are defined as in

constraint 4.

The pair of numbers on the edges represent the demands and capacities of the
edges. If no numbers are on the edge, the edge has zero demand and unit capacity.
If the edge is dotted, the edge has unit weight. Otherwise, the edge has zero
weight. For simplicity, we omit the edges with weight equal to ⊤. The thick lines
show the flow corresponding to the tuple ℓ = (cat1, cat1, cat0, cat0, cat0) having
a cost of 4: 1 from Soft GCCval and 3 from Soft Amongbvar.

(0,5)

(0,3)
(0,5)

(0,5)

(0,5)

(0,5)

(0,5)

(0,5)

(5,5)

(5,5)

x2

x1

x3

x4

x5

υ1,1

υ2,1

υ1,0

υ2,0

µ1

µ0

s

t

Fig. 1. An example of the flow network

We further show that the conjoined cost function is flow-based projection-

safe [5]. If the cost function is flow-based projection-safe, stronger consistencies
like GAC* [2,5], FDGAC* [5], and weak EDGAC* [5] can be enforced in polyno-
mial time throughout the search. Stronger consistencies help remove more search

places, and reduce the runtime if the reduction in search space can compensate
the time on enforcing consistencies.

A global cost function WS is flow-based projection-safe [5] iff WS is flow-
based, and for all W ′

S derived from WS by a series of projections and extensions,
W ′

S is flow-based. Lee and Leung [5] give sufficient conditions on flow-based
projection-safety.

1. WS is flow-based, with the corresponding network G = (V,E,w, c, d) with a
fixed source s ∈ V and a fixed destination t ∈ V ;

2. there exists a subjective function mapping each maximum flow f in G to
each tuple ℓf ∈ L(S), and;

3. there exists an injection mapping from an assignment (xi, v) that set the
variable xi to v ∈ D(xi) to a subset of edges Ē ⊆ E such that for all
maximum flow f and the corresponding tuple ℓf ,

∑

e∈Ē fe = 1 whenever
ℓf [xi] = v, and

∑

e∈Ē fe = 0 whenever ℓf [xi] 6= v

We show that Soft GCC Amongval+bvar is flow-based projection-safe as fol-
lows.

Theorem 2. If the cost function Soft GCC Amongval+bvar({(Si, UBi, LBi)},
{(Kj, lbj, ubj, Ωj)}) satisfies the conditions stated in Theorem 1, it is flow-based

projection-safe.

Proof. Theorem 1 already shows the Soft GCC Amongval+bvar satisfies con-
ditions 1 and 2. In addition, the edge (xj , υiu) corresponds to assigning u to xj .
Results follow. ⊓⊔

The cost functions in constraints 1, 4, 8, and preference 14 satisfies the condi-
tions given in Theorem 1 if they are grouped by dayj ∈ DAY . The conjoined cost
function shown below, defined for dayj ∈ DAY , is flow-based projection-safe.

Soft GCC Among
val+bvar ({(Xj,ecot , LB,UB) | ecot ∈ ECO},

{(Xj , 3, 5, {cati}) | cati ∈ CAT })

By applying the above conjoined cost functions, the assignments can be found
within a few minutes, even if the requirements are changed frequently. In the
following, we show the robustness of our solution by experiments.

6 Experiments

As the data from previous years are not available, the experiments are purely
based on the data from APICTA 2013 and conducted on Toulbar2 5, an open-
source WCSP solver. In the experiments, variables are assigned in lexicographic
order. Value assignments start with the values having the minimum unary costs.
Weak EDGAC* [5] is enforced during search with no initial upper bound. Each

5 https://mulcyber.toulouse.inra.fr/projects/toulbar2/

test is conducted on a Linux Cluster (4 × 2GHz CPU) machine with 3GB mem-
ory. In all experiments, we set ǫconflict = 1, ǫmaxsize = 200, and ǫexp = 50.

We first compare the runtime in solving the APICTA 2013 instance using
different models. The solver cannot give the optimal for the native model as
stated in Section 5.2 after 3 days of execution. The model applying Proposition 1
can be solved after 5.3 hours. With soft GCC Amongval+bvar, the solver gives
the optimal solution in 107.6 seconds.

We further show the robustness of our solution by simulating the judge assign-
ment process using the conjoined model. We mark the instance from APICTA
2013 as instance 0. Each instance i, where i > 0, is modified from instance 0.
We keep around 10% of judge assignments in the solution of instance 0 as the
preset assignments of instance i. We randomly modify the requirements of the
remaining 90% of judges on top of instance i as follows.
– Remove a judge and add a new judge from a different economy;
– Modify the specialties of a judge;
– Avoid a judge to be in a specific category, and;
– Withdraw some entries so that the conflict is changed.

We generate 400 instances, each of which is allowed to run for 15 minutes.6

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900

Frequency

Runtime (seconds)

Fig. 2. Frequency distribution according to the runtime

We present the results as the frequency distribution as shown in Figure 2.
The x-axis is the runtime and the y-axis gives the number of instances able to be
solved within the runtime. We observe that 93% of the instances can be solved
within 200 seconds, while only 29 out of 400 instances cannot be solved within
15 minutes.

6 The solver and instances can be found online: http://www.cse.cuhk.edu.hk/

~klleung/cp14/JudgeAssign.tar.gz

7 Discussion

After we gave an initial solution to the organizers, we were asked to do modifica-
tions, as simulated in the previous section, before finalization. The modifications
were unpredictable, but we could cope with the modifications and gave an up-
dated optimal solution within a few minutes.

The organizers also received far less requests on modifications from the judges
on the assignments. Throughout the process, only one judge complained the
assignments, and it was resolved by correcting the specialties.

Besides, our solution speeded up the process. The judge assignment needs
to be completed one month before the APICTA event. In previous years, the
assignment was completed only a few days before the deadline. With automation,
the process was completed in two weeks, including endorsement from advisory
judges. Compared with previous years, the time required was greatly reduced.

8 Conclusion

Judge assignment problems have been studied in the field of sport tournaments.
Lamghari and Ferland [4] formulates the problems into linear programs and
solves by tabu search. Fernando et al. [3] also use integer linear programming to
compute referee assignments in football matches.

Our contributions are three-fold. First, we implement an automated solution
for APICTA 2013 to generate the most preferred assignments of each judge to
each category. Our solution helps lay down all restrictions and preference ex-
plicitly, and generate a new assignment within a few minutes every time the
requirements and preferences are changed, shortening the process to two weeks.
Second, we give a real-life example on global cost functions [1, 5] in WCSP.
By using Soft GCCval [11] and Soft Amongvar [10], WCSP can model re-
strictions that involves several variables. Third, we further give special cases of
conjoining a group of Soft GCC

val and Soft Among
var via flow networks.

The original model cannot be solved in a day. We refine the model by group-
ing a set of Soft Amongvar into Soft GCCval, but still not practical. We
further conjoin Soft Amongvar and Soft GCCval in the model as a single
Soft GCC Amongval+bvar , which is flow-based projection-safe [5]. We show
by experiments that conjoining global cost functions can solve an instance within
a few minutes after requirements are modified.

We plan to refine our solution for judge assignments in APICTA 20147 to
produce solutions in a shorter time. Eventually, we hope our technique can be
applied to other similar scenarios such as banquet seating planning.

Acknowledgment

We are grateful to the anonymous referees for their constructive comments. The
work described in this paper was substantially supported by grant CUHK413710

7 https://www.facebook.com/APICTA2014

from the Research Grants Council of Hong Kong SAR and grant F-HK019/12T
from the Consulate General of France of Hong Kong and the Research Grants
Council of Hong Kong SAR.

References

1. M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft
Arc Consistency Revisited. Artificial Intelligence, 174:449–478, 2010.

2. M. Cooper and T. Schiex. Arc Consistency for Soft Constraints. Artifical Intelli-

gence, 154:199–227, 2004.
3. A. Fernando, G. Durn, and M. Guajardo. Referee Assignment in the Chilean Foot-

ball League Using Integer Programming and Patterns. International Transactions
in Operational Research, 21(3):415 – 438, 2014.

4. A. Lamghari and J. A. Ferland. Assigning Judges to Competitions of Several
Rounds Using Tabu Search. European Journal of Operational Research, 210(3):694
– 705, 2011.

5. J. H. M. Lee and K. L. Leung. Consistency Techniques for Global Cost Functions
in Weighted Constraint Satisfaction. Journal of Artificial Intelligence Research,
43:257–292, 2012.

6. J. H. M. Lee, K. L. Leung, and Y. M. Shum. Consistency Techniques for Poly-
time Linear Global Cost Functions in Weighted Constraint Satisfaction. CON-

STRAINTS, 19(3):270–308, 2014.
7. T. Petit, J.-C. Régin, and C. Bessière. Specific Filtering Algorithm for Over-

Constrained Problems. In Proceedings of CP’01, pages 451–463, 2001.
8. J.-C. Régin. Combination of among and cardinality constraints. In Proceedings of

CPAIOR’05, pages 288–303, 2005.
9. T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems:

Hard and Easy Problems. In Proceedings of IJCAI’95, pages 631–637, 1995.
10. C. Solnon, V. Cung, A. Nguyen, and C. Artigues. The Car Sequencing Prob-

lem: Overview of State-of-the-Art Methods and Industrial Case-Study of the
ROADDEF’2005 Challege Problem. European Journal of Operational Research,
191(3):912–927, 2008.

11. W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming: Flow-based
Soft Global Constraints. J. Heuristics, 12(4-5):347–373, 2006.

