1

Consistency Techniques for Polytime Linear
Global Cost Functions in Weighted
Constraint Satisfaction

J.H.M. Lee K.L. Leung Y.W. Shum
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

January 4, 2014

Abstract

Lee and Leung make practical the consistency enforcemeblol cost func-
tions in Weighted Constraint Satisfaction Problems (WQSHA&e main idea of
their approach lies in the derivation of polynomial timealithms for the com-
putation of the minimum cost of global cost functions. Instpaper, we inves-
tigate how soft arc consistency can also be applied on glodstl functions with
no known efficient minimum cost computation algorithms. Weposepolytime
linear projection-safe (PLPSjost functions, which have a polynomial size integer
linear formulation and can maintain this good property ssirojection/extension
operations. We observe that the minimum of the linear reélaxaives a good ap-
proximation to the minimum of the integer formulation. Tigsused as the basis
for the enforcement afelaxed formsf existing soft arc consistencies. By using
the linear formulations, we can easily enforce conjundiohoverlapping PLPS,
which give stronger pruning power. We further proppsdytime integral linear
projection-safe (PILPS3ost functions, which are PLPS cost functions with guar-
anteed integral solutions to the linear relaxation. We eritneorems to compare
the consistency strengths among PLPS, PILPS and theirmctigns. Extensive
experimentations are conducted to compare our proposedtalys against state
of the art global cost functions consistency enforcemegorghms and integer
programming. Empirical results agree with our theoretraldictions, and con-
firm orders of magnitude improvement in terms of pruning amctime by our
proposals.

Introduction

Weighted Constraint Satisfaction Problems (WCSPs) [46] $®ft constraint frame-
work for modeling over-constrained problems and those pitiferences. It provides
a general model for different applications, suchresource allocatior{12], combi-

natorial auctions electronic market$45], bioinformatics[44], probabilistic reason-
ing [37], planning[17], protein desigrj4], crop allocation problenj2], etc.

A WCSP consists of a finite set of variables, a finite domainasfsible values for
each variable and a conjunction of cost functions. A costtion returns a cost for
each tuple. Each variable assignment is associated witktaToe costs could be used
to represent preferences to the variable assignments.

Solving a WCSP is to find an assignment to the variables wimtmimum cost.
Such an assignment often represents the most preferrec dedbt violated situa-
tion. The basic solution technique for WCSPs is branch{amuhd search augmented
with various forms of consistencies, such as NC* [24], ACA]2FDAC* [25], and
EDAC* [20]. These consistency techniques retrieve hidddgonrmation from cost
functions by transporting costs and remove infeasibleasfuom variable domains
to prune the search space.

A good library of global cost functions is essential for usrtodel complex real-
life problems in WCSPs. A global cost function often has tagties but also a special
semantics, which allows for the design of tailor-made arfidieht algorithms to en-
force consistencies. Lee and Leung [30, 28] suggesection safetywhich is based
on three requirements for consistencies to be practicafigreed on global cost func-
tions. First, computation of the minimum must be efficienéc@nd, projections and
extensions on the cost functions can be performed effigieffithird, projections and
extensions on the cost functions will not destroy the firgi afficiency requirements.
Lee and Leung [30, 28] further demonstrate that flow-baselajlcost functions [48]
satisfy the first two requirements and give instances thatflaw-based projection-
safe. In addition, Leet al.[31] show that another class of cost functions, cafiety-
nomially decomposableost functions, can satisfy these three requirements ared gi
instances of cost functions which are polynomially decosatde.

Our goal is to introduce more practical global cost functiorto the existing cat-
alog. Many global cost functions are useful, but eitherrth@nimum computations
are NP-hard or no polynomial time algorithms for computihgit minimum costs
have been discovered yet. An example is the soft variantseoDtsSJUNCTIVE con-
straint [21], which schedule jobs without overlapping inanspreemptive scheduling
problem. Known algorithms for computing their minimum cagst exponential.

We first show that the efficient minimum computations of glatzest functions de-
pend on the efficient enforcement @éneralized arc consistency (GA[1] of their
hard constraint counterparts. There are previous resunitseNP-hardness of enforc-
ing GAC on several global constraints, which immediateadi¢o the same results for
the minimum computation of their soft variants. It is natuceask whether there are
methods to still use such cost functions efficiently in ddf® ways in WCSPs. We
address this problem farost functions which can be modeled as integer linear pro-
grams with relaxed consistencieBy solving the integer linear programs with linear
relaxation, approximations of their minima are obtained ased in the enforcement
of the relaxed consistencies. Such consistencies can becedfefficiently by linear
programming algorithms due to their excellent average lsabavior. We call this class
of cost functiongolytime linear projection-safe (PLPS3ost functions.

1Formerly “polynomially linear projection-safe” [33].

We also consider the conjunctions of PLPS cost functionsesihe integer linear
programming formulations of PLPS cost functions allow thenbe conjoined easily.
We present empirical results to demonstrate the benefit®pigating on conjunctions
in terms of both runtime and pruning in general.

We introduce and give sufficient conditions for a specialctags of PLPS cost
functions, namelypolytime integral linear projection-safe (PILPSyost functions.
Our results show that propagating on individual PILPS castfions using the ex-
act (or relaxed since they are the same) consistencies isew#ean propagating on
the conjunction of all these PILPS cost functions using étaxed versions of the con-
sistencies. These results give exact characterizatioheattength of the relaxed and
exact consistencies on conjunctions of PILPS cost funstamcompared against the
corresponding exact consistencies on individual PILP $fcostions.

We also give experiments on various benchmarks to show fieeaty of our
approaches. We compare soft instances of the car sequeprciblgm, examination
timetabling problems, and fair scheduling with differerighelings. Empirical results
of our experiments agree with our theoretical predictioompared with enforcing
exact consistencies on individual cost functions, enfayaielaxed consistencies on
conjoined cost functions gives orders of magnitude impnoeets, both in runtime and
search space reduction. The rest of the paper is organizZetl@ss. Section 2 pro-
vides backgrounds and necessary definitions for the resegbaper. Section 3 gives
our problem statements. We mainly focus on cost functiorsseminimum computa-
tion has no known polynomial time algorithm (yet). Sectiodefinespolytime linear
projection-safe (PLPSgost functions and Section 5 gives a list of relaxed consiste
cies. PLPS cost functions can be modeled as integer linegragms. A good lower
bound of an integer linear program’s minimum can be compugolg the program’s
linear relaxation. Such a lower bound can be used to defin@&ewdut more efficient
form of (approximated) consistency notions. Section 6wdises the conjunctions of
PLPS cost functions, and gives theoretical and empiricallte showing that propa-
gating the conjoined cost functions is beneficial. Sectiatefinespolytime integral
linear projection-safe (PILPS)ost functions as a special subclass of PLPS cost func-
tions. Section 8 shows that propagating on individual PlicBS functions using the
exact consistencies is weaker than propagating on the rctign of all these PILPS
cost functions using the relaxed versions of the consigencSection 9 shows by
experiments that our approach give significant improvesenisolving real-life prob-
lems. Section 10 gives related work, whereas Section 11 suipes our work and
gives possible directions for future works.

This paper combines and extends the work of &eal.[33, 32].

2 Background

We give the preliminaries on weighted constraint satigfagiroblems (WCSPs), global
cost functions, and integer linear programs.

2Formerly “polynomially integral linear projection-saf¢32].

2.1 Weighted Constraint Satisfaction Problems

Weighted constraint satisfactios a special subclass of valued constraint satisfac-
tion [46] based on a cost valuation structdfék) = ([0...k], @, <). The structure

V (k) contains a set of integef8, . . ., k], wherek > 0, with standard integer ordering
<. Addition @ is defined byz & b = min(k, a + b), while subtractior® is defined for
anya andb, wherea > b, by:

_fa—0b, ifa#k;
aSb= { k, otherwise

Definition 2.1 [46] A Weighted Constraint Satisfaction Problem (WC3Pa tuple
(X, D, C, k), where:

o X ={ux1,29,...,2,} IS aset olvariables

e D(z;) € D is the finitedomainof values for each variable; € X, only one
value of which can be assigned:g

e C is a set ofcost functiondVs € C with scopeS = {zs,,%sy,..., 25, } C X
that map a tuple € £(S), whereL(S) = D(zs,) X --- x D(x,), toacostin
V (k).

Without loss of generality, we assur@e= {Wy} U {W;|z; € X} U Ct. Wy is
the constant nullary cost function, representing the Idveemd of the WCSHY; is a
unary cost function associated with variablec X, returning theunary costfor each
valuev € D(z;). C* is a set of cost functions with scopes of two or more variables
For simplicity, we denote the minimum of a cost functidfy asmin{Ws}.

An assignment on a set of variables can be represented bied tWge denoté/|x;]
to be the value assigned i@, and/[S] to be the tuple formed from the assignment on
variables in the sef C X.

Definition 2.2 Given a WCSRX, D, C, k), we define theostof a tuplel/ € L(X) as

cost(l) = Wy & @ Wi(l[z;]) @ @ Wi (£[S])

T, €EX WsecCt

A tuple? is feasibleif cost(¢) < k. A tuplel is solutionof the WCSP fif its cost is
minimum among all the feasible tuples.

WCSPs are typically solved with basic branch-and-bounttbeaugmented with
different consistency techniques, which remove infeasialues from domains while
preserving the equivalence of the problem, the cost of the solution is unchanged.

Definition 2.3 A projectionof costa, whereaw < min{Ws(¢) | {[z;] = v AL €
L(S)}, fromWg to W; with respect ta € D(x;), is a transformation ofWs, W;) to
(W§, W/) with respect to a value € D(z;) and a costy, such that:

oy Wilw)@a ifu=w, vy~] Ws)sa i la] =,
Wi(u) = { Wi(u) otherwise. Ws(l) = Ws(£) otherwise.

An extensiorof costa , wherea < W;(v), from W; to W with respect tw € D(z;),
is a transformation of W, W;) to (W¢, W,”) with respect to a value € D(z;) and
a costa, such that:

" _ Wz(u) Sa ifu= v, " _ WS(@ ©a if e[‘rl] =,
Wi (u) = { Wi (u) otherwise. Ws(€) = Ws () otherwise.

Different consistency notions have been defined for WCSElsding NC* [24],
(G)AC* [24, 18], FD(G)AC* [25, 30], and (weak) ED(G)AC* [2@B0].

Definition 2.4 [24] Suppose we are given a WCFP= (X, D,C, k).
e Avariablex; € X is NC* iff:

- Wg @ W;(v) < k for all valuesv € D(x;), and;
— there exists a value € D(z;) such thaii¥;(v) = 0.

e A WCSP is NC* iff all its variables are NC*.

NC* [24] increases$V 4 by projecting costs from unary cost functions and removes
infeasible values. It helps the branch and bound searchtertdensatisfiability by
checking if an empty domain exists Bry reaches the upper boukd

The procedureenf or ceNCx () in Algorithm 1 enforces NC* for a WCSP
(X,D,C,k) [26]. The algorithm first projects cost from each variable.hef
it removes infeasible values according to the lower boliid. The procedure
unar yPr oj ect () projects a suitable cost frol¥; to W to produce a unary sup-
port, while the procedurpr uneVal () removes the infeasible values which are not
NC*.

Procedureenf or ceNC* ()
foreachz; € X dounar yPr oj ect (;) ;
foreachxz; € X dopruneVal (z;);

1
2
3
4
5 Procedureunar yPr oj ect (z;)
6 a = min{W;};

7 Wg = Wg D

8 foreachv € D(x;) do W;(v) := W;(v) © o
9

10 Procedurepr uneVal (x;) :Boolean

11 | foreachwv € D(x;) s.t.W;(v) @ Wy =k do

12 L D(x;) := D(z;)\{v};

13

Algorithm 1 : Enforcing NC* for a WCSP

The definition of GAC* [18, 28, 30] involves the minimum of ¢danctions.

Definition 2.5 [18, 28, 30] Suppose we are given a WCBP= (X, D,C, k), a cost
functionWg € CT, and a variabler; € S.

e Avariablez; € S is GAC* with respect tdV iff

— x; is NC*, and;
— for each valuey € D(z;),

min{Ws(¢) | £ € £(S) A lfz;] = v} =0

e A WCSP isGAC* iff all variables are GAC* with respect to all cost functioims
{Ws | Ws €C+/\:Ci S S}.

The definition is slightly different from the one given by Qmoet al.[15], which also
requires forevery tuplé € £(S), Ws(¢) = kif Wa @@, g Will[zi]) ©Ws({) = k.

Based on NC*[24] and GAC*[18, 28, 30], FDGAC*[28, 30] and vkdeDGAC* [29,
30] are defined. Enforcing FDGAC* [28, 30] and weak EDGAC* [AD] is more
complex, but they still rely on minimum computation.

2.2 Global Constraints and Global Cost Functions

A global constrain{6, 5, 43], denoted by GG, 45, ..., Ax), is a family of hard con-
straints with precise semantics, parametrized by thebi@rscopes and other possible
extra argumentsly, ..., A;. Usually, global constraints cannot be propagated effi-
ciently using generic consistency algorithms due to thigjh larity scope. Dedicated
and efficient propagation algorithms are designed by etippiheir special structures.
Examples of global constraints include. ADIFFERENT[27], GCC [41], S\ME [7],
AMONGI5], and REGULAR [38] constraints.

Global cost functiong50, 30] are soft variants of global constraints. A global
cost function, denoted by VWBC* (S, Ay, ..., Ax), is a family of cost functions in
WCSP which returns the results computed by the violationsmes: associated with
the global constraint GG, A4, ..., Ax). The cost function WGC* returns 0 iff a
given tuple? € L(S5) satisfies GC. If¢ violates GC, WGC* returnsy(¢) using
the violation measure to reflect how much the GC is violatechil&r to global con-
straints, efficient algorithms for consistency enforcetianwe been designed for global
cost functions, based on flow networks [30, 29] and dynanmogamming [31]. For
examples, the cost functions WLL DIFFERENT’®" and W.ALL DIFFERENT?*¢ [28,
30] are derived from two different violation measures, ngmariable-based and
decomposition-based [39, 48] measures, of BIFFERENTrespectively.

In the rest of the paper, we denote a global cost functiomy wheresS is the
scope of the cost function.

2.3 Integer Linear Programming

Integer linear programs [49] is a special case of linear rog [19] where all vari-
ables are also required to be integral. Without loss of gditgrwe consider only the
minimization of the integer linear programs.

Definition 2.6 An integer linear programy is a mathematical optimization problem
defined as follows:

min cTx

Ax <b

xezZ”

The vectox = [x1, 79, ...,2,]T isavector ofariableswhich take values from the set
of integersZ based on a set of inequalities. The inequalities are defiyetl & Q™ ",

b € Q™, with n being the number of variables; the number of problem constraints,
and Q being the set of rational numbers. The expressibr, wherec € Q", is the
objective function of to be minimized.

For simplicity, we overload the definition of a tupleto represent amassignment
that is taken byk. We define solutions of the integer linear program as follows

Definition 2.7 Suppose we are given an integer linear progras in Definition 2.6.
A feasible solutioris a tuple~ that satisfies the inequalitiekAx < b. An optimal
feasible solutioris a feasible solution,,: which minimizes the objective functiohx.
We also define theinimumof I, written asmin(7/), to be the minimum value of the
objective function attained by an optimal feasible solatio

Solving an integer linear program is NP-hard in general.[@8je key technique to
approximate the solution of an integer linear progratmisar relaxation[49].

Definition 2.8 [49] A linear relaxatiorof an integer linear program is the linear pro-
gram where all the variables are no longer required to be gind

The linear relaxation of an integer linear progrdnmemoves the integrality re-
quirement, enlarges the set of feasible solutions, andigeeva lower bound on the
minimum of I. Since a linear program without integrality constraintpagynomially
solvable [19], linear relaxation provides polynomial-&impproximation for an integer
linear program. Under certain conditions, solving lineslexation can also give the
exact solution of an integer linear program [49].

3 NP-Hard Global Cost Functions

In this paper, we say that a global cost functiomNB-hardiff it is NP-hard to com-

pute its minimum cost. Many useful global cost functionsldRehard. In particular,
a special class of such global cost functions is derived fgbabal constraints, the
generalized arc consisten¢$AC) [11] of which is NP-hard to maintain.

Definition 3.1 [11] Given a CSPP = (X, D, (), we say that a constrairtts € C is
GAC iff for everyz; € S and for every value; € D(x;), there exists atuplé € L(.S)
such that’[z;] = v; and/ satisfie’s.

Lemma 3.2 Suppose we are given a constrairy for which the following problem of
enforcing GAC is NP-hard:

ISITGAC(Cs)

Instance. A constraintCyg, the variabless; € S, and the domain®(z;) for
everyr; € S

Question. For everyz; € S and for every value; € D(x;), does there exist a
tuple/ € £(S) such that[z;] = v; and/ satisfieC's?

Define a cost functio®’s to be the soft variant of€’s. The following problem of
computing the minimum cost Bf g

ISOPTIMAL (W, p)

Instance. A global cost functioriVg, a fixed integep, the variablesr; € 5,
and the domain® (z;) for everyz; € S

Question. Does there exist a tuplee £(S) such thatVs(¢) < p?

is NP-hard.

Proof Solving ISITGAC(Cs) is equivalent to solvingdOPTIMAL (W, 0) k times,
wherek = O(|S|dmaz) @NAdiae = maxy, es{|D(x;)|}, with D(x;) = {v;} for
each variabler; € S and each value; € D(z;). If ISOPTIMAL(Wg,0) is in the
complexity classP, so is SITGAC(Cys). The result follows by contradiction. O

We give an example using- ®ING Sum [35]. The global constraintiSDING SuM (.5, IT)
is defined based on a setwindowsp; € II. A windowp; is a tuple(l;, u;, S;), which
places a restriction on the sum of a set of variableS;irc S not less than a lower
boundl; and not greater than an upper bound

Definition 3.3 [9] The constraintSum(S, [, u), accepts a tuplé € L(S) iff

1< @E[azi]gu

;€S

Definition 3.4 [35] The constraintSLIDING SuM(S,IT), whereIl = {p; | i =
1...m}andp; = (l;,u;, S;), accepts a tuplé € L(S) iff for everyp, € II,

:CjESi

Soft variants of 8IDING Sum can be derived by the fact that ®ING Sum is a
conjunction of multiple ™M constraints [9].

Using the decomposition-basedviolation measure, we can define
W_SLIDING SuM?¢¢(S) by summing up the violation of eachu® constraints
measured by value-based violation measure.

Definition 3.5 The cost functiontWV_Sumv%! (S, 1, u) returns the cost of a tuplé <
L(S) as:

W_Sum (S, 1,u)(¢) = max(@ U] —u,l — @ llz;],0)

T, €S ;€S

Definition 3.6 The cost functioWV_SLIDING Sum?¢¢(S, II) returns the cost of a tuple
te L(S)as:

W_SLIDING SUM“““ (S, T1)(¢) = ED W_-Sum*™ (S;, 1;, u;) (¢[S:])

=1

Note that the definitions are similar to those given by Beresit al. [35].
We show that WSLIDING SuM?¢¢ is NP-hard by Lemma 3.2.

Theorem 3.7 Computing the minimum &% _SLIDING Sum9e¢ is NP-hard.

Proof Enforcing GAC on a 8M constraint is NP-hard [9]. As theL®ING SuM con-
straint can be represented by a conjunction of multiple1 Senforcing GAC on 8iD-
INGSUM is NP-hard. Since WSLIDING SuM?¢¢ is derived from the SIDING SuM
constraint, by Lemma 3.2, the result follows. O

In addition to NP-hard cost functions, there are also costtions which have
no known polynomial time algorithms for their minimum cosingputation yet. One
example is the WDISJUNCTIVE' cost function derived from the BIJUNCTIVE con-
straint [21]. To handle these cost functions in WCSPaytime Linear Projection-
Safe(PLP9 cost functions are proposed.

4 Polytime Linear Projection-Safety

Koster [23] suggests a method to formulate global cost fanstinto integer linear
programs by treating them as table cost functions and nmagighie cost of each tuple
by an inequality. However, the number of linear inequaditised can be exponential
in the size of the scope of the cost function, which is uneédér if we are looking for
efficient ways to solve them. We limit the size ofimear cost functiorand give the
definition of apolytime linear cost functian

Definition 4.1 A linear cost functiori¥g is a cost function which can be represented
by an integer linear prograniyy, such thatnin{Ws} = min(Iw,).

A Polytime linearcost functioniWys is a linear cost function with the corresponding

integer linear programlyy ., which has a polynomial number of inequalities and a
polynomial number of variables with respect & andmax,,cs{|D(x;)|}.

One example of polytime linear cost functions is SVIDING Sum?ec,

Example 4.2 The W_SLIDING Sum?¢ cost function is polytime linear. It can be ex-
pressed as an integer linear prograhiy., defined as

min -, en(L; +Uj) st.
lj = thesj ZvGD(h) V-Cypo— L +U; <uy Vpy €11
veED(xz;) Caiv = 1 Vi=1...n
L;>0,U;20 Vp; € 11
0<cpo=1 Vo, € S,v € D(x;)

Defined,,q. = max,,cs{|D(x;)|}. The integer linear prograniyy, usesd,,q. - |S| +
2 - |II] variables and3 - |II| + dymas - (|S] + 1) inequalities.

However, enforcing consistencies in WCSPs requires pliojez and extensions.
The cost function may not be polytime linear after such ofp@na. Lee and Leung [30]
propose the notion of projection-safety which is a requirement for a cost functio
to preserve the properfy after projections and extensions. We further study the case
whenT is polynomial linearity

Definition 4.3 A Polytime Linear Projection-Safe (PLP&)st functioniVs is a poly-
time linear cost function such that for dil’, derived by a series of projections from
and/or extensions t&g, W¢ is polytime linear.

In the following, we first define a set of conditioi®%., and show thaPL is suffi-
cient for polytime linear projection-safety.

Definition 4.4 A cost functioniVs satisfiesPL if:

1. Wy is polytime linear with the corresponding integer lineaogramIyy .,

2. there exists a surjective functidri mapping each feasible solution,, . of Iy,
to each tuple € £(S), and;

3. for each valuey € D(z;) in each variabler; € S, there exists an injection
mapping an assignmedtr; — v} to a 0-1 variablec,, ,, in Iy such that
if £ = A'(yry,,) for a feasible solutionyr,, in I, and a tuplel € L(S),
whenever[z;] = v, v1,. [cz,,0] = 1; whenever[z;] # v, v, [cz,,0] = 0.

Lemma 4.5 Suppose we are givais satisfyingPL, i € S andv € D(i), and that
W is obtained by projecting from Wg to W;(v), or extendingx from W; (v) to W.
The resultant cost functioi’ satisfiesPL.

Proof We only prove the part for projection, while the part for exdion is similar. As-
sumells is a PLPS cost function any, is the corresponding integer linear program
of Ws. We first consider the part concerning projectioa, W is defined as

von | Ws()ea iflz]=wv
Ws(0) = { Wi(f) otherwise

We show thalV{ is also a polytime linear cost function (condition 1). Aff@o-
jection, we can construct a new integer linear progégm from Iy, by adding an
additional term—ac; ,, to the objective function ofyy,. The resulting integer linear
programlyy;, corresponds tél’;, since

min(ly;) = min(lwg) © ac;y
=min{Ws} & ac;
_f min{Ws}ea ife¢,=1
- { min{Wg} if ¢;, =0
= min{W{}.

10

Thus,W{ is linear with the corresponding integer linear program and satisfies
condition 1. Moreover, sincéy, has the same set of variables and linear inequalities
asly has,W also satisfies conditions 2 and 3. The result follows. O

Theorem 4.6 If a global cost functioriVs satisfiesPL, it is a PLPS cost function.

Proof Initially, W satisfiesPLL. From Definition 4.4}V is polytime linear. Assume
W is obtained from a series of projection and extension ojmrsit By Lemma 4.5,
Wi still satisfiesPL and thus?’, remains polytime linear. The result follows. O

Theorem 4.6 gives sufficient conditions for a global costfion to be PLPS. In
addition, the proof of Lemma 4.5 demonstrates a generalepoe for performing
projections and extensions on PLPS cost functions.

As an example, we show that the 8/ 1DING Sum<<© cost function is a PLPS cost
function.

Theorem 4.7 The cost functioWV/_SLIDING SumM?c¢ is PLPS.

Proof By Theorem 4.2, the \ASLIDING SuMm?e¢ cost function is polytime linear with
the corresponding integer linear progrdm, (conditions 1 and 2). For condition 3,
we observe iy, that, if ; = d, ¢, ¢ = 1; otherwisec,, 4 = 0. By Theorem 4.6,

the W_SLIDING Sum?e cost function is PLPS. O

Consider the following WCSP = (X, D, {Ws}, k):

e X = {351,.132,3;‘3};

° D(l‘l) = D(ch) = D(l‘g) = {1,2,3};

e Wg = W_SLIDING SUMdeC({$1,$2,$3}, {pl,pg}), wherep; = <3,4, {$1,l‘2}>
andpg = <4,5, {l‘g,l‘g})

The corresponding integer linear progranigf is:

min L; + Uy + Ly + Us Sit.

3 < cCpy1 28,2+ 3Co, 3+ Can1 + 20,2 +3Ca,3 — L1 +Up <4
4 < Cpy1 + 20002+ 3Ce,,3+ Cag1 +2C052 +3C2,3 — Lo +Uz <5
Cey 1+ Coy2t ey 3=1
Cay 1+ Cap2tCopy3 =1
Cxs,1 + Cxs,2 + Cg3,3 = 1
Ly >0,U;>20,Ly >0,Uz >0
0<ecp.a<l Va; €S5,de D(z;)

Suppose a cost of 2 is projected frdis to W, with respect tor; = 1, such that
Ws becomedVy,. The corresponding integer linear progran¥ié§ can be constructed
from that of W by adding a term to its objective function as underlined Wwel®ohe
other parts of the corresponding integer linear prograrigf are the same as that

11

of Wg and soWj is also PLPS. The corresponding integer linear prograrii/gf
becomes

min L + Uy + Ly + U2726I1 S.t.

3 < cp1 20,20+ 3Ce, 3+ Cop1 20,2 +3C3 — L1+ U <4
4 < cpy1 T 20,2 + 3Cay3 F Cayl + 20052 + 30,3 — Lo+ Uz <5
Cxq,1 + Cxq,2 + Ce1,3 = 1
Cxo,1 + Cxy,2 + Cey,3 = 1
Cug,1 F Cag2 + Cag3 =1
Ly >0,U; >0,L,>0,U3>0
0<ecp.a<l Va; €85,de D(z;)

Solving integer linear programs is NP-hard in general, imgdr relaxation allows
the minimum of the corresponding integer linear programBId?PS cost functions to
be approximated in polynomial time. Accordingly, relaxezhsistency notions for
WCSPs can be defined. They are weaker but can be enforced fficiendy.

Readers are referred to the Appendix for more examples oSRidBt functions.

5 Relaxed Consistency Notions

Given a PLPS cost functioiVs and its corresponding integer linear progréym, , we
definerelaxed _min(Iyy .) to be the minimum ofyy . with linear relaxation. We have
the following theorem according to the properties of linedaxation.

Lemma 5.1 [49] Given an integer linear prograniy, ., the following always holds:
relaxed min(Iy,) < [relaxed-min(ly,)] < min(Iy,)

The pair of[| symbols represents the ceiling function, wheré gives the smallest
integer not less tham.

Proof It is straightforward to see thatlaxed_min(Iy) < min(ly) with the prop-
erties of linear relaxation. On the other hamdin(Iyy .) is defined as an integer in
WCSPs, and so the smallest integer not less thkixed _min(Iyy,) must be smaller
than or equal tanin (I,). The result follows. O

The definition of relaxed consistencies is based orafffgroximated minimuraf cost
functions. Theapproximated minimurof a PLPS cost function is defined as follows.

Definition 5.2 Given a PLPS cost functios and its corresponding integer linear
programlyy , we define thapproximated minimuraf Wg, written asapprox_min{Wg},
to be:

approx-min{ Wg} = relaxed_min (I)

Suppose we are given a PLPS cost functidi. By definition, min(Iy,) =
min{Ws}. The nextlemma is a re-statement of Lemma 5.1.

12

Lemma 5.3 Given a PLPS cost functidivs and its corresponding integer linear pro-
gram Iy, we have the following inequalities:

approx-min{Ws} < [approx-min{Ws}| < min{Wg}

The definition of approximated minimum leads to the defimitié a relaxed version of
GAC* [18, 28, 30] calledelaxed GAC*

Definition 5.4 Suppose we are givena WCBP= (X, D, C, k), a cost functiois €
C* and a variabler; € S.

e Avariablez; € S isrelaxed GAC*with respect tdV iff:

— x;is NC*, and;
— for each valuey; € D(z;),

approx-min{Wg(¢) | ¢ € L(S) AN[z;] =v;} <0

e A WCSP igelaxed GACHiff all variables are relaxed GAC* with respect to all
cost functions i{Wg | Ws € C* Ax; € S}.

Unlike GAC*, supporting tuples are not required in relaxed@ since we cannot
guarantee the existence of a tuglesuch thatiWs(¢) is equal to the approximated
minimum. We only ensure that the approximated minimum isagtsvsmaller than
or equal to the minimum coshin{Ws(¢)}. On the other hand, suppose a cast
min{Ws(¢)} is projected from the cost functidivs (¢), wheremin{W(¢)} is greater
thano after projectingx in enforcing GAC*, it is possible forelaxed min(Zyy (¢)) <
0. So relaxed GAC* allowapprox_min Wg(¢) to be less than or equal @

To compare the strength of GAC* and relaxed GAC*, we adopfelewing defi-
nition from Lee and Leung [30].

Definition 5.5 [30] Given a problemP representable by two model$P) and(P),
we say that a consistendyon ¢(P) is strictly strongethan another consistenay on
Y (P) iff v (P) is ¥ whenever(P) is @, but not vice versa.

By Lemma 5.3, we immediately have the following theorem.
Theorem 5.6 GAC* [18, 28, 30] is strictly stronger than relaxed GAC*.

The procedureenf or ceRel axedGAC+ () in Algorithm 2 enforces relaxed
GAC* for a WCSP (X, D,C, k) and is a simple adaptation ehf or ceGACx () in
Algorithm 4 given by Lee and Leung [30]. The differences (pamed to [30]) be-
tween the procedures of enforcing GAC* and relaxed GAC* angeulined.

The procedurenf or ceRel axedGACx () in Algorithm 2 is correct and must
terminate. Its complexity can be analyzed by abstractimgvtbrst-case time com-
plexity of pr oj ect Appr oxM nCost () as fapprozasin, Which mainly consists of
solving a linear program. The ellipsoid method can be usesblee linear programs
which can be characterized by polynomial complexity. Usangargument similar to
the proof of Larrosa and Schiex’s [26] Theorems 12 and 21 ctmaplexity can be
stated as follows.

13

Procedureenf or ceRel axedGACx ()

Q:= 4,

while Q # @ do

z; 1= pop(Q) ;

f1 ag :=false;

foreachWg s.t. {z;} C S do

foreachz; € S\ {z;} do
flag:=flagV project Appr oxM nCost (Wg, z;) ;
pruneVal (xz;);

10 if D(x;) is changedhen Q := QU {x;};

© 00 N o g b~ W N

=

11 fl ag then

12 foreachz; € X do

13 pruneVal (z;);

14 L if D(z;) is changedhen Q := Q U {x;};

15
16 Function pr oj ect Appr oxM nCost (Wg, z;) :Boolean
17 fl ag :=false;

18 | foreachwv € D(x;) do

19 a := max([approx-min{Wg(¢)|¢ € L(S) A L[z;] = v}],0);
20 if W;(v) =0A«>0thenfl ag :=true;

21 Wi(v) := W;(v) ® o

22 foreach? € £(S) s.t.£[z;] = vdo Wg(l) :=Ws(f) © o;

23 unar yProj ect () ;
24 return f | ag;
25

Algorithm 2 : Enforcing relaxed GAC* fora WCSP

Theorem 5.7 The procedurenf or ceRel axedGAC+ () must terminate and has a
time complexity 0O (r?edfupprozrin + n2d?), wherer is the maximum arity of all
cost functionsd is the maximum domain size= |Wg| andn = | X|.

Proof The while loop at line 3 iterates at moSt(nd) times. A variable is pushed
into the queu&? only if the domain of a variable has changed at line 10 or lide 1
which happens at mostd times. So, the procedure must terminate. We consider
the time complexity at each iteration. Line 8 executes attrags - [N (j)|) times,
whereN (j) is the set of cost functions restricting. The overall time complexity is
O(r2edf approznrin + nd?) Thus, it must terminate. O

Corollary 5.8 The procedureenf or ceRel axedGACx () must terminate. The re-
sultant WCSP is relaxed GAC*, and equivalent to the origivVaSP.

Algorithm 2 can also transform any WCSP to an equivalent ohielwis relaxed
GAC*, the proof is similar to that of enforcing GAC* [30].

14

Note thatapprox_min{Wg} does not always return an integer. The valdie=
max([approx-min{Wg(€)|¢ € L(S) A ¢[z;] = v}],0) is used instead. The correct-
ness of using’ in projections can be shown as follows.

We are given thalyy, is an integer linear program corresponding to a PLPS cost
functionWs and there exists a cost= min{Wys} to be projected in enforcing GAC*.
Supposél{ is the resultant cost function after projecting= [approx min{Ws}]
from W, we have the following theorem.

Theorem 5.9 min{W¢} > 0.

Proof First of all, « = min{Wg} = min(Iy,). Supposenin{W}} is the resultant
cost function after projecting from Wy in enforcing GAC*,min{W¢} > 0. Solv-
ing I by linear relaxation obtains an approximated minimutaxed_min(Iy) =
approx-min{Wgs} to be projected. By Lemma 5.1/ = [relaxed min(lw,)] <
min(Iyg) = a. Thusmin{W¢} > min{W¢,} > 0. The result follows. O

We can also define the relaxed version of FDGAC* [29, 30] andakwe
EDGAC* [29, 30], calledrelaxed FDGAC*andrelaxed weak EDGACtespectively.

Definition 5.10 Suppose we are given a WCEP= (X, D, C, k), and a cost function
Wg € Ct and a variablex; € S.

e Avariablez; € S isrelaxed DGAC*with respect tdVg if:

— z; IS NC*, and;
— for each valuey; € D(z;),

approx-min{Ws(0) & @5 W, (llx;))[£ € L(S) N l[zi] = v;} <0
x;ESNG>1

e A WCSP isrelaxed FDGACY*iff all variables are relaxed GAC* and relaxed
DGAC* with respect to all cost functions Vs | Wg € CT A x; € S}.

Similar to weak EDGAC* [29, 30], the definition of relaxed weBDGAC* is based
on cost-providing partition$29, 30].

Definition 5.11 [29, 30] Givena WCSFP = (X, D, C, k), we define @ost-providing
partition B, for a variablez; € X to be a set of set§B,;, w, | ; € S} such that:

|B.,| is the number of cost functions whose scopes inclyde
B:Ci,Ws g Sr
B:ci,wsj NBy,ws, =9 for any two different constraintd’s, , Ws, € Cct, and;

o UBwi,Ws €B., BOEth = (UWseC+Aw7,eS S) \ {xz}

Definition 5.12 Suppose we are given a WC$P = (X,D,C, k), and a variable
x; € S with the associated cost-providing partitid),, .

e Avariablex; € S is relaxed weak EGACHf:

15

— x; is NC*, and;
— there exists a value; € D(z;) such that:

approx min{ @ Ws()o € W;(a;)|l € LS)ALzi] = vi} <0

z, €S ;€8x ,wg

e A WCSPis relaxed weak EDGACHT it is relaxed FDGAC* and all variables
are relaxed weak EDGAC*.

By Lemma 5.3, we immediately have the following theorems.
Theorem 5.13 FDGAC* [29, 30] is strictly stronger than relaxed FDGAC*.

Theorem 5.14 Weak EDGAC* [29, 30] is strictly stronger than relaxed weak
EDGAC*.

The procedures of enforcing relaxed FDGAC* and relaxed WeBKSAC* are
similar to those of enforcing FDGAC* [28, 30] and weak EDGA[29, 30] respec-
tively. Thef i ndSupport () functioninthef i ndFul | Support () functionin al-
gorithm 5 from Lee and Leung [30] is replaced by reoj ect Appr oxM nCost ()
function, which is similar to that of enforcing relaxed GAC*

6 Conjoining PLPS Cost Functions

If two constraints or cost functions share more than oneabei theyoverlap In the
rest of the paper, we consider conjunctions of overlappasg functions.

Definition 6.1 Given two cost functiond’s, and Wg,, we defindVs, & Wg, to be
their conjunctioni.e. for each tuplé € £(S; U S2):

(Ws, © Ws,)(£) = Ws, (£[S1]) © W, (£]S2])

In general, enforcing a consistency on individual cost fiems may not imply the same
consistency on their conjunction. An example is given bydieeet al.[10]: enforc-
ing GAC on two overlapping ALDIFF [27] constraints does not imply GAC on their
conjunction. It is easy to check that a similar result alsti$fidor cost functions. By
discovering extra pruning opportunities, propagatingomjenctions of cost functions
may reduce more search space than propagating on indivddsiafunctions can.

This issue is especially important for two reasons. Firsinynglobal cost func-
tions can be decomposed into conjunctions of overlappirngsimpler (global) cost
functions. Second, every PLPS cost function has an aseddigeger linear program.
PLPS cost functions can be conjoined together easily by aunmitheir corresponding
integer linear programs in a straightforward manner.

Definition 6.2 Given two integer linear programgy, and Iws,, we define[ws1 A
Iw,, to be their combination by taking the union of their lineagqualities and adding
up their objective functions.

16

We are demonstrating that it is worthwhile computationsdlypropagate on conjunc-
tions of PLPS cost functions using relaxed consistencies.
The following theorem ensures that conjunctions of PLP$focmstions are PLPS.

Lemma 6.3 Supposells, and Wg, are PLPS cost functions. The conjunction
Wconj = Wsl SV W52 is also PLPS.

Proof SupposéVs, andWs, have their corresponding integer linear program,
and Iws, respectively. The integer linear prograiy,,, . for We.,; can simply be

formed bylw.,,,.; = Iws, Alws, - Itis easy to check that’.,,; satisfies the conditions
in Definition 4.4. O

An immediate question is whether a conjunction of PLPS casttions always
gives a stronger bound than using the individual PLPS casttions, given that the
same level of consistency is maintained.

Definition 6.4 GivenaWCSHE’ = (X, D, C, k), we define theonjoined WCSH,,,
to be atuplgX, D, Ceonj, k), WhereCeonj = {Weonj } andWeon; = Ayoee Wes With
the corresponding scop®.,,,; = Uwsec S.

We show that GAC*, FDGAC* and weak EDGAC* oR.,,; are strictly stronger
than their counterparts af respectively by the following theorem.

Theorem 6.5 Supposev-consistency is one of GAC*, FDGAC*, and weak EDGAC*.
Thena-consistency o, is strictly stronger tham-consistency ot.

Proof We prove the part for GAC*. The proofs for the other consistesare similar.

AssumeP.,,; is GAC*, but P is not GAC*. There exists a variablg € X’ with
avaluea € D(z;) and a cost functiomVs € C in P such thatmin{Ws(¢) | [z;] =
anle L(S)} > 0. Therefore,

min{Wconj | g[l‘t] =aANlc€ ‘C(Sconj)}
> Bwyecmin{Ws(l) | flz:] =anteL(S)}>0

So no simple support exists farandz; cannot be GAC* with respect t/..y,;.

The converse is not true. A counter-example is theAW. DIFFY“"(.S)) cost func-
tion [39] , which returns the minimum number of variable gasihents inS that are
needed to be changed so tlsatontains only distinct values.

Consider Wg, = W_ALLDIFF"" {1, 29,23} and Wg, =
W_ALLDIFF""{z9, x5, 24}, whereD(z1) = {a, b}, D(xz2) = D(z3) = {a,b,c} and
D(z4) = {b,c}. Itis easy to check thdl’s, andWs, are GAC*, butiWg, & W, is
not since the minimum whem, = « is 1. The result follows. O

When exact consistencies are replaced by their relaxetwsrghe result similar
to that of Theorem 6.5 does not hold unfortunately. We usexamele to explain.

17

ConsidelCprps = {Ws,, Ws, }, WherelVs, andWg, are both PLPS. Suppo$,.;
is relaxed GAC*. For a givem; € S; N Se anda € D(x;):

0 > approx-min{Weon; | £[xi] = a Al € L(Scon;)} (1)
> approx-min{Wg, (¢) | {[z;] =a Al e L(S1)}D
approx-min{Ws, (£) | £[z;] = a Al € L(S2)} 2)

Since the approximated minimum can be negative, we canmaiwte from equation
(2) that bothiVs, andWg, are relaxed GAC*. One can lead to positive approximated
minimum while another one leads to negative. However, teisupar bad situation
does not happen often in practice and we will demonstratéttisavorthwhile to prop-
agate on conjunctions instead of individual cost functiortbe following experiment.
Additional experimental results can be found in Section 9.

In our experiments, the consistencies GAC*, FDGAC*, weakdAT*, and their
relaxed versions are implemented in Toulbar2 v0.9. IBM ILGBLEX Optimizer
12.2 is used as the (integer) linear programs solvers inbEogl

Variables with smaller domains and values with lower unastg are assigned first.
The experiments are conducted on an Intel Core2 Duo E740@2(20GHz) machine
with 4GB RAM. In each benchmark, we use different paramed#irgys to construct
different instances and 10 random cases are generatedagittparameter setting.

The average number of backtrack (bt) and the average ruimisgzonds (time) for
solved cases are reported. The runtime includes the CPUus@e@ by both Toulbar2
and CPLEX. Next to the runtime, we also report separatelyachets the CPU time
used by CPLEX. The best result is highlighted in bold.

In this experiment, we use the Generalized Car Sequencotgd?n (Generalizing
prob001 in CSPLib), which aims to find a sequencerfaars of different types to be
built. Each type of cars € U has a specific set of optiods C I to equip the car
with. To equip an optiori € I on a specific type of cars € U, a costc,, ; is required.
Each assembly line is allowed to spend a maximumgfcost on each option for
everys; cars in total.

We model this problem witm = {z; | j = 1,...,n} variables with domains
u. Each variabler; represents thg!" car to be built in the sequence. A GCC con-
straint [41] is used to ensure that the correct number of@faesch type is assembled
according to the plan. The VBLIDING SuM?e¢ cost functions, which are PLPS, are
used to ensure the restrictions for each assembly line. Wesfusoften the problems
by assigning a random unary cost from 0 to 9 to each value irdtimeain of each
variable, and replacing the hard global constraints widirteoft variants. We assume
that there are preferences. For example, an assembly liggpreéer the same type
of cars to be assembled consecutively. Such preferencdsecaodeled by table cost
functions. We fix|I| = 5 andu = n/2 and use instances with differentin our
experiments.

As each instance consists of (only) PLPS cost functions aneompare 2 different
models respectively, which are using: (1) individual PLRStdunctions, and (2) a
single PLPS cost function formed by conjoining all PLPS dosttions.

Results are shown in Table 1. First and foremost, applyilexxeel consistencies on
the conjoined PLPS cost functions is substantially beltign applying the correspond-

18

Table 1: The generalized car sequencing problem usin§LVBING Sumdee
(1) Modeling with PLPS cost functions
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) | bt | time (CPLEX) | bt | time (CPLEX)
10 | 805.7 | 135.78 (42.74)| 7.4 2.37 (1.23) 6.9 1.94 (0.97)
12 * g 15.1 717 (3.84) | 144 4.99 (2.49)

14 * * 34.7 69.42 (39.62) | 29.0 | 41.85(23.53)
16 * * * * * *
18 * * * * * *

(2) Modeling with conjoined PLPS cost functions
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 21.8 0.43(0.18) 5.0 0.43 (0.25) 2.6 0.50 (0.32)
12 | 31.1 0.74 (0.4) 12.2 0.95 (0.61) 6.8 1.14 (0.77)
14 114.0 3.33(2.00) 20.6 2.02 (1.39) 7.7 2.22 (1.64)
16 | 2297.5| 108.25 (73.76)| 123.2 | 15.16 (10.95) | 58.1 11.65 (8.58)
18 * * 746.4 | 78.24(52.14) | 491.5 | 68.89 (44.94)

ing consistencies on the PLPS cost functions individuadtytin terms of pruning and
runtime. Analyzing the cases with conjoined cost functifumther, we observe that in
instances with smaller size, relaxed FDGAC* and relaxedwE2GAC* do not infer
a much better bound than relaxed GAC*. The reduction in $egpace does not com-
pensate for the overhead, and the simpler and less cosllyect|IGAC* gives better
results in such instances. On the other hand, relaxed we&kMED performs better
in terms of the number of backtracks and run-time in biggstances. Enforcement of
the stronger consistencies becomes worthwhile in suclscase

7 Polytime Integral Linear Projection-Safety

The experimental results show that it is often beneficiabigain the PLPS cost func-
tions in terms of runtime. In this section, we define a sulsctdPLPS cost functions
calledPolytime Integral Linear Projection-Saf@ILPS cost functions with which we
can give exact pruning characteristic of relaxed constésnon conjunctions, while
improvements in pruning cannot be guaranteed theoratiftaliconjunctions of PLPS
cost functions.

Definition 7.1 A polytime integral linearccost functioni?¥s is a polytime linear cost
function such that the linear relaxation of its correspamglinteger linear program
Iy always gives an integral minimum.

An immediate observation is that the exact minimum of a plgtintegral linear cost
function can be obtained by solving the linear relaxatiothefr corresponding integer
linear programs, which can be done in polynomial time [49].

19

Lemma 7.2 If Wy is a polytime integral linear cost function,
min{Wg} = approx_min{Wg}

Theorem 7.3 Minimum computation of polytime integral linear cost fuoos is poly-
nomial.

Proof Follows directly from Lemma 7.2.

Recall the notion off” projection-safety. In addition to flow-basedness [28, 30]
and polytime linearity [32], polytime integral linearitg another good properfy that
should be maintained across projections/extensions. efdrey, it makes sense to re-
quire cost functions to bBolytime Integral Linear Projection-Saf®ILPS), which is
a special subclass of PLPS cost functions.

Definition 7.4 A Polytime Integral Linear Projection-Safe (PILP&)st functioniVg
is a polytime integral linear cost function such that for Hfl; derived from a series of
projections from and/or extensions g, W{ is polytime integral linear.

We give a possible sufficient condition to identify PILPS tdosictions.

Theorem 7.5 A cost functioriVs is PILPS if it satisfies the following conditions:

1. Ws satisfies the conditions given in Definition 4.4 with the agged linear
programlIyy ., and;
2. Iy, is totally dual integral or the associated matrix G is totally unimodular.

Proof By Theorem 4.6/ is PLPS. Moreover, if a linear programtistally dual in-
tegralor its associated matrix tetally unimodular its minimum must be integral [36].
The result follows. O

One example of PILPS cost functions is ML DIFFY%" [39].
Theorem 7.6 The cost functioWV_ALL DIFF" is PILPS.

Proof AssumeS = {z1,...,x,}. The cost function WALLDIFF*"(S) can be rep-
resented by the following integer linear progrdm, with associated totally unimod-
ular matrix:

min -, cp. Ua s.t.
S Cratus <1 Va€ Dg
Uqg > 0 Va € Dg
0<cs.a<1 Va € Dg,1 <i<n

whereDg = =" D(z;). The minimum offyy, = min{W_ALLDIFF"*"(S)}.

Flow-based projection-safe cost functions [28, 30] areFSlfunctions, which we state
in the following theorem.

Theorem 7.7 Flow-based projection-safe cost functions [28, 30] are P&.

20

Proof Every flow-based projection-safe cost function has a cpmeding minimum
cost network flow problem, which in turn has a correspondirigger linear program
with a totally unimodular matrix [36]. The cost functiongtlilow problem, and the
integer linear program share the same minimum. Since tlegeéntlinear program
always has integral solutions when solved by linear relarathe result follows. [

Corollary 7.8 The following cost functions are PILPS:

W_ALLDIFF*" andW_ALL DIFF?ec [39];

W_GCC’*" andW_GCC'* [48];

W_SAME"“" [48];

W_REGULARY"" [38, 48] andW_REGULAR®?* [48], and;
W_AMONG"*" [47].

Proof All cost functions except WAMONG"“" [47] are flow-based projection-safe by
Lee and Leung [28, 30]. WAMONG"“" [47] can be modeled by WVREGULARY" [38]
using deterministic finite automata with the number of stggelynomial inn. The
results follow by Theorem 7.7.

8 Conjoining PILPS Cost Functions

Polytime integral linear projection-safe cost functioms mteresting since their con-
junctions are PLPS. By Lemmas 6.3 and 7.2, we have the faligpworollaries.

Corollary 8.1 SupposédVs, and Wg, are PILPS cost functions. The conjunction
Wconj = Wsl 57 W52 is PLPS.

Corollary 8.2 SupposéVs is PILPS, andx-consistency is one of GAC*, FDGAC*
and weak EDGAC*. Relaxeg-consistency omlg is equivalent tax-consistency on
Wsg.

In general, it is NP-hard to compute the minimum of the coofiom of overlap-
ping PILPS cost functions, since the conjunction of theiresponding linear pro-
grams may not always give an integral minimum [49]. As conjions of PILPS cost
functions remain PLPS, linear programming techniquesaille approximated mini-
mum to be computed efficiently, and relaxed forms of exacsisb@ncies can thus be
enforced. We have the following result when relaxed coesists are enforced on
the conjunction of PILPS cost functions compared to theesponding (non-relaxed)
consistencies enforced on the individual cost functions.

Suppose we are given a WCS®;.ps = (X,D,Cprrps, k), where each cost
function Ws € Cprrps is PILPS with corresponding integer linear progrdm, .
We show that relaxed (FD)GAC* and relaxed weak EDGAC* on thejagined WCSP
Pprrps, defined asP.,,;, are strictly stronger than (FD)GAC* and weak EDGAC*
on individual cost functions itPp; 1, pg respectively by the following theorem.

Theorem 8.3 Suppose-consistency is one of GAC*, FDGAC* and weak EDGAC*.

21

1. a-consistency ot is strictly stronger than relaxed-consistency o, ;
2. Relaxeda-consistency onP..,; is strictly stronger thana-consistency on
Pprrps.

Proof Since relaxed consistencies are the weaker forms of exaststencies, Result
1 holds.
We prove Result 2 on GAC*, while those for other consisteneie similar.
Assumel,,; is relaxed GAC*, butPp; 1, pg is not GAC*. There exists a variable
x; € X with a valuea € D(z;) and a cost functio®Vs € Cprrps in Pprrps Such
thatmin{Wg(¢) | {[z;] = a A€ € L(S)} > 0. Since all cost function®s € Cprrps
are PILPS,

approx_-min{Ween; | [z;] =a Al e L(S)}
®Wsecszps approx-min{Wg | {[x;] =a ANl € L(S)}
min{Wg(¢) | l[x;] =ant e L(S)} >0

v

Ws€eCprLprs

Thus,a cannot have any simple support andcannot be relaxed GAC* with respect
to Wconj in Pconj-

The same counter example as in the proof of Theorem 6.5 cam tslad the con-
verse is not true. The result follows. O

We further give theoretical results to support Theorem 8\& show that when
compared withP.,,;, an exponential number of extra steps are needed during the
branch-and-bound search &%, pg to discover the same bound. This example is
similar to the one given by Bessiegeal.[10].

Theorem 8.4 Supposev-consistency is one of GAC*, FDGAC* and weak EDGAC*.
There exists a WCSPp; 1, ps such that if we enforce relaxeg-consistency o,

and a-consistency orPp;rps in branch-and-bound search, an exponential size of
search tree is needed to be explored foi;; ps to infer the same minimum cost as in
the case of.o;.

Proof We prove the part for relaxed GAC*. The proofs for the othersistencies are
similar. Consider a WCSP};; pg = (X UY U Z,D,Cprrps, k), Where,

o X ={z1,...,z. }, Y ={v1,...,van}, Z ={21,. .., Zn };

e D(x;) =[1,2n—1]forz; € X, D(y;) = [1,4n — 1] fory; € Y, andD(z;) =
[2n,4n — 1] for z; € Z;

e Cprrps = {W-ALLDIFF*" (X UY'), W_ALLDIFF*" (Y U Z)}.

Consider the WCSIP/ . = (X UY U Z,D,Ceonj, k) WhereCeon; = {Weon; }
andWeon; =W_ALLDIFFY* (X U Y)&W_ALLDIFF" (Y U Z). The former gives
an increase off’z by 1,which can be inferred by enforcing relaxed GAC* 6,
In Py, pg. €Very subset ofi or fewer variables has at lea&t — 1 values in their
domains, and every subsetioft 1 to 3n variables hadn — 1 values in their domains.
Thus, to infer an increment 6V by 1 in Pp;; pg by enforcing GAC* onCprrps,

we must instantiate at least— 1 variables. O

22

An immediate application of Theorem 8.3 is on existing glamst functions with
polytime minimum computation which we have mentioned ab&e note that their
dedicated polynomial time algorithms are usually more iefficthan linear program-
ming approaches. In many cases, however, the minimum catiputor their con-
junctions is NP-hard. For example, Bessietal. [10] show the above result on the
hard ALL DIFF constraints [27] and it can be generalized to theAM. DIFFY*" [39],
W_ALLDIFF?ec [39], W_.GCC"?" [48], W_.GCC' [48], and W.SAME %" [48] cost
functions. Régin [42] also shows the above result on thd AafONG [6] constraints.
The result can be generalized to the AMIONGY*" [47], W_REGULARY*" [38, 48],
and W.REGULAR®¥ [48] cost functions.

Theorem 8.3 suggests that enforcing the relaxed consistean the conjunction
of such PILPS cost functions can be more efficient and worilewthan handling
them individually using exact consistencies. By propawggtihe conjunction of PILPS
cost functions, extra pruning opportunities can be discaevhich may reduce more
search space than propagating the individual cost funstion

In the next section, we show by experiments that modelingfoostions as PILPS
cost functions and propagating their conjunctions are matfieient then propagating
them separately.

9 Experimental Results

In this section, we report experiments on PLPS and PILPSfoostions using the
same settings used in Section 6. We demonstrate the effyjc@raur framework by
comparing performances against flow-based projectiom-sa$t functions [30] and
integer linear programming. Again, the average number ckipacks (bt) and the
average runtime in seconds (time) for solved cases aretegpdi/e put an asterisk (*)
for an entry if the execution of one of the 10 instances exsdled timeout of 3600
seconds, and bold the best results for each benchmark.

9.1 Using PLPS cost functions

Ouir first set of experiments aims at demonstrating the féigidnd efficiency of PLPS
cost functions and their conjunctions. We observe that $8hiS cost functions can
be decomposed into flow-based projection-safe cost fumgtion which we can en-
force exact consistencies using flow algorithms [28, 29, 3@pwever, flow-based
projection-safe cost functions are also PLPS (actuallyné&PS) by Theorem 7.7.
Exact consistency can also be maintained using our linesgramming approach.
Last but not least, we can maintain exact consistencies ¢*SRitost functions and
their conjunctions by the integer programming approach.

We thus consider the following 6 possible scenarios for dsafchmark. Each
scenarioincludes three components: the model, relaxed versus ewasistencies,
and algorithms used.

(a) modeling by individual PLPS cost functions and enfagaialaxed consistencies
using a linear programming approach;

23

(b) modeling by individual PLPS cost functions and enfogo@xact consistencies by
computing exact minimum using an integer linear prograngnaipproach;

(c) modeling by conjoined PLPS cost functions and enforcalgxed consistencies
using a linear programming approach;

(d) modeling by conjoined PLPS cost functions and enforeixact consistencies by
computing exact minimum using an integer linear prograngmaioproach;

(e) (if possible) modeling by the flow-based projectionesaist functions obtained by
decomposing the PLPS cost functions used in (a), and enfpesiact consisten-
cies using flow algorithms, and;

(f) (if possible) modeling by the flow-based projectionesabst functions obtained by
decomposing the PLPS cost functions used in (a), and enfpesiact consisten-
cies using linear programming approach.

For each benchmark, we do the following micro comparisorasiiition to identi-
fying the best approach. First, we compare scenarios (a)stda) and (c) against (d)
to see the trade-offs between higher pruning of the integegramming approach ver-
sus lower overhead of the linear programming approach. régahen possible, we
compare scenarios (e) against (f) to see the overhead ofgalllinear programming
solver when flow-based algorithms are available to compaeteeonsistencies in both
cases. Third, we compare (a) against (c) and (b) againsb (sBe the power of con-
junction under the same consistency enforcement. Fougltampare (e) against (a)
and (c) to see the advantage of the PLPS approach in modetingyre complex cost
functions over the flow-based cost functions.

9.1.1 Generalized Car Sequencing Problem

Our first benchmark is the Generalized Car Sequencing Rrobtéscribed at the end
of Section 6. In scenarios (a) and (b), we use individuaBWbING Sum?c¢ cost func-
tions in the model, whereas the BLIDING Sum?ec cost functions are conjoined into
one cost function in scenarios (c) and (d). In scenariosr@)8, W_SLIDING Sumdee
are decomposed into multiple \Sumv cost functions, which are in turn modeled by
the flow-based projection-safe WEGULARY*" [48] cost functions.

Results are shown in Table 2. We observe that enforcingg#raconsistencies can
give better performance in general. However, in scenafipKDGAC* gives better
runtime in scenario (d) when = 10. In scenario (c), relaxed GAC* can outperform
relaxed FDGAC* and weak EDGAC*, even relaxed GAC* is a weab@nsistency.
The reason is that the better lower bound inferred by stnoogesistencies may not
compensate for the extra overhead in comparison to weakwistencies when the
instances are small and relatively easier to solve. Howesgdhe instances grow larger,
stronger consistency is more beneficial as the lower bouiedréd is good enough to
compensate the extra overhead.

Scenario (b) gives slightly better results in terms of thenhar of backtracks
than (a). Exact consistencies are enforced in scenarioy(t)ebinteger programming
approach and give better bounds. We observe that enforgagt eonsistencies by
integer programming requires much more time than enforttiegcorresponding re-
laxed consistencies by linear programming. This becomegsitiminating factor of

24

the runtime, as shown by the CPLEX processing time. Howelierbounds inferred
after such great effort are not good enough to compensatextre time needed. As
observed, scenario (b) can prune the search space for &8k 28 times, but the run-
time increases up t®3 times more than (a). We also observe that the reduction of
backtracks becomes smaller and the increase in runtimevigcgreater when the in-
stances grow larger. Similar results can be found when wepeoascenarios (c) and
(d). As observed, scenario (d) can prune the search spatssfothanl .16 times, but

the runtime increases up 20 times more than (c).

Scenarios (e) and (f) are modeled by theREGULARY®" cost functions. Both
models give the same number of backtracks, but scenariaufpgdorms (f) in terms
of runtime. According to Corollary 8.2, the linear programmapproach has the same
strength as flow-based algorithms in terms of the consigeron PILPS cost func-
tions. Thus, both scenarios give the same number of ba&ktiacevery instance.
However, calling a linear programming solver incurs higbeerheads than applying
the flow algorithm. Thus, scenario (f) take§-2.3 times longer to solve the instances.

We have already discussed in Section 6 that conjoining Plo38fanctions gives
a better lower bound in most cases. Scenario (c) prunes nmoreegyuires less time
than (a) by conjoining PLPS cost functions. When enforcietpked) weak EDGAC*,
scenario (c) prunes up tbtimes more and runs9 times faster than (a). Similarly,
scenario (d) performs better than (b) because (d) also t@RLPS cost functions.
When enforcing (relaxed) weak EDGAC*, scenario (d) prungsout times more and
runs up to62 times faster than (b). We also observe that the reductioeanchk spaces
increases when the instances grow larger.

Our approaches (scenarios (a) and (c)) give better perfurezathan the state-
of-the-art flow-based approach (scenario (e)) since sie(&@r decomposes the cost
functions used in (a) and (c). When enforcing (relaxed) WeBKsAC*, scenario (a)
runs up to2.8 times faster with number of backtracks reduced ug.2aimes of those
in (e). Scenario (c) performs much better, which runs ugio times faster with
number of backtracks reduced up 28 times. As more cost functions are used in
scenario (e), worse lower bounds are given when consigterage enforced on the
individual decomposed cost functions.

Throughout this benchmark, scenario (c) outperforms &éoscenarios. When
compared with the flow-based approach of handling global ftostions in WCSP
(scenario (e)), scenario (c) can solve the instances ap tiones faster than the flow-
based approach when (relaxed) weak EDGAC* is used. Sceftaradso outperforms
other scenarios using the (integer) linear programmingagai. It runs up ta9 times
faster than scenario (a)44 times faster than (b)18 times faster than (d), angi
times faster than (f) when (relaxed) weak EDGAC* is enfordedaddition, with our
method, large instances like = 18 can be solved within the given time limit, while
the flow-based approach cannot.

9.1.2 Magic Series Problem

The Magic Series Problem (prob019 in CSPLib) is to find a seqa@fn variables
which forms a magic series. A non-empty finite serfg®) = (so, $1,...,8n) IS
magic if and only if there are; occurrences of € S(n) for each integei ranging

25

Table 2: The generalized car sequencing problem usinBLVBING Sum?e¢

(@) W_SLIDING Sum?e¢

n Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 | 805.7 | 135.78(42.74) | 7.4 2.37 (1.23) 6.9 1.94 (0.97)
12 * * 15.1 7.17 (3.84) 14.4 4.99 (2.49)
14 * * 34.7 69.42 (39.62) 29.0 41.85 (23.53)
16 * * * * * *
18 * * * * * *
(b) W_SLIDING Sum?¢¢ with exact consistencies
n GAC* FDGAC* weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 | 724.1 | 386.60 (246.77)] 7.1 14.07 (13.12) 5.6 15.89 (14.68)
12 * * 13.0 32.46 (28.51) 12.4 31.06 (27.54)
14 * * 31.7 | 1107.29(1078.93)] 26.9 | 986.10 (969.25)
16 * * * * * *
18 * * * * * *
(c) Conjoined WSLIDING Sum¢¢
n Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 21.8 0.43 (0.18) 5.0 0.43 (0.25) 2.6 0.50 (0.32)
12 311 0.74 (0.4) 12.2 0.95 (0.61) 6.8 1.14 (0.77)
14 114.0 3.33 (2.00) 20.6 2.02 (1.39) 7.7 2.22 (1.64)
16 2297.5 108.25 (73.76) | 123.2 15.16 (10.95) 58.1 11.65 (8.58)
18 * * 746.4 78.24 (52.14) 491.5 68.89 (44.94)
(d) Conjoined WSLIDING SUM?€ with exact consistencies
n GAC* FDGAC* weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 | 203 4.83 (4.52) 438 2.16 (1.96) 25 2.21 (2.05)
12 | 295 5.13 (4.78) 11.3 4.27 (3.91) 6.5 3.72 (3.43)
14 103.6 | 104.97 (103.60)| 18.2 27.33 (26.61) 7.1 15.79 (15.03)
16 * * 106.2 298.70 (294.58) 54.6 | 205.13 (202.46)
18 * * * * * *
(e) W_REGULAR"“" with exact consistencies using flow algorithms
n GAC* FDGAC* Weak EDGAC*
bt time bt time bt time
10 | 2166.0 66.45 8.6 6.80 7.9 4.34
12 * * 30.4 24.39 28.3 14.37
14 * * 202.6 57.20 180.0 43.41
16 * * * * * *
18 * * * * * *
(f) W_REGULAR"*"
n Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
10 | 2166.0 125.58 8.6 12.78 (6.05) 7.9 10.17 (4.07)
12 * * 30.4 41.67 (20.32) 28.3 31.20 (14.07)
14 * * 202.6 122.78 (60.61) 180.0 81.04 (34.37)
16 * * * * * *
18 * * * * * *

26

from O ton. For exampleS(6) = (3,2,1,1,0,0,0) is an example of a magic series as
there are three 0's, two 1's, a 2, a 3, and no 4, 5, and{).

To model this problem, a sequence of variatfles: {s;} is used to represent the
series. For each variable, we place aB&&CC'*" (S, s;) cost function (please refer to
the Appendix) to restrict the occurrences of each value. ¥geime preferences over
variable values, which are modeled as table cost functiorscenarios (a) and (b), we
use the individual WEGCC*" cost functions in the model, whereas in scenarios (c)
and (d), the WEGCC’®" cost functions are conjoined into a single cost function.

Definition 9.1 The cost functioWW_AMONG_VAR"*"(S,n, V') returns the cost of a
tuplel € £L(S U {n}) as:

W_AMONG_VAR""" (S, n,V)(¢) = |£[n] — occ(V, £]S])]
whereoce(V, £) = [{i | £[z;] € V'}|.

In scenarios (e) and (f), VEGCC* are decomposed into multiple
W_AMONG_VAR"?" cost functions, which are in turn modeled by the flow-based
projection-safe WREGULAR"“" [38, 48] cost functions.

Results are shown in Table 3. We observe that enforcinggéroconsistencies can
give better performance. With similar reasoning as in tleeious section, scenarios (a)
and (c) give higher number of backtracks but require less tarsolve than (b) and (d)
respectively. Scenario (b) can reduce the search spacesttiar .13 times, but the
runtime increases up tbr times more than (a). Similarly, scenario (d) can reduce the
search space for less thari3 times, but the runtime increases up8®times more
than (c).

Again, scenario (f) gives the same number of backtracks)dsuferequires more
time to solve, due to the higher overhead in solving lineagpams. Scenario (f) takes
12 times longer to solve the instances, and unable to solvarinss withm > 15 within
the given time limit.

Conjoining PLPS cost functions also gives better resulthisbenchmark, as ob-
served in Table 3. Scenarios (c) and (d) give higher numbbaoktracks but require
less time to solve than (b) and (d) respectively. Scenajibdcktracks up td.1 times
less and run$2.5 times faster than (a). Similarly, scenario (d) reduces tiraber of
backtracks up t8.8 times more, and ruih3.5 times faster than (b).

When compared with the flow-based approach (scenario (&))giconjunctions
of cost functions (scenarios (a) and (c)) gives better tesuthen instances are large.
Scenario (a) can reduce the number of backtracks g@ttmes more than (e). When
comparing the runtime, scenario (c) outperforms (e) inadles. Scenario (c) runs up
to 149 times faster with search space reduction upddmes more than (e). However,
results vary between scenarios (a) and (e). when applyffeyeint consistencies with
differentinstance sizes. With GAC*, scenario (a) runsdagtan (e), and able to solve
larger instances within the given time limit. With strongensistency like FDGAC*
and EDGAC?*, scenario (e) runs faster than (a) for smalletainses, due to the extra
time required to enforce the consistency. As the instanowgiarger, we observe
scenario (a) is much more beneficial. With FDGAC*, scenaapdutperforms (e)
whenn > 18. With weak EDGAC*, scenario (a) can outplay (e) when> 15. We
also observe that scenario (a) runs up.totimes faster than (e) when (a) outplays (e).

27

Table 3: The magic square problem using®&&CC’*"

@ W.EGCC™™

n Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 2713.2 229.41 (116.53)| 125.7 85.03 (31.29) 87.9 17.20 (7.26)
15 5830.0 | 359.79 (208.21)| 201.3 179.06 (81.28) 120.8 35.66 (16.38)
18 * * 352.6 218.67 (95.47) 283.9 143.69 (63.91)
21 * * * * * *
24 * * * * * *
(b) W.EGCC"“" with exact consistencies
n GAC* FDGAC* weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 * * 113.0 792.01 (740.13) 83.1 190.13 (180.34)
15 * * 186.2 1036.53 (941.22)| 110.2 517.90 (498.31)
18 * * * * 251.2 | 2391.05 (2320.94)
21 * * * * * *
24 * * * * * *
(c) Conjoined WEGCC™®"
n Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 | 357.4 6.69 (2.11) 735 1.88(0.87) 355 1.82 (0.82)
15 | 1242.0 29.15 (12.36) 96.1 341 (1.71) 59.1 2.16 (1.14)
18 | 2654.2 | 65.22(27.80) | 136.0 5.43(2.53) 69.7 3.55 (1.83)
21 | 5646.2 | 171.26(83.80) | 196.9 8.14 (4.32) 934 6.24 (3.34)
24 | 22100.4 | 755.12 (383.41)| 831.6 45.91 (26.08) 2114 19.26 (9.59)
(d) Conjoined WEGCC’“" with exact consistencies
n GAC* FDGAC* weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 316.5 503.68 (499.27)[70.2 136.50 (135.61) 33.9 78.21 (77.24)
15 * * 93.0 187.25 (185.63) 56.7 116.04 (115.09)
18 * * 134.1 | 351.94 (349.18) | 66.1 176.95 (175.36)
21 * * 183.2 719.61 (715.90) 90.5 382.80 (379.53)
24 * * * * * *
(e) W_REGULAR"?" with exact consistencies using flow algorithms
n GAC* FDGAC* Weak EDGAC*
bt time bt time bt time
12 13028.0 288.03 182.0 20.17 154.9 14.59
15 * * 497.1 105.17 314.3 57.12
18 * * 1166.4 667.77 1094.0 529.10
21 * * * * * *
24 * * * * * *
(f) W_REGULAR"“"
n Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 * * * * 154.9 179.16 (73.92)
15 * * * * * *
18 * * * * * *
21 * * * * * *
24 * * * * * *

28

Scenario (c) also outperforms other scenarios in additofe}, which uses the
flow-based approach. Scenario (c) runs ugdimes faster than (a}75 times faster
than (b) 61 times faster than (d), art times than (f). Under scenario (c), the instances
can be solved up td0.5 times faster than (ay,1.3 times faster then (d), and.4 times
faster than (f). Scenario (c) can also solve larger instatiken = 24 within the given
time limit, which is not possible in other scenarios.

9.1.3 Weighted Tardiness Scheduling Problem

The Weighted Tardiness Scheduling Problem [34] is to findreduale ofn jobs to
be processed, and avoid two jobs processing at the same Bawhi'” job requires
a processing timg;, and to be processed without interruption. E#éhjob also has
a due datel; by which it should ideally be finished. In the problem, a setatél
available time slot§" are given to process all jobs. If a job cannot be finished éxact
on the due date, an earliness/tardiness penalty is givetwolfobs run at the same
time, a penalty is also given for extra resources.

To model this problem as WCSR,variables{z; | i = 1,...,n} with domains
T denote respectively when thi# job starts. To model earliness/tardiness penalties,
we place a unary cost functiaiiz;) on each variable;, which returng) only when
x; + p; = d;, and random non-zero values otherwise. To model penatifesihning
more than one job at the same time slot, aDASJUNCTIVEY® cost function (please
refer to the Appendix) is placed on each pair of jobs. We alacepreferences on
the starting time for each job, which can be modeled as taidé fanctions. In our
experiment, we assume the number of total available tints |50 = 4n.

The W_DISJUNCTIVE'® cost functions are modeled differently in each scenario.
In scenarios (a) and (b), we use the individualMsJUNCTIVE’® cost functions in
the model, whereas in scenarios (c) and (d), th®WJUNCTIVE’* cost functions are
conjoined into one cost function. Note that scenarios (&garé omitted, since there
are no efficient ways to decompose BNsJUNCTIVE’® into simpler cost functions to
the best of our knowledge.

Results are shown in Table 4. Again, we observe that enfgstionger consisten-
cies can give better performance. Similar to Section 9dcénarios (a) and (c) give
higher number of backtracks but require less time to solaa th) and (d) respectively.
For example, whem = 7, scenario (b) reduces the number of backtracks arilg
times more than (a), but the runtime is increased &y times. Similar results can be
found between scenarios (c) and (d). Wheg= 7, the number of backtracks in sce-
nario (c) is reduced by at most12 times, but the runtime is increased uprtbtimes
more than (d).

The results also show conjoining cost functions is bendfitiae number of back-
tracks in scenario (c) is reduced uptd times more, but the runtime is up 3ol times
faster than (a). Similarly, scenario (d) reduces the nurobleacktracks up t@.1 times
than (b). Unlike scenario (c), (d) shows its benefit on ruetonly whenn > 6. For
example, whem = 7, scenario (d) run8.9 times faster than (b).

Similar to Table 3, the results show that scenario (c) otiipers all other scenarios.
With (relaxed) weak EDGAC*, scenario (c) runs up3d times faster than (a),83
times faster than (b), angit times faster than (d). Instances with= 9 can also be

29

Table 4: The weighted tardiness scheduling problem usin®M6UNCTIVE'®

(a) W_DISJUNCTIVE’?!

n Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
5 91.0 2.77 (1.38) 45.1 2.42(1.14) 32.0 2.20(1.03)
6 1335.3 17.11 (8.75) 832.1 11.47 (5.81) 184.3 4.15 (1.74)
7 4928.1 30.40 (16.43) 2462.3 17.95 (7.91) 623.5 5.82(2.92)
8 | 13074.8| 132.92(68.32) | 4928.6 66.38 (31.06) | 1128.3 25.74 (12.58)
9 * * 11769.9 | 385.32(196.76)| 4590.6 | 141.71(74.91)
(b) W_DIsJUNCTIVE'*! with exact consistencies
" GAC* FDGAC* Weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
5 87.4 15.01 (13.63) 41.7 12.37 (11.07) 28.1 8.76 (7.58)
6 1208.9 | 140.31(131.38)| 729.9 109.42 (103.14)| 159.9 80.35 (78.19)
7 * * * * 584.2 | 738.10(735.21)
8 * * * * * *
9 * * * * * *
(c) Conjoined WDISJUNCTIVEY*!
Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
n bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
5 69.3 1.90 (0.84) 40.9 2.02 (0.95) 28.0 1.85 (0.89)
6 652.3 11.78 (5.06) 465.3 7.08 (3.48) 117.8 2.77 (1.38)
7 3563.2 20.68 (10.03) 1273.6 10.55 (4.92) 415.6 4.02 (2.08)
8 5643.8 103.83(52.92) | 2763.1 59.08 (32.89) 763.1 16.57 (8.78)
9 | 16153.9 | 582.76 (317.90)| 5018.4 | 214.50(139.42)| 1935.3 45.51 (24.37)
(d) Conjoined WDIsJuUNCTIVEY*! with exact consistencies
n GAC* FDGAC* weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
5 66.1 19.25 (17.97) 35.6 15.93 (14.28) 26.8 11.42 (10.16)
6 572.0 170.39 (163.93)| 382.3 82.35 (78.69) 116.2 20.45 (19.08)
7 * * 1137.2 | 783.59 (778.04)| 400.4 | 256.64 (254.83)
8 * * * * * *
9 * * * * * *

30

solved in scenario (c) within the given time limit by enfargiGAC* only, which is not
possible for other scenarios.

9.2 Using PILPS Cost Functions

To demonstrate the efficiency of using PILPS cost functioreszonsider existing flow-
based projection-safe cost functions which are also PIER&ct consistencies on such
cost functions can be maintained using flow algorithms. Ocarealso enforce relaxed
consistencies on their conjunctions as in the best sce(@rio Section 9.1.

We consider the following 2 scenarios for each benchmark.

(g) modeling by conjoined flow-based projection-safe casicfions and enforcing
relaxed consistencies using a linear programming appra@ach

(h) modeling by the flow-based projection-safe cost fumstiand enforcing exact con-
sistencies using flow algorithms.

To utilize the global cost functions described above, weesothe following prob-
lems by replacing the global constraints by their soft vdsaRandom preferences are
added to the instances in the form of table cost functions.

9.2.1 Car Sequencing Problem

The car sequencing problem (prob001 in CSPLib) is a speeNersion of the gen-
eralized car sequencing problem, where the cost of an opti@guip on one type
of cars is alwayd, i.e. each assembly line is only allowed to equip an opticon
at mostm; cars for every; cars. Instead of using VBLIDING Sum?e¢, overlapping
W_AMONG"" [47] cost functions are used to ensure the new restrictitmgances
with differentn are used to compare the runtime and the number of backtriackse-
nario (h), we use the individual flow-based projection-3AféAMONG"%" cost func-
tions in the model, whereas, in scenario (g), theAMoNG"?" cost functions are
conjoined into one cost function.

Results are shown in Table 5. In both scenarios, (relaxedkVE#EDGAC* gives
better performance with exceptions. In scenario (h), m=ta withn = 12 andn = 14
can be solved faster with FDGAC* than weak EDGAC?*, due to tighloverhead of
weak EDGAC*. However, weak EDGAC* outruns FDGAC* when> 16, as the
pruning in the search space compensates the extra overhead.

We also observe that conjoining cost functions are benéfitian instance is large.
Conjunction gives stronger pruning power. Scenario (g) reluce the number of
backtracks up t&00 times more than (h). However, conjunction also incurs extra
overhead, which cannot be compensated when the instaressnall. For example,
whenn = 12, scenario (g) runs slower than (h). When the instance siaegrthe
reduction in the search space is large enough to compehsated¢rhead. For example,
whenn = 18, scenario (g) runs up t0 times faster than (h).

31

Table 5: The car sequencing problem with AWONGV*"

(g) Conjoined WAMONGY*"

" Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 159.1 3.30 (1.60) 11.9 0.66 (0.41) 8.4 0.86 (0.54)
14 326.4 8.43 (4.23) 13.8 2.59 (1.76) 11.1 1.38(0.87)
16 | 1366.2 | 44.96 (25.25) 16.5 3.44 (2.17) 13.1 2.49 (1.66)
18 1875.1 89.45 (54.23) 21.3 8.27 (5.59) 18.4 3.74 (2.36)
20 * * 239.2 240.13 (152.24) 78.0 61.29 (43.05)

(h) W_.AMONG"“" with exact consistencies using flow algorithms

n GAC* FDGAC* Weak EDGAC*

bt time bt time bt time
12 1582.7 0.30 19.7 0.02 18.4 0.04
14 | 58528.6 14.69 43.5 0.08 42.9 0.15
16 * * 836.8 6.40 561.9 2.46
18 * * 10657.8 86.10 9129.9 75.04
20 * * * * * *

9.2.2 Examination Timetabling Problem

The examination timetabling problem is to find a scheduleifexaminations ovet
days fors groups of students. Each group of students is required ¢éncih partic-
ular set of examinations. The aim of the problem is to minertize total number of
days in which one student attends more than one examindwomodel this problem,
we usen variables{z; | i = 1,...,n} with domaind. Each variablez; represents
when thei!” examination is scheduled on. For each group of studentsdatig a
particular set of examination§e, . .., e, }, @ W.ALLDIFFY*"(.S) [39] cost function,
whereS = {z.,,...,z., }, is used to denote the violation cost of students having to
attend two or more examinations on the same day. We also aflekpnces on exam-
inations. For example, some examinations are preferreed srbeduled on the same
day. The preferences can be modeled as table cost functidadix s = n/2 and
d = n/2, and use different in our experiment. In scenario (h),we use the individual
flow-based projection-safe WLLDIFF??"(.S) cost functions in the model, whereas in
scenario (g), the WALLDIFFY*"(S) cost functions are conjoined into one cost func-
tion.

Results are shown in Table 6. In most cases, (relaxed) we&D outperforms
all others consistencies. Although we find that relaxed FO&a8utplays relaxed weak
EDGAC* whenn = 20 in scenario (g), th@.12-second difference is insignificant. By
conjoining PILPS cost functions, scenario (g) outperfofims Scenario (g) prunes
the search space up 1d4 times more and runs up 22 times faster than (h). We
also observe that the instances with> 30 can be solved within the time limit in
scenario (g) but not in (h).

9.2.3 Fair Scheduling

The fair scheduling problem [5] is to schedul@ersons inta shifts overd days such
that the schedule i&ir, i.e. each person should be assigned to the same number of the
ith shift. We model the problem byd variables{z;; | i = 1,...,nAj =1,...,d}

32

Table 6: The soft examination timetabling problem with AV LDIFF""

(g) Conjoined WALLDIFFY4"

Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*
" bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
20 | 8921.7 | 425.84(253.94)| 285 4.18 (2.83) 12.3 4.30 (2.87)
25 * * 51.8 17.67 (10.95) | 22.8 16.14 (9.37)
30 * * * * 47.6 50.86 (28.33)
35 * * * * 68.0 91.75 (46.58)

(h) W_ALLDIFFY®" with exact consistencies using flow algorithms

GAC* FDGAC* Weak EDGAC*

" bt time bt time bt time
20 * * 3594.8 77.65 306.7 10.16
25 * * 9024.0 390.81 2530.5 138.74
30 * * * * * *
35 * * * * * *

with domains. Each variable{z;;} denotes the shift for thé" person on the‘"
day. We use the WBAME " ({xp, ; | 7 = 1,...,d},{zp,; | = 1,...,d}) [48]
cost functions between each pair of perspnandp, to model the restrictions. In our
experiment, we also add preferences on personal choigess@meone may prefer to
be scheduled on some particular shifts. Such prefereneesiadeled by table cost
functions. We fixs = 5 andd = 5 and use different, in our experiment. In sce-
nario (h), we use the individual flow-based projection-8&feSAME " cost functions
in the model, whereas in scenario (g), theSANMEY*" cost functions are conjoined
into one cost function.

Table 7: The soft fair scheduling problem with 8AME"*"

(9) Conjoined WSAME "

n Relaxed GAC* Relaxed FDGAC* Relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
6 | 1693.8 | 110.22(43.25)| 74.3 11.26 (5.29) 24.1 7.94 (3.30)
8 * * 115.9 25.32 (12.68) 57.1 14.55 (7.23)
10 * * 194.5 83.34 (47.83) 76.6 44.23 (21.34)
12 * * 783.9 | 590.81(261.74)] 175.3 | 86.42 (40.63)

(h) W_SamME"“" with exact consistencies using flow algorithms

" GAC* FDGAC* Weak EDGAC*

bt time bt time bt time
6 * * 292.7 13.42 163.7 9.15
8 * * 1292.2 89.53 793.6 50.73
10 * * 5063.8 292.07 1154.6 189.47
12 * * * * * *

Results are shown in Table 7. In all scenarios, (relaxedkviEaGAC* outper-
forms other consistencies. Similar to Table 6, scenarioyg$ up tod.3 times faster
and prunes up t@6 times more than (h). Larger instance like= 12 can also be
solved within the given time limit in scenario (g), while & hot the case in (h).

33

9.2.4 Comparing the WCSP and the Integer Linear programmingApproaches

Earlier, we use slightly easier problem instances so thatamemake sensible com-
parisons with the weaker consistencies and the flow-basgléimentations. Note that
integer linear programming solver can also solve our berchsncompetitively. We
now use more difficult instances with more preferencesétabkt functions) to com-
pare the performances of modeling the problem witleger linear programgILPSs)
solved by the IBM ILOG CPLEX Optimizer 12.2 with both of theesarios above.
Those instances consist of non-linear parts, which arergtetkby adopting the fea-
tures of the instances used by Allouckeal. [4]. We use the encoding method of
Koster [23] to formulate binary cost functions as integee&r programs, while global
cost functions are formulated as integer linear progranmguse similar method as
for PILPS cost functions.

Table 8: Comparison with integer linear programming
(a) Soft car sequencing

. (h) & weak EDGAC* | (g) & relaxed weak EDGAC* | ILPs

bt time bt time (CPLEX) time
12 1169.6 2.827 66.5 4.10 (2.90) 63.28
14 4663.7 18.18 664.4 8.71 (5.83) 469.09
16 | 41383.1 310.87 4087.5 20.59 (8.99) *
18 * * 30658.0 117.17 (20.68) *
20 * * 322598.7 | 1517.01 (28.94) *

(b) Soft examination timetabling

" (h) & weak EDGAC* | (g) & relaxed weak EDGAC*| ILPs

bt time bt time (CPLEX) time
20 | 15009.0 18.24 14881.7 18.21 (3.38) *
25 | 24852.6 73.87 24191.8 47.81 (12.78) *
30 | 28991.1 313.56 27597.3 98.13 (33.88) *
35 | 58346.6 | 1110.21 | 54515.3 212.08 (59.47) *

(c) Soft fair scheduling
(h) & weak EDGAC* | (g) & relaxed weak EDGAC* ILPs

" bt time bt time (CPLEX) time
6 8493.2 47.43 7279.5 21.25 (4.99) 1339.19
8 16553.1 133.07 13637.9 79.43 (24.34) *
10 | 39838.9 | 632.94 29654.8 141.45 (42.04) *
12 89478.5 | 2215.57 | 59231.7 317.94 (98.46) *

Results are shown in Tables 8. We only show the results forasaes (g) and (h)
using (relaxed) weak EDGAC* as they perform the best amoegother (relaxed)
consistencies in the same scenario under the same settinglarSo Tables 5, 6,
and 7, our WCSP scenario using conjunctions of PILPS costifums (scenario (g))

34

runs faster and prunes more than the scenario with indivichst functions with the
flow-based approach (scenario (h)). We observe that, inasice(g), the number of
backtracks can be reduced upltimes, and the solution can be found up totimes
faster. On the other hand, our scenarios run faster in gewden compared with
the ILP models using CPLEX as the integer linear programesol¥¥or example, in
soft car scheduling problem, the instances can be solvedrisognario (g) up t63
times faster than using the ILP approach. In soft fair schieduscenario (g) gives the
optimal solution$3 times faster than using the ILP approach. We also observintha
soft examination timetabling, modeling by ILP fails to selall instances at the given
time limits, while WCSP can.

10 Related Work

Our research extends previous work by (a) also considetoizpycost functions with
no known polynomial time algorithms for minimum cost congdign, and (b) improv-
ing pruning by considering conjunctions of global cost fiimas.

Lee and Leung [28, 30] make practical the processing of glodst functions by
defining the framework off” projection-safety They study the special case when
T is flow-basedness, and propose efficient flow algorithms féoreing GAC* and
FDGAC* of global cost functions. Lee and Leung [29] define gk efficient algo-
rithms for the enforcement of weak EDGAC*, which is strontfean both GAC* and
FDGAC*. Leeet al.[31] give theoretical properties afprojections with respect to
tractable projection-safety, and propose new consistenéyrcement algorithms for
polynomially decomposable cost functidoased on dynamical programming.

On the other hand, Allouchet al. [3] give examples on the global cost functions
that can belecomposed into binary or ternary table cost functiohisey show that if
the hyper-graph representing the cost functions from deosing a global cost func-
tion is Berge-acyclicenforcing Terminal Directional Arc Consistency [3] and Mal
Arc Consistency [14, 15] on the decomposed cost functioddtanoriginal cost func-
tion are equivalent

11 Conclusions

Our contributions are five-fold. First, we define thelytime linear projection-safe
(PLPS) cost functionbased on theimteger linear programformulations with size
polynomial in their number of variables and maximum domaae.s The minima of
PLPS cost functions can be computed by solving their relateder linear programs.
We also give sufficient conditions for polytime linear prijen-safety. Second, we
proposerelaxed consistenciesn PLPS cost functions, which are weaker but the en-
forcement can be much more efficient compared to the exacttemarts. The ap-
proximated minimum of PLPS cost functions can be computeaidpyoximating their
related integer linear programs with linear relaxation. §uee proofs for the feasi-
bility of projecting the smallest integral cost which is ness than the approximated
minimum. Thus, we can define the relaxed version for the es@tsistency notions,

35

including GAC*, FDGAC*, and weak EDGAC*, by reformulatinpeir requirements
based on the minima of a set of cost functions replaced by dppiroximated minima.
Third, we propose the use of the conjunctions of PLPS costtimms. We show that
the conjunctions of PLPS cost functions remain PLPS, sa#ated consistencies can
still be applied on them. We show that propagating on a cartjon using the exact
consistencies is stronger than propagating on the indiidast functions. Although
it is not always true when relaxed consistencies are endiotbe benefits of using the
conjunctions of PLPS cost functions are shown experimgnteburth, we defin@oly-
time integral linear projection-safe (PILPS) cost functipwhich is a subclass of PLPS
cost functions. PILPS cost functions are special PLPS eogttions and their exact
minima can be computed by solving their corresponding mitéigear programs with
linear relaxation. In addition, the minimum of an PILPS ftion can be computed in
polynomial time. The same is not necessarily true for thgurariions of PILPS cost
functions, which we show to be still PLPS. Our central ressahiow that propagating
on individual PILPS cost functions using the exact (or rethgince they are the same)
consistencies is weaker than propagating on the conjunofi@ll these PILPS cost
functions using the relaxed versions of the consistenagibish is in turn weaker than
propagating on the conjunction using the exact consistenbg latter is NP-hard in
general. Therefore, it is always more desirable to progagatconjunctions of PILPS
cost functions using even just relaxed consistencies. &belts are useful when we
have cost functions whose minimum computation is polynotimee but that for con-
junctions of such cost functionsis not. We show that flowelolgsrojection safe [28, 30]
cost functions are PILPS, but minimum computation of themjanctions is NP-hard
in general. Fifth, we demonstrate the practicality of oanfework with empirical re-
sults. We conduct experiments on several examples of PLEBI&PS cost functions,
together with their conjunctions, against the current apphes as well as pure inte-
ger programming approach. We observe orders of magnitudenitime and search
space improvements when the conjunctions of PLPS or PILBSanctions are used
together with relaxed consistencies. The results agréeawit theoretical predictions.

We highlight three possible directions of future work. Thistfquestion is whether
we can enhance the relaxed consistencies for strongerstemsy notions like op-
timal soft arc consistency (OSAC) [16, 15], virtual arc dstency (VAC) [14, 15]
andk-consistency [13]. Currently, we only give the relaxed i@rs of GAC* [44],
FDAC* [28, 30], and weak EDGAC* [29, 30]. Those consistenotions can be re-
laxed by replacing the minima into approximated minima igiticonditions. It might
not be straightforward to relax consistency notions witifiedént kinds of conditions
and those involving rational costs such as OSAC [16, 15] aA@ Y14, 15]. Itis
interesting to see if there are different ways to relax thes@iency notions. The sec-
ond question is whether we can give exact characterizatibtiee conditions leading
to PLPS and PILPS cost functions. Currently, we only givdicieht conditions but
necessary conditions may allow us to identify many moreuwlsefd yet efficiently im-
plementable global cost functions. The third question toakthe possible connection
between P(I)LPS cost functions and the well-studied clédssibmodular functions,
which might the required integrality property.

36

Acknowledgements

We are grateful to the anonymous referees for their consteucomments. The work
described in this paper was substantially supported byt @atiK413710 from the

Research Grants Council of Hong Kong SAR and grant F-HKBftom the Con-

sulate General of France of Hong Kong and the Research Geantscil of Hong Kong

SAR.

References

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in Order tdv@oComplex
Scheduling and Placement Problenmdathematical and Computer Modelling
17(7):57-73, 1993.

[2] M. Akplogan, S. de Givry, J.-P. Métivier, G. Quesnel,Joannon, and F. Garcia.
Solving the Crop Allocation Problem using Hard and Soft Gaists. RAIRO -
Operations Researcd7(2):151-172,2013.

[3] D. Allouche, C. Bessiere, P. Boizumault, S. de GivryQGitierrez, S. Loudni,
J.-P. Métivier, and T. Schiex. Filtering DecomposablelfalcCost Functions. In
Proceedings of AAAI'LZbages 407-413, 2012.

[4] D. Allouche, S. Traoré, I. André, S. de Givry, G. Katdos, S. Barbe, and
T. Schiex. Computational Protein Design as a Cost Functiemvbirk Optimiza-
tion Problem. InProceedings of CP’12ages 840-849, 2012.

[5] N. Beldiceanu, M. Carlsson, and J.X. Rampon. Global @aist Catalog. Tech-
nical Report T2005-08, Swedish Institute of Computer Sme2005. Available
at http://www.emn.fr/x-info/sdemasse/gccat/.

[6] N. Beldiceanu and E. Contejean. Introducing Global Gasts in CHIP.Math-
ematical and Computer Modelling0(12):97-123, 1994.

[7]1 N. Beldiceanu, I. Katriel, and S. Thiel. Filtering Algttms for the Same Con-
straints. InProceedings of CPAIOR’'Q$ages 65-79, 2004.

[8] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The Clexify of Reasoning
with Global ConstraintsCONSTRAINTSL2(2):239-259, 2007.

[9] C. Bessiere and P. V. Hentenryck. To Be or Not to.Bea Global Constraint. In
Proceedings of CP'03ages 789-794, 2003.

[10] C. Bessiere, G. Katsirelos, N. Narodytska, C.-G. Qaeémand T. Walsh. Propa-
gating Conjunctions of AL DIFFERENTConstraints. IfProceedings of AAAI'1L0
pages 27-32, 2010.

[11] C. Bessiere and J.-C. Régin. Arc Consistency for @aréonstraint Networks:
Preliminary Results. Iiroceedings of IJCAI'9/pages 398-404, 1997.

37

[12] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. kéas. Radio Link
Frequency AssignmenCONSTRAINTS4(1):79-89, 1999.

[13] M. C. Cooper. High-Order Consistency in Valued Coristr&atisfaction.CON-
STRAINTS10(3):283-305, 2005.

[14] M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, and Mtn&ki. Virtual
Arc Consistency for Weighted CSP. Rroceedings of AAAI'O%ages 253-258,
2008.

[15] M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zgfin and T. Werner.
Soft Arc Consistency Revisitedirtificial Intelligence 174(7-8):449-478, 2010.

[16] M. C. Cooper, S. de Givry, and T. Schiex. Optimal Soft AZonsistency. In
Proceedings of IJCAI'O/pages 68—73, 2007.

[17] M. C. Cooper, M. de Roquemaurel, and P. Régnier. A WeidICSP Approach
to Cost-Optimal PlanningAl Communications24(1):1-29, 2011.

[18] M. C. Cooper and T. Schiex. Arc Consistency for Soft Qoaints. Artifical
Intelligence 154:199-227, 2004.

[19] G. B. Dantzig.Linear Programming and ExtensionBrinceton University Press,
1963.

[20] S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa. Esigtal Arc Consistency:
Getting Closer to Full Arc Consistency in Weighted CSPs.Ptoceedings of
IJCAI'05, pages 84-89, 2005.

[21] J. N. Hooker.Integrated Methods for Optimizatiospringer Science + Business
Media, LLC, 2007.

[22] 1. Katriel and S. Thiel. Complete Bound Consistencytfoe Global Cardinality
Constraint. CONSTRAINTSL0(3):115-135, 2005.

[23] A. M. Koster. Frequency Assignment: Models and AlgorithrB&D thesis, Uni-
versity of Maastricht, 1999.

[24] J. Larrosa. Node and Arc Consistency in Weighted CSP.Prbteedings of
AAAI'02, pages 48-53, 2002.

[25] J. Larrosa. Inthe Quest of the Best Form of Local Corsisy for Weighted CSP.
In Proceedings of IJCAI'03pages 239-244, 2003.

[26] J.Larrosaand T. Schiex. Solving Weighted CSP by Maiirtg Arc Consistency.
Artificial Intelligence 159(1-2):1-26, 2004.

[27] J.-L. Lauriere. A Language and a Program for Stating@olding Combinatorial
Problems Artificial Intelligence 10(1):29-127, 1978.

38

[28] J. H. M. Lee and K. L. Leung. Towards Efficient Consistgmforcement for
Global Constraints in Weighted Constraint Satisfaction.Ptoceedings of 1J-
CAI'09, pages 559-565, 2009.

[29] J.H. M. Lee and K. L. Leung. A Stronger Consistency foft&lobal Constraints
in Weighted Constraint Satisfaction. Rroceedings of AAAI'L(pages 121-127,
2010.

[30] J. H. M. Lee and K. L. Leung. Consistency Techniques ftowFBased
Projection-Safe Global Cost Functions in Weighted Coindtf&atisfactionJour-
nal of Artificial Intelligence Resear¢id3:257-292, 2012.

[31] J. H. M. Lee, K. L. Leung, and Y. Wu. Polynomially Decongadle Global Cost
Functions in Weighted Constraint SatisfactionPilmceedings of AAAI'LDages
507-513, 2012.

[32] J. H. M. Lee, K.L. Leung, and Y. W. Shum. Propagating Paolyially (Inte-
gral) Linear Projection-Safe Global Cost Functions in WESRProceedings of
ICTAI'12, pages 9-16, 2012.

[33] J. H. M. Lee and Y. W. Shum. Modeling Soft Global Consitaias Linear Pro-
grams in Weighted Constraint Satisfaction. Rroceedings of ICTAI'l1pages
305-312, 2011.

[34] J. Lenstra, A.R. Kan, and P. Brucker. Complexity of MimehScheduling Prob-
lems. Annals of Discrete Mathematic$:343-362, 1977.

[35] M.J. Maher, N. Narodytska, C.-G. Quimper, and T. Walstiow-Based Propa-
gators for the SEQUENCE and Related Global Constraint®réceedings of
CP’08, pages 159-174, 2008.

[36] C. H. Papadimitriou and K. SteiglitzZCombinatorial Optimization: Algorithms
and Complexity Prentice-Hall, 1982.

[37] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Netwark®lausible
Inference Morgan Kaufmann, San Mateo, CA, 1988.

[38] G. Pesant. A Regular Language Membership Constrairfifite Sequences of
Variables. InProceedings of CP’04pages 482—-495, 2004.

[39] T. Petit, J.-C. Régin, and C. Bessiere. Specific Rilg Algorithm for Over-
Constrained Problems. Proceedings of CP’0lpages 451463, 2001.

[40] C.-G. Quimper, A. Lopez-Ortiz, P.V. Beek, and A. Gadjn Improved Algo-
rithms for the Global Cardinality Constraint. Proceedings of CP’04dpages
542-556, 2004.

[41] J.-C. Régin. Generalized Arc Consistency for Globatdinality Constraints. In
Proceedings of AAAI'9Gages 209-215, 1996.

39

[42] J.-C. Régin. Combination of Among and Cardinality Goaints. InProceedings
of CPAIOR’05 pages 288-303, 2005.

[43] F. Rossi, P. van Beek, and T. WalsliHdandbook of Constraint Programming
Elsevier, 2006.

[44] M. Sanchez, S. de Givry, and T. Schiex. Mendelian EDetection in Complex
Pedigrees Using Weighted Constraint Satisfaction Tecles3gCONSTRAINTS
13(1-2):130-154, 2008.

[45] T. Sandholm. An Algorithm for Optimal Winner Determiian in Combinatorial
Auctions. InProceedings of IJCAI'99ages 542-547, 1999.

[46] T. Schiex, H. Fargier, and G. Verfaillie. Valued Comstit Satisfaction Problems:
Hard and Easy Problems. Rroceedings of IJCAI'9pages 631-639, 1995.

[47] C. Solnon, V. Cung, A. Nguyen, and C. Artigues. The Cagqugscing Prob-
lem: Overview of State-of-the-Art Methods and Industriadse-Study of the
ROADDEF'2005 Challenge Problem.European Journal of Operational Re-
search 191(3):912-927, 2008.

[48] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Gldbaming: Flow-
based Soft Global Constraint3. Heuristics 12(4-5):347-373, 2006.

[49] L. Wolsey. Integer ProgrammingWiley, 1998.

[50] M. Zytnicki, C. Gaspin, and T. Schiex. Bounds Arc Cotesigy for Weighted
CSPs.Journal of Artificial Intelligence ResearcB5:593—-621, 2009.

40

Appendix

More Examples of PLPS Cost Functions

We give two additional examples of Polytime Linear ProjectSafe (PLPS) cost func-
tions: the WEGCC and WDISJUNCTIVE/'W_CUMULATIVE cost functions.

The W_EGCCCost Function

The EGC(GSx, Sy) global constraint [40, 22] accepts a tugles £(Sx U Sy) iff
oce(v, ([Sx]) = vy, for everyy, € Sy, whereocc(j, () is the number of occurrences
of jin ¢. Its soft variant WEGCC'*"(Sx, Sy) is defined based on the variable-based
violation measure.

Definition 1 The cost functioW_EGCC'*"(Sx, Sy) returns the cost of a tuplé €
L(Sx NSy) as:

W_EGCC (Sx, Sy)(0) = @D [tlyw] — oce(v, ([Sx))]

Y» €Sy

Note that WEGCC'*"(Sx, Sy) is NP-hard. Quimpeet. la[40] have shown that
enforcing GAC on EGCC is NP-hard.

W_EGCC*(Sx, Sy), whereSx = {z1,...,z,} andSy = {yu,,---,Yu,. }
can be modeled as a PLPS cost function. The correspondeggininear program is
defined as follows.

minZ;ll(Lj +U]) S.t.
Zi:l Cai; — (ZhED(yuj) h - Cyngh> - Lj -+ Uj =0 Vj =1...m
Dy Cowy; =1 Vv € D(;) Vi=1...n
Dy Coiwy =0 Vu; ¢ D(x;) Vi=1...n
ZheDij Cy,, =1 Vi=1l...m
LJ‘ZO,UJ‘ZO Vj:l...m
0<cp0; <1 Vi, € Sx,v; € D(x;)
0<cy, n<1 VYo, € Sy,h € Dy,
J J

Defined,, . to be the maximum domain size for the variablesia= Sx N Sy. The
corresponding integer linear program useSx| + |Sy| + 2) - dma. variables and
4-|Sy|42-|Sx |+ dmaz - (|Sx|+|Sy|) inequalities. Ifz; = v;, c;, »; = 1; otherwise
Ceiw; = 0. 1fyy, = h, Cyo, b = 1; otherwisecyvjyh =0.

For example, consider the following WCIP= {X, D, {Ws}, k}:

o X = {21,722, Ya, b };
[] D(l‘l) = D(J?Q) - {a,b}, D(ya)D = (yb) = {07 1’ 2}’
e Wg = W_EGCCU(M‘({xl, 1‘2}; {yw yb})

41

Ws(a,a,2,1) = 1sincely, — occ(a, (x1,22))| + |yp — occ(b, (z1,22))| = 1. The
corresponding integer linear program is shown as follows.

min L, +U; + Lo + Uy Sit.

Coyat Caya — Cyy 1 — 20y, 2 — L1 +U1 =0
Crrp F Cagp — Cyp 1 —2Cy, 2 — Lo +Us =0
Czi,a + Cxyb = 1
Crya+ Crob = 1
Cya,0 F Cyo1 +Cy,2 =1
Cyp,0 T Cyy 1 +Cy2 =1
Ly >0,U;>20,Ly >0,Uz >0

The W_DIsJuNcTIVE'W_CUMULATIVE Cost Function

The DISJUNCTIVE(S, IT) global constraint [21] accepts a tugles £(S) iff (¢[x;] +

pi < Lxj]) V (z;] + p; < Lx;]) for every pair ofz;, x; € S andp;,p; € I Its
soft variant WDISJUNCTIVE (S, 1) is defined based on the value-based violation
measure.

Definition 2 TheW_DISJUNCTIVE (S, IT) returns the cost of a tuplec £(S) as

W_DISJUNCTIVE ™ (S, TT)(@ @ max(|{i|l[z;] <t < llxi]+pi}|—1,0)
t=0 i=1,p, €Il

The QUMULATIVE (S,II, K) constraint [1] accepts a tuple € L£(S) iff |{i |
la;) <t < {lx;]+ pi}| < K for everyz; € S andp; € II, which is a generalized
version of DsJuUNCTIVE(S, II). Its soft variant is defined based on the value-based
violation measure.

Definition 3 The W_CUMULATIVE %(S, 11, K) returns the cost of a tuplé € £(5)
as:

W_CUMULATIVE " (S8, 11, K) (¢ @ @ max (| {i[¢[z;] <t < lx;]+pi}|—K,0)
t=0 i=1,p; €Il

Note that the WDISJUNCTIVE (S, IT) and W.CUMULATIVE v (S, 11, K) cost
functions are NP-hard. Aggoun and Beldiceanu [1] have shbatenforcing GAC on
the DISJuNCTIVEand GUMULATIVE constraints is NP-hard.

W _DISJUNCTIVEY™ (S, IT), whereS = {x,...,z,}, can be modeled as a PLPS
cost function. The corresponding integer linear progradefined as follows.

min ZteT Uy S.t.
n t
Zi:l Zj:max(tfpi,()) Cayj — Ut < 1 VvteT
deD(x;) Ceid = 1 Vi=1,2,...,n
0<cp,a<1 Ve, € S,d € D(mi)
Ui >0 VteT

42

Defined,,, ., to be the maximum domain size for the variable$irthe corresponding
integer linear program uses| - d... + |T| variables andT'| + |S| + [S| - dmax
inequalities. Ifx; = d, ¢;, ¢ = 1; otherwisec,, 4 = 0.

W_CUMULATIVE *® (S, I1, K), whereS = {zi,...,z,}, can be modeled as a
PLPS cost function. The corresponding integer linear @ogs defined as follows.

min ZteT U s.t.
> Z;:max(tfp,h()) Coyj —Ur <K VteT
deD(x;) Ceid = 1 Vi=1,2,...,n
0<cpa=<l Va; € S,d € D(x;)
U >0 vteT

Defined,,, ., to be the maximum domain size for the variable$irthe corresponding
integer linear program uses/| - d,q. + |T'| variables andT'| + |S| + |S| - dimaa
inequalities. Ifx; = d, ¢;, ¢ = 1; otherwisec,, ¢ = 0.

For example, consider the WCSP= {X', D, Wy, k}:

o X ={r,22};
e D(x1) = D(z2) ={0,1,2,3};
e W5 = W_DISIUNCTIVE"™ ({1, 22}, {2,3}).

Ws(2,0) = 1sincewhent = 2,21 <t < z;+2andxs <t < x29+3and the two jobs
overlap each other, ar@tT:O S ilz <2 < a; + pi}| = 1. The corresponding
integer linear program is shown as follows.

minUg + Uy + Us +Us + Uy St.
Cz1,0 T Cop0 —Up <1
Cr,0 F Coy 1 F Cop0FCp1 — UL <1
Cor1 FCpy 2 F Cog 0+ Cog1 + Cppp — Uz <1
Cxq,2 + Cxq,3 + Ceo,l + Cry,2 + Cey,3 — Ud S 1
Czq,3 + Cxq,4 + Cry,2 + Czy,3 + Cpyd — U4 S 1
Czq,0 + Cxq,1 + Cxq,2 + Ce,3 = 1
Ca2,0 + Cay1 F Cap2 +Cpp3 =1
Up>0,U; >20,U; >0,U3 >0,Us >0
0< Cay\d <1 Vz; € S,d S D(JL‘Z)

43

