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Abstract. Gutierrez and Meseguer show how to enforce consistency in BnB-
ADOPT+ for distributed constraint optimization, but they consider unconditional
deletions only. However, during search, more values can be pruned conditionally
according to variable instantiations that define subproblems. Enforcing consis-
tency in these subproblems can cause further search space reduction. We intro-
duce efficient methods to maintain soft arc consistencies in every subproblem
during search, a non trivial task due to asynchronicity and induced overheads.
Experimental results show substantial benefits on three different benchmarks.

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) have been applied in modeling
and solving a substantial number of multiagent coordination problems, such as meeting
scheduling [1], sensor networks [2] and traffic control [3]. Several distributed algo-
rithms for optimal DCOP solving have been proposed: ADOPT [4], DPOP [5], BnB-
ADOPT [6], NCBB [7] and others.

BnB-ADOPT+-AC/FDAC [8] incorporate consistency enforcement during search
into BnB-ADOPT+ [9], obtaining substantial efficiency improvements. Enforcing con-
sistency allows to prune some values, making the search space smaller. This previ-
ous work considers unconditional deletions only so as to avoid overhead in handling
assignments and backtracking. However, values that could be deleted conditioned to
some assignments will not be pruned with this strategy, so that search space reduction
opportunities are missed. In this paper, we propose an efficient way to maintain soft
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arc consistencies, considering any kind of deletions resulting from enforcing consis-
tency in asynchronous distributed constraint solving, something that—to the best of our
knowledge—has not been explored before.

A search-based constraint solving algorithm forms subproblems of the original
problem by assignments. We maintain soft arc consistencies in each subproblem, so
that variable assignments during search are also considered in consistency enforcement.
As a result, we can explore more value pruning opportunities and thus further reduce
the search space. Gutierrez and Meseguer introduce an extra copy of cost functions in
each agent, so that search and consistency enforcement are done asynchronously. Our
contribution goes further maintaining soft arc consistencies in each subproblem dur-
ing search, so that (i) search and consistency enforcement are done asynchronously,
introducing some extra copies of cost functions; (ii) the induced overhead caused by
backtracking and undoing assignments and deletions is minimized. The asynchronicity
requirement and different cost measurements require us to introduce novel techniques
over those used in centralized CP. Experimentally, we show the benefits of our proposal
on benchmarks usually unamenable to solvers without consistency.

2 Preliminaries

DCOP. A DCOP is defined by 〈X ,D, C,A, α〉, where X = {x1, . . . , xn} is a set of
variables; D = {D1, . . . , Dn} is a set of finite domains for X ; C is a set of cost func-
tions; A = {1, ..., n} is a set of n agents and α : X → A maps each variable to
one agent. We use binary and unary cost functions only, which produce non-negative
costs. The cost of a complete assignment is the sum of all unary and binary cost func-
tions evaluated on it. An optimal solution is a complete assignment with minimum cost.
Each agent holds exactly one variable, so that variables and agents can be used inter-
changeably. Agents communicate through messages, which are never lost and delivered
in the order they were sent, for any agent pair.

DCOPs can be arranged in a pseudo-tree, where nodes correspond to variables and
edges correspond to binary cost functions. There is a subset of edges, called tree-edges,
that form a rooted tree. The remaining edges are called back-edges. Variables involved
in the same cost function appear in the same branch. Tree edges connect parent-child
nodes. Back-edges connect a node with its pseudo-parents and pseudo-children.
BnB-ADOPT and BnB-ADOPT+. BnB-ADOPT [6] is an algorithm for optimal DCOP
solving. It uses the communication framework of ADOPT [4] (agents are arranged in
a pseudo-tree), but it changes the search strategy to depth first branch-and-bound. It
shows improvements over ADOPT. Each agent holds a context, as a set of assignments
involving some of the agent’s ancestors that is updated with message exchanges. Mes-
sage types are: VALUE, COST and TERMINATE. A BnB-ADOPT agent executes this
loop: it reads and processes all incoming messages and assigns its value. Then, it sends
a VALUE to each child or pseudochild and a COST to its parent. BnB-ADOPT+ [9] is a
version of BnB-ADOPT that prevents from sending most redundant messages, keeping
optimality and termination. It substantially reduces communication.
Soft Arc Consistency. Let (i, a) represents xi taking value a, > is the lowest unac-
ceptable cost, Cij is the binary cost function between xi and xj , Ci is the unary cost
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function on xi values, Cφ is a zero-ary cost function (lower bound of the cost of any
solution). We consider the following local consistencies [10, 11]:

– Node Consistency (NC): (i, a) is NC if Cφ + Ci(a) < >; xi is NC if all its values
are NC and ∃b ∈ Di s.t. Ci(b) = 0. P is NC if every variable is NC.

– Arc Consistency (AC): (i, a) is AC w.r.t. Cij if ∃b ∈ Dj s.t. Cij(a, b) = 0; b is
a support of a; xi is AC if all its values are AC w.r.t. every binary cost function
involving xi; P is AC if every variable is AC and NC.

– Directional Arc Consistency (DAC): (i, a) is DAC w.r.t. Cij , j > i, if ∃b ∈ Dj s.t.
Cij(a, b) + Cj(b) = 0; b is a full support of a; xi is DAC if all its values are DAC
w.r.t. every Cij ; P is DAC if every variable is DAC and NC.

– Full DAC (FDAC): P is FDAC if it is DAC and AC.

AC/DAC can be reached by forcing supports/full supports to NC values and pruning
values that are not NC. Supports can be forced by projecting the minimum cost from
its binary cost functions to its unary costs, and then projecting the minimum unary cost
intoCφ. Full supports can be forced in the same way, but first it is needed to extend from
the unary costs of neighbors to the binary cost functions the minimum cost required to
perform in the next step the projection over the value. The systematic application of
projection and extension does not change the optimum cost [10, 11]. When we prune
a value from xi, we need to recheck AC/DAC on every variable that xi is constrained
with, since the deleted value could be the support/full support of a value of a neighbor
variable. So, a deleted value in one variable might cause further deletions in others. The
AC/DAC check must be done until no further values are deleted.
BnB-ADOPT+ and Soft Arc Consistencies. BnB-ADOPT+ has been combined with
AC and FDAC [8]. Search is based on BnB-ADOPT+, maintaining the same data and
communication structure. Soft arc consistencies are enforced on a copy of the original
cost functions, limited to unconditional deletions. This combination has caused a num-
ber of modifications in the original algorithm, both in messages and in computation.

Regarding messages, (i) COST messages include subtreeContr that aggregates the
costs of unary projections to Cφ made on every agent; (ii) VALUE messages include
> and Cφ; (iii) a new DEL message is added to inform of value deletions; when re-
ceived, neighbors recheck AC/FDAC, which may lead to further deletions; (iv) a new
UCO message is added when FDAC is enforced, to inform the unary costs needed for
enforcing DAC; when received, agents enforce DAC with any other higher constrained
agents and recheck FDAC, which may lead to further deletions.

Regarding computation, each agent holds one copy of constrained agents’ domains
and related binary cost functions for consistency enforcement. Handling value deletions
require some extra effort. Only the agent owner of a variable can modify its domain.

3 Maintaining Soft Arc Consistencies

We enforce AC and FDAC asynchronously in all subproblems during search by utilizing
additional copies of variable domains and cost functions in each agent. To explain our
Maintaining AC (MAC) and Maintaining FDAC (MFDAC) algorithms, we first outline
an agent classing scheme based on the position of an agent in the problem structure. The
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Fig. 1. Left: The pseudo-tree of a DCOP with five variables, the variable domains and cost func-
tions copies they maintain. Right: Search tree (a/b domains), subproblems and classes of sub-
problems. Subproblems at the same depth belong to same class.

scheme governs the required number of copies of variable domains and cost functions.
Second, we provide the information of messages in our methods and an overview of the
changes in the overall message handling mechanism after adopting our new methods
in BnB-ADOPT+. Third, we provide methods for reinitializing variable domains and
cost functions copies in an agent when the context of a subproblem changes. Such reini-
tialization is needed since conditional deletions are no longer valid. Thus, consistency
enforcement has to start from scratch again using the new context. Fourth, we propose a
new message type and the handling mechanism for backtracking, when an agent arrives
at the empty domain within a subproblem. This means that the assignments of some
ancestor agents cannot lead to the optimal solution and should be pruned. Fifth, we
reduce costs by transferring deletions from subproblems to inner subproblems. Sixth,
we present an ordering scheme and asynchronous messaging mechanism to ensure that
the two separate copies of the same cost function stored in the two constrained agents
are identical even in the presence of simultaneous consistency operations. Finally, we
describe how we ensure optimality and termination after introducing the new methods.

3.1 Classes of Subproblems

In BnB-ADOPT+ [9], all agents are organized in a pseudo-tree (Fig. 1 Left). The vari-
able ordering of the corresponding AND-OR search tree [6] (Fig. 1 Right) follows the
(partial) order defined in the pseudo-tree. When an agent is assigned a value, the de-
scendant agents together with the current assignments form a subproblem. Notations:
P 0 is the original DCOP; P is a subproblem of P 0; T 0 is a pseudo-tree that defines
the variable ordering in P 0; dj is the depth of agent j in T 0 as the distance from the
root node to j excluding back-edges; vars(P ) is the set of variables of P ; depth(P )
is the smallest depth among all variables in vars(P ); ancestors(P ) is the set of an-
cestor variables satisfying (1) they are in vars(P 0) but not in vars(P ), (2) they have
depths smaller than depth(P ), and (3) they are constrained with at least one variable
in vars(P ); context(P ) is the variable assignments of ancestors(P ); contextj , the
context of agent j, is the set {(i, a, t)|i = j or i is an ancestor of j, a is agent i value
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which is assigned to i at timestamp t}. Two contexts are compatible if no agent takes on
different values in the two contexts. Every subproblem P of P 0 is uniquely identified
by (depth(P ), ancestors(P ), context(P ), vars(P )).

Fig. 1 Right illustrates the search tree and subproblems of a DCOP with 5 agents.
Each circular node is the root node of a subproblem and there are 19 such subprob-
lems (including the original problem) in the example. The original problem P 0 is
(0, ∅, ∅, {1, 2, 3, 4, 5}) and (2, {1, 2}, {(1, b), (2, b)}, {4, 5}) (labeled Q in the figure)
is the subproblem of P 0 after instantiating agent 1 and agent 2 to value b. We define a
class of subproblems as follows. A subproblem P of P 0 is of Class d if depth(P ) = d.
We further define Class(d) = {P |depth(P ) = d}.

Fig. 1 Right also illustrates the classes of subproblems of the DCOP. There are
four classes of subproblems:Class(0) involves the original problem only.Class(1) in-
cludes two subproblems (0, {1}, {(1, a)}, {2, 3, 4, 5}) and (0, {1}, {(1, b)}, {2, 3, 4, 5}),
Class(2) includes eight subproblems in which four are rooted at node 3 and the other
four are rooted at node 4. All Class(2) subproblems hold the assignment information
of agents 1 and 2 (their context). Class(3) includes eight subproblems which are all
rooted at node 5 and hold assignment information of agents 1, 2 and 4.

In BnB-ADOPT+-AC/FDAC [8], search and consistency enforcement are done
asynchronously: an extra copy of each cost function is used for consistency enforcement
and they do not interfere with the original copy used for search. We use the same idea
for MAC and MFDAC: we include extra copies of variable domains and cost functions
for enforcing consistency in different subproblems, but not a copy for each subproblem.
Each agent i of depth di will hold one copy Copy(d) for each class Class(d) of sub-
problems where d ≤ di. For instance, in Fig. 1 Left, agents keep the following copies of
cost functions and domains: agent 1 one copy, agent 2 two copies, agent 3 and 4 three
copies, and agent 5 four copies. Then, each agent i will hold di + 1 copies of variable
domains and cost functions and the space complexity of each agent is O(dhm2) where
d is the agent’s depth, h is the pseudo-tree’s height and m is the maximum domain size
of agents. These copies will play a key role in reinitializing domains and cost functions
when conditional deletions are no longer valid in a context change.

3.2 Maintaining Consistencies in All Subproblems: an Overview

To maintain soft arc consistencies in every subproblem, extra operations and informa-
tion exchanges are needed. The major additional operations include (1) reinitialization,
(2) backtracking to the culprit when an empty domain is detected and (3) transferring

AC/FDAC MAC/MFDAC
VALUE(src,dest,value,threshold,>,Cφ) VALUE(src,dest,value,threshold,>,Cφ[],context)
COST(src,dest,lb,ub,reducedContext,subtreeContr) COST(src,dest,lb,ub,context,subtreeContr[])
DEL(src,dest,value,ACC|DACC) DEL(src,dest,depth,values[],context,ACC[]|DACC[])
UCO∗(src,dest,vectorOfExtensions,ACC) UCO∗∗(src,dest,depth,vectorOfExtensions,context,ACC)

BTK(src,dest,targetDepth,context)
∗ Only in FDAC ∗∗ Only in MFDAC

Table 1. Messages of AC, FDAC, MAC and MFDAC. New fields are underlined. DEL messages
contain ACC or DACC depending on the AC or FDAC consistency level enforced.
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procedure ProcessVALUE(msg)
do the work as in BnB-ADOPT+

Reinitialize(msg.src,msg.context)
update> and Cφ if applicable

procedure ProcessCOST(msg)
do the work as in BnB-ADOPT+

Reinitialize(msg.src,msg.context)
aggregate Cφ frommsg.subtreeContr
update Cφ if applicable

procedure ProcessDEL(msg)
Reinitialize(msg.src,msg.context)
d← msg.depth
vars← set of variables i in contextself where di ∈ [0,msg.depth− 1]
if values of vars inmsg.context are compatible with those in contextself then

for d′ = d→ dself do
deletemsg.values[] frommsg.src’s domain in Copy(d′)
undo disordered operations in Copy(d′) if necessary
perform projection in Copy(d′)
update ACC counter if necessary

procedure ProcessUCO(msg)
Reinitialize(msg.src,msg.context)
d← msg.depth
vars← set of variables i in contextself where di ∈ [0,msg.depth− 1]
if values of vars inmsg.context are compatible with those in contextself then

ifACCself→msg.src = msg.ACC then
perform extension in Copy(d)
update DACC counter if necessary

Fig. 2. Pseudocode for handling VALUE, COST, DEL and UCO messages

deletions to subproblems. Reinitialization is needed for ensuring the correctness of the
algorithm. Backtracking to the culprit and transferring deletions to subproblems are
not necessary for correctness but they can improve performance. Besides, to ensure the
agents maintain the same cost functions in each copy, Gutierrez and Meseguer [12] pro-
posed to include two new messages to synchronize deletions. However, these messages
introduce an extra overhead and slow down the consistency enforcement. We propose
a new method to allow agents to undo and reorder some of their operations in order to
ensure identical cost functions copies.

Consistency enforcement in each subproblem is similar to that of Gutierrez and
Meseguer [8], in which consistency is only enforced in the copy for the original prob-
lem. In our case, consistency is enforced in the copy for every class of subproblems at
the same time. Extra information is embedded in the existing messages (TERMINATE
message same as the one in BnB-ADOPT+ and UCO only in FDAC and MFDAC) and
only one new message type (BTK) is added. Table 1 summarizes the information per
type. Fig. 2 shows the pseudocode for handling these messages (pseudocode for BTK
appears in Section 3.4).

When an agent receives a VALUE or COST message, it first performs the BnB-
ADOPT+ process, and then it checks for reinitialization. When an agent receives a
DEL message, it does the following steps (1) reinitialization checking, (2) compatibil-
ity checking, (3) value deletions, (4) maintaining identical cost function copies, (5) pro-
jections and (6) update projection counter. Similarly, when an agent receives an UCO
message, it checks for reinitialization first and then performs the extension and exten-
sion counter update. After an agent i has processed a VALUE, COST, DEL or UCO
message, AC/DAC may be re-enforced in Copy(d) where d ∈ [1, di] if (1) Copy(d) is
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reinitialized, (2) a better > or Cφ is found in Copy(d), (3) some values are deleted in
Copy(d), and (4) some unary costs are increased in Copy(d) (only apply for DAC).

3.3 Reinitialization

When enforcing consistencies in a subproblem P (excluding the original problem),
the conditional deletions generated depend on the variable assignments information
(context(P )) that P holds. These conditional deletions may not occur in other sub-
problems in Class(depth(P )), when the variable assignments have changed. There-
fore, conditionally deleted values have to be recovered when values of ancestor agents
change. When an agent i ∈ ancestors(P ) of a subproblem P in Class(d) changes its
value, the context no longer matches that of P . Search should be now switched to an-
other P ′ ∈ Class(d) such that context(P ′) matches the new value of agent i and other
existing assignments. In addition, the copies of cost functions owned by the agents in
vars(P ′) should be reset using the corresponding copies from upper classes and up-
dated with the variable assignments in context(P ′). Otherwise, the search algorithm
will search for solution based on obsolete value pruning information and may result in
suboptimal solution. This rationale justifies our next rule.

Rule 1 When an agent i changes its value, all agents j ∈ vars(P ) where P ∈ {P ′|i ∈
ancestors(P ′)} should reinitialize Copy(d) where di < d ≤ dj to be the correspond-
ing subproblem based on the updated context. The reinitialization in j is done in a
top-down sequence as follows. For d = di + 1 to dj : (1) Copy(d) = Copy(d − 1);
(2) Transform each binary cost function Cjk where k ∈ ancestors(P ′) to unary cost
functions Cj by assigning each k to value a where (k, a) ∈ context(P ′).

Next we describe how to implement Rule 1 in BnB-ADOPT+ with MAC and MF-
DAC. Rule 1 affects an agent when there is a context change. We use VALUE, COST,
DEL and UCO messages to carry the context information.

Receiving a VALUE message always signifies a context change in i’s parent or
pseudo-parent. Thus, agent i always performs reinitialization before deciding whether
to change its own value. Receiving a COST message from any of its children may cause
a context change. Agent i should always first compare the timestamps of the child’s con-
text and i’s own context. If the child’s context is older than or equal to i’s context, i per-
forms nothing. Otherwise, there is a context change and i will perform reinitialization
before performing other BnB-ADOPT+ operations. When receiving a DEL or UCO
message, an agent performs similar checking before proceeding to consistency enforce-
ment operations—if any—. Strictly speaking, reinitialization in an agent is needed only
when handling VALUE and COST messages to ensure correctness of the solving result;
skipping the reinitialization step for DEL and UCO messages will only miss pruning
opportunities, and thus losing efficiency.

Agents need to have the context of all ancestors to check for context changes and
to do reinitialization. In our VALUE, COST, DEL and UCO messages we include the
context of the sender agent, instead of the agent’s reduced context as used in BnB-
ADOPT+, which does not necessarily contain the information of all ancestors.

Fig. 3 shows how to reinitialize, and Reinitialize(src,contextsrc) is called
whenever an agent self receives a VALUE, COST, DEL or UCO message from src
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procedure Reinitialize(src,contextsrc)
mindepth =∞
for d = dsrc → 0 do

if d >= dself then continue
var ← variable of depth d in contextself
if Time(contextsrc, var) > Time(contextself , var) then
contextself (var)← contextsrc(var)
mindepth← d+ 1

ifmindepth 6=∞ then
for d′ = mindepth→ dself do
Copy(d′)← Copy(d′ − 1)
var′ ← variable of depth (d′ − 1) in contextself
TransformBinaryToUnary(Copy(d′), var′, contextself )

function Timestamp(context, var) return t where (var, a, t) ∈ context
procedure TransformBinaryToUnary(Copy, var, context)

if self is constrained with var and (var, a, t) ∈ context then
for each b ∈ Dself do
Copy.Cself (b)← Copy.Cself (b) + Copy.Cself,var(b, a)

Fig. 3. Pseudocode for performing reinitialization

(as shown in Fig. 2 and 3). When self receives contextsrc, it first checks whether the
variable assignments that src holds are the latest information by comparing the times-
tamps of each variable assignment in contextsrc and contextself . If the information
in contextsrc is more updated, self updates contextself according to contextsrc. If
self ’s context is updated, it has to perform reinitialization starting from the class of
subproblems Class(mindepth) wheremindepth is the smallest depth di and agent i’s
context has been changed in contextself . The operations for reinitializing Copy(d) are
described in Rule 1. We do not reinitialize the subproblem from the original problem
but by duplicating from Copy(d − 1). Thus the works done in the current subproblem
of Class(d− 1) will not have to be repeated in Class(d).

3.4 Backtracking

Enforcing consistencies in a subproblem P can lead to an empty domain in some agent
of P . In this case, context(P ) is inconsistent and it should be changed. Upon back-
tracking, the current assigned value a to the parent, say j, of the root of P should be
changed: value a is removed from Dj , and agent j can then pick another value from
Dj . This justifies our next rule.

Rule 2 If an agent i obtains an empty domain in the subproblem P during consistency
enforcement, the agent j ∈ ancestors(P ) with dj = depth(P )−1 can delete its value
a from its domain in Copy(dj), where (j, a) ∈ context(P ), provided that contextj is
compatible with context(P ).

We add a new message BTK to notify backtrackings. When agent i obtains an empty
domain in P , i sends a message BTK(i,k,depth(P ) − 1, context(P )) to its parent k.
The BTK message is sent to the parent agent for propagation because agents can only
communicate with constrained agents but the targeted agent may not be a constrained
agent. Therefore, this message is propagated up the pseudo-tree until it reaches agent
j ∈ ancestors(P ) where dj = depth(P )− 1.



Maintaining Soft Arc Consistencies in BnB-ADOPT+ During Search 9

procedure ProcessBTK(msg)
if dself 6= msg.targetDepth then

sendMsg:(BTK, self, parent,msg.targetDepth,msg.context)
else

ifmsg.context is compatible with contextself then
DeleteValue(Copy(msg.targetDepth), a) where (self, a, t) ∈ msg.context

Fig. 4. Pseudocode for handling the BTK message

Fig. 4 shows how to handle an incoming BTK message. When an agent other than
j receives a BTK message, it forwards the message to its parent. When j receives that
message, j checks whether the attached context is compatible with its own context. If
yes, it knows that its current assignment (j, a) ∈ context(P ) will not lead to an optimal
solution and it deletes a from Copy(dj). Otherwise, j ignores the message.

3.5 Transferring Deletions to Subproblems

Redundant deletions may appear in embedded subproblems. It is easy to see that if P ′ is
a subproblem of P , the values deleted in P can also be deleted in P ′. We can transfer the
deletions in P to P ′ and no need to send out redundant information of these deletions
for P ′. Transferring deletions to subproblems not just avoid redundant DEL messages,
it may also increase the chance of reducing more search space. Since the consistency
enforcement in different subproblem is different, the suboptimal values found in P may
not be found in P ′. If we transfer these suboptimal values from P to P ′, more pruning
opportunities may be found in P ′.

When an agent deletes values in subproblem P , depth(P ) = d, it can also apply the
deletions to subproblems P ′ where depth(P ′) > d. A DEL message is labeled by d.
When other agents receive that message, they apply the deletions to all the subproblems
P ′ s.t. depth(P ′) ≥ d. The pseudocode of transferring deletions to subproblems when
receiving a DEL message is covered in the ProcessDEL() procedure in Fig. 2.

3.6 Keeping Cost Functions Copies Identical

Each of the two agents constrained by a cost function holds a separate copy of the cost
function for consistency enforcement. It is thus of paramount importance to ensure the
two copies being identical but this task is made difficult by the asynchronous nature of
the search algorithm. Fig. 5 gives a simple example of simultaneous deletions [12] in
constrained agents i and j, which cause projections from Cij to Ci in agent j and Cj
in agent i respectively. The asynchronous nature of message exchanges can result in
the projections/extensions performed in different order and thus different Cij copies in
agents i and j respectively.

Gutierrez and Meseguer [12] propose to include two new messages to synchronize
deletions but the overhead is high. by allowing one of the two agents to undo and reorder
the operations. With this Undo Mechanism we keep the asynchronicity and avoid extra
messages. We give preference to one of the two agents. The operations will be done in
the order of the preferred agent, while the non-preferred one must undo the operations
that do not follow that order.

Let us consider two constrained agents i and j, and the cost function between them
Cij ; i and j each holds a copy of it, denoted by Ciij and Cjij respectively. Both agents
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Fig. 5. Left: issue by two simultaneous deletions Right: proposed solution when maintaining AC.

maintain AC. The projection from Cij to Ci has to be done on both Ciij and Cjij . C
i
ij ⇒

Ci represents i performs projection fromCij toCi on i’s copy andCjij ⇒ Ci represents
j performs projection fromCij toCi on j’s copy. If value v is deleted fromDi and value
w from Dj simultaneously, both i and j will process these deletions (which imply each
agent projecting fromCij to each other) and they will send DEL messages to each other
(Fig. 5 Left). If i is the preferred agent, upon receipt of the DEL message from j, it
performs Ciij ⇒ Ci and updates Ciij . However, when j receives the DEL message from
i, if j realizes that it has done more projections Cjij ⇒ Ci than the agent i, then it has to
undo some of these projections, until both have done the same number of projections.
The proposed solution appear in Fig. 5 Right. The same ordering of operations in both
agents is achieved as follows. Agent i keeps a counter ACCj→i to record the number
of projections Ciij ⇒ Ci (and DACCj→i to record the number of extensions from
agent j to i in FDAC/MFDAC cases). These counter and stack are stored in the copy
of each class of subproblems. Agent j keeps a stack P jj→i that records each projection
operation Cjij ⇒ Ci. The operations of the Undo Mechanism on Cij between agents i
and j for AC and MAC are:
Agent i:

– When there is a value deletion, perform projection Ciij ⇒ Cj . Attach ACCij→i in a
DEL message and send it to j. Then, reset ACCij→i to zero.

– When i receives a DEL message from j, perform projectionCiij ⇒ Ci and increment
ACCij→i by 1.

Agent j:

– When there is a value deletion, perform projection Cjij ⇒ Ci. Push this projection in
the stack P jj→i. Send the DEL message to i.

– When j receives a DEL message from i, pop and undo |P jj→i|−ACCij→i number of
projection records from the stack P jj→i, where |P jj→i| is the size of the stack P jj→i,
and clear the stack. Then, the DEL message is processed, projecting Cjij ⇒ Cj . If
there is at least one pop/undo performed, then perform projection Cjij ⇒ Ci.

To maintain FDAC between two constrained agents i and j, DAC is maintained in one
direction (e.g. j to i) and AC in the other (e.g. i to j). In FDAC, preference should be
given to agent i if AC is enforced from Cij to Cj since the enforcement of DAC from j
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to i is ensured under the assumption that i is AC w.r.t. Cij [10] (in AC, any agent i or j
may be preferred). Due to space limits, we skip the details for FDAC and MFDAC.

3.7 Optimality and Termination

Enforcing MAC and MFDAC during BnB-ADOPT+ search maintains the optimality
and termination properties of BnB-ADOPT+, as we see next.

Projections and extensions to maintain MAC and MFDAC are done on a copy of the
cost functions. In this way, the search process is based on the unmodified original copy
of the cost functions. The only changes with respect to the BnB-ADOPT+ operations
come from the fact that inconsistent values discovered by local consistency enforcement
are removed from the domain of agents.

Termination is justified as follows. BnB-ADOPT+ always terminates [6, 9] and the
only change that BnB-ADOPT+-MAC introduces is AC enforcement after variable as-
signments. AC enfocement terminates, because the number of agents involved is finite
and their domains are also finite. When enforcing AC in a particular subproblem, after
a finite amount of time all subproblem variables become AC (possibly after some value
deletions) reaching a fixpoint.

Optimality is justified as follows. In the case of unconditional deletions, deleted
values are suboptimal values which will not be present in the optimal solution, so it
is completely legal to remove them. In the case of conditional deletions, deleted values
are values proved inconsistent conditioned to the current assignment of ancestor agents.
They are properly restored using a reinitialization mechanism when the assignments of
ancestors change. Operation is as follows. An agent may change its assigned value, se-
lecting another one from its domain, only after it receives a VALUE or COST message.
Reinitialization is done whenever an agent receives a VALUE or COST message and
there is context change. Thus, reinitialization is guaranteed to be performed before any
agent changes its value, so that no obsolete value deletions will be considered. Then, in
both cases all solutions potentially optimal are visited. Next we detail these operations,
showing they do not affect optimality and termination.

In MAC (both unconditional and conditional deletions), we perform projections
over the cost functions (projections from binary to unary cost functions, and from
unary to Cφ). Projection is an equivalence preserving transformation [11]. Its appli-
cation maintains the optimum cost and the set of optimal solutions. In our approach
(distributed context), we assure identical copies of any binary cost function in the two
involved agents: cost projections are performed in the same order in the two agents
(Section 3.6). Therefore, costs cannot be duplicated when projections are performed in-
side each agent (equivalence is preserved) or when costs are propagated to other agents.
Since each agent contributes to Cφ projecting on its unary cost functions, we can con-
clude that projections of different agents into Cφ does not duplicate costs. Proving that
a value a of variable xi is not NC involves its unary cost Ci(a) and Cφ. Since we have
seen that, neither Ci(a) nor Cφ contains duplicated costs, the NC detection is correct
and a’s deletion is legal. Because of the NC definition, the first found optimal solution
can never be pruned, since the cost of their values will never reach >.

In the case of conditional deletions, the reinitialization mechanism (Section 3.3) en-
sures the correctness of values deletions in different copies. For each copy, projections
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Fig. 6. Directions of enforcing AC/FDAC consistencies

and deletions are performed conditioned to the ancestor assignments. For example, in
Copy(0), projections are performed contemplating no previous assignments, and only
unconditional deletions are detected; in Copy(1), inconsistent values are discovered
and deleted conditioned to the first-level ancestor’s assignment; in Copy(2), inconsis-
tent values are deleted conditioned to the first and second level agent’s assignment, and
so on. Each time an agent of depth d changes its variable assignment, the Copy(d) of
descendant agents are restored to Copy(d− 1). In this way, all modifications that were
performed according to the previous variable assignment are undone.

Regarding values pruned by backtracking messages, the justification of its correct-
ness is as follows. When an empty domain is found in Copy(d) in one agent, we have
discovered that the current assignment of the ancestor at depth d is inconsistent, and so
it must be removed. This is implemented by sending a BTK message to that ancestor.
Note that only BTK messages containing a compatible context are accepted in the an-
cestor. In this way, it is assured that the ancestor agent changes its value if the empty
domain of the descendant agent was generated considering a compatible context. Oth-
erwise, either the descendant or the ancestor is missing one or several messages that
will properly update their contexts. Upon receipt of these messages, proper actions,
depending on the missing messages, will be taken by the ancestor/descendant.

Regarding MFDAC, in addition to projections, we have to take into account exten-
sions, another equivalence preserving transformation [10]. Our approach (distributed
case) is correct, since each agent can extend its own unary costs only. So no cost du-
plication may occur. The process is done in such a way that the copies of any binary
cost function are kept identical in the two involved agents. From this point on, only
projections are done, and arguments from previous paragraphs apply.

4 Experimental Results

We evaluate the efficiency of BnB-ADOPT+-MAC/MFDAC (abbrev as MAC/MFDAC)
by comparing to BnB-ADOPT+-AC/FDAC (abbrev as AC/FDAC). For AC and MAC
algorithms, AC is enforced in both directions of each binary cost function. The direc-
tion of DAC enforcement matters in FDAC and MFDAC algorithms. Fig. 6 shows the
direction of AC and DAC enforcement between agents, where i (j) is the parent or
pseudo-parent of j (k). For FDAC algorithm, we use the direction as shown in Fig. 6
Middle. DAC is enforced bottom-up so that the unary costs are pushed upward so as
to hopefully increase the opportunities of pruning more values in upper agents (prun-
ing values in upper agents is more preferred because BnB-ADOPT+ is a depth-first
search algorithm). For MFDAC, we evaluate both directions: MFDAC1 uses the di-
rection shown in Fig. 6 Middle and MFDAC2 uses the direction in Fig. 6 Right. We
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evaluate both because of the possible tradeoff between backtracking and direct pruning
in upper agents. With MFDAC1, unary costs will float upward and increase the opportu-
nities of pruning values directly in upper agents. However, MFDAC2 pushes the unary
costs downward and increases the opportunities of reaching empty domains in lower
agents, which can possibly increase the pruning opportunities in upper agents.

Our simulator runs in cycles, during which every agent reads its incoming messages,
performs computation and sends its outcoming messages. Without delays, a message
sent in a cycle is delivered in the next cycle. To make a more realistic evaluation, a ran-
dom delay of [0, 50] cycles is introduced to each message in our experiments. Besides,
we have an extensive number of instances over three benchmarks. Since AC is too slow
to generate results for hard or large-scale problems within a reasonable time, we set a
2 × 108 NCCCs limit in our simulator. One can expect that setting the NCCCs limit is
to our disadvantage since MAC/MFDAC can improve even more on harder or larger-
scale problems (normally taking bigger effort to solve but some of these problems are
skipped because of the NCCCs limit). Three measures of performance are thus com-
pared: (1) the number of messages to evaluate the communication cost, (2) the number
of non-concurrent constraint checks (NCCCs) to evaluate the computation effort, and
(3) the number of instances that can be solved within the 2×108 NCCCs limit to evalu-
ate the general efficiency of each algorithm. In addition, we assume that each randomly
delayed cycle costs 100 NCCCs and it is counted in the total NCCCs accordingly.

We test our algorithms on three sets of benchmarks: binary random DCOPs [8],
Soft Graph Coloring Problems (SGCP) and Radio Link Frequency Assignment Problem
(RLFAP) [13]. We run 50 instances for each parameter setting. Results are reported in
Tables 2, 3 and 4. The columns show (from left to right) the problem, algorithm, the
number of instances that can be solved within 2 × 108 NCCCs limit, the number of
commonly solved instances (the number of messages and NCCCs are averaged over
this number), total number of messages, number of VALUE, COST, DEL, BTK and
UCO messages, and NCCCs. The best results for each measure are highlighted in bold
for each parameter setting.

Binary random DCOPs [8] are characterized by 〈n, d, p〉, where n is the number
of variables, d is the domain size and p is the network connectivity. We have gener-
ated random DCOP instances: 〈n = 10, d = 10, p ∈ {0.3, 0.4, 0.5, 0.6}〉. Costs are
selected from a uniform cost distribution. Following Guiterrez and Meseguer [8], two
types of binary cost functions are used, small and large. Small cost functions randomly
extract costs from the set {0, ..., 10} while large ones randomly extract costs from the
set {0, ..., 1000}. The proportion of large cost functions is 1/4 of the total number of
cost functions. Results are reported in Table 2.

Soft Graph Coloring Problems are the softened version of graph coloring problems
by allowing the inequalities to return costs from the violation measure M2 − |vi −
vj |2, where M is the maximum domain size, vi and vj are the values of agent i and j
respectively. Each SGCP is also characterized by 〈n, d, p〉, where n is the number of
variables, d is the domain size and p is the network connectivity. We evaluate four sets
of instances: 〈n ∈ {6, 7, 8, 9}, d = 8, p = 0.4〉. Results are shown in Table 3.

We generate the Radio Link Frequency Assignment Problems according to two
small but hard CELAR sub-instances [13], which are extracted from CELAR6. All



14 P. Gutierrez, J.H.M. Lee, K.M. Lei, T.W.K. Mak, P. Meseguer

p Algorithm
#instances

solved within
NCCCs limit

Avg. over
(common
instances)

#Msgs #VALUE #COST #DEL #BTK #UCO NCCCs

0.3

AC 50

50

6,802 1,619 5,099 59 0 0 5,622,762
FDAC 50 4,645 1,062 3,389 117 0 53 3,857,078
MAC 50 5,610 1,124 3,569 760 134 0 4,203,119

MFDAC1 50 3,656 726 2,346 338 13 184 2,738,511
MFDAC2 50 5,036 923 2,911 495 249 435 3,511,191

0.4

AC 47

47

56,632 11,581 44,946 79 0 0 42,210,453
FDAC 48 39,560 8,043 31,188 195 0 105 29,477,148
MAC 50 36,309 6,692 25,564 2,399 1,628 0 24,845,040

MFDAC1 50 28,493 5,271 20,541 1,430 236 967 19,236,541
MFDAC2 50 29,814 5,116 20,255 1,523 1,441 1,451 19,434,413

0.5

AC 35

34

106,194 20,796 85,260 106 0 0 78,603,224
FDAC 38 75,074 14,412 60,231 247 0 152 55,129,851
MAC 43 63,571 11,238 46,279 2,694 3,329 0 43,949,687

MFDAC1 44 54,564 9,490 39,791 2,926 286 2,018 36,699,194
MFDAC2 46 57,150 9,497 39,535 2,245 3,651 2,191 37,488,828

0.6

AC 9

9

124,222 26,839 97,268 86 0 0 91,145,921
FDAC 16 90,850 14,867 55,465 277 0 211 51,437,525
MAC 20 47,586 8,973 35,153 2,143 1,288 0 34,059,166

MFDAC1 24 37,697 6,883 27,900 1,141 463 1,255 27,122,566
MFDAC2 20 45,988 8,093 31,699 2,011 2,047 2,109 31,074,814

Table 2. Random DCOPs

n Algorithm
#instances

solved within
NCCCs limit

Avg. over
(common
instances)

#Msgs #VALUE #COST #DEL #BTK #UCO NCCCs

6

AC 50

50

459 123 321 8 0 0 572,082
FDAC 50 376 91 240 29 0 7 438,002
MAC 50 358 81 190 67 11 0 361,607

MFDAC1 50 287 51 127 54 9 30 248,106
MFDAC2 50 367 71 161 70 17 40 333,807

7

AC 50

50

1,349 370 961 9 0 0 1,534,451
FDAC 50 875 225 594 37 0 8 974,678
MAC 50 888 213 507 143 14 0 841,000

MFDAC1 50 628 127 314 95 20 51 521,659
MFDAC2 50 883 185 437 143 27 81 733,084

8

AC 50

50

8,611 2,072 6,523 5 0 0 8,562,373
FDAC 50 5,764 1,359 4,354 29 0 11 5,727,394
MAC 50 4,955 1,044 3,166 625 109 0 4,261,463

MFDAC1 50 4,359 905 2,942 287 61 138 3,799,575
MFDAC2 50 4,695 857 2,615 613 163 437 3,553,383

9

AC 46

46

39,199 8,659 30,525 3 0 0 32,353,604
FDAC 46 30,189 6,580 23,559 23 0 14 24,858,245
MAC 47 23,164 4,554 15,882 2,545 170 0 17,448,119

MFDAC1 47 25,738 5,265 19,124 795 69 453 19,829,021
MFDAC2 47 20,219 3,547 12,624 2,081 493 1,461 13,863,427

Table 3. Soft Graph Coloring Problems

RLFAP instances are generated with parameters 〈i, n, d〉, where i is the index of the
CELAR sub-instances, n is an even number of links, and d is an even number of allowed
frequencies. For each instance, we randomly extract a sequence of n links from the cor-
responding CELAR sub-instance and fix a domain of d frequencies. If two links are re-
stricted not to take frequencies fi and fj with distance less than t, we measure the costs
of interference by using a binary constraint with violation measure max(0, t−|fi−fj |).
We evaluate three sets of instances: A〈0, 10, 12〉, B〈1, 6, 6〉, and C〈1, 6, 8〉. Results are
reported in Table 4.

As we see in Tables 2, 3 and 4, MAC, MFDAC1 and MFDAC2 substantially further
reduce the total number of messages and NCCCs, and be able to solve the same number
or more instances within the NCCCs limit over all three benchmarks. Moreover, MAC
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Algorithm
#instances

solved within
NCCCs limit

Avg. over
(common
instances)

#Msgs #VALUE #COST #DEL #BTK #UCO NCCCs

A

AC 50

50

28,837 5,064 23,751 0 0 0 24,522,945
FDAC 50 28,894 5,069 23,790 0 0 13 24,621,897
MAC 50 22,840 ,3802 16,540 1,954 522 0 17,447,513

MFDAC1 50 18,054 2,937 12,000 1,606 378 1,090 13,051,121
MFDAC2 50 19,233 2,888 11,711 1,861 1,250 1,501 12,845,773

B

AC 21

21

56,943 10,466 46,455 11 0 0 67,658,716
FDAC 21 57,964 10,635 47,267 39 0 9 69,091,598
MAC 50 29,120 4,930 21,521 1,061 1,596 0 37,861,737

MFDAC1 50 18,080 3,228 13,900 403 433 100 20,881,354
MFDAC2 50 25,430 4,490 19,489 541 702 197 2,937,7041

C

AC 18

18

29,385 5,505 23,853 15 0 0 34,158,516
FDAC 18 31,133 5,814 25,250 47 0 9 36,259,302
MAC 50 13,914 2,464 10,787 297 356 0 15,890,040

MFDAC1 50 11,964 2,183 9,394 177 123 71 14,067,760
MFDAC2 50 13,454 2,431 10,496 220 207 89 15,731,062

Table 4. Radio Link Frequency Assignment Problems

outperforms FDAC in almost all cases even when MAC is maintaining a weaker form
of consistency than FDAC. Although our methods introduce overhead, i.e., increase in
the number of DEL, BTK and UCO messages, the reduction in the number of VALUE
and COST messages (and thus search space) outweighs the overhead. Therefore, we
conclude that maintaining soft arc consistencies during search is beneficial.

We also observe that the improvement of MFDAC over AC and FDAC in random
DCOPs increases as constraint density increases. More constraints in the problem im-
plies more pruning opportunities and thus substantial smaller search space. Similar ob-
servations cannot be concluded for Soft Graph Coloring and Radio Link Frequency
Assignment Problems since these problems have particular problem structures affect-
ing the efficiency and power of consistency enforcement.

To compare the different directions of DAC enforcement, we can see MFDAC1
outperforms MFDAC2 in some instances while MFDAC2 outperforms MFDAC1 in
others. For random DCOPs and Radio Link Frequency Assignment Problem, MFDAC1
performs the best in almost all instances. However, for Soft Graph Coloring Problem,
MFDAC2 performs better for instances with n = 9 and MFDAC1 performs better on
another three sets of instances. From these results we can see that the directions of DAC
enforcement can affect the efficiency and the effects are problem-specific.

5 Conclusion

In this paper, we propose methods to maintaining soft arc consistencies in every sub-
problem during search. In order to preserve the asynchronicities of search and consis-
tency enforcement, we propose to include extra copies (a small number) of variable
domains and cost functions. Besides, we minimize the induced overhead caused by
backtracking and undoing assignments and deletions by attaching information in the
existing messages rather than creating new ones. We present the issues and solutions for
maintaining consistencies in subproblems and ensure their correctness: (i) reinitializing
variables’ domains and cost functions after context changes in subproblems to ensure
the search algorithm would not search on values using obsolete value pruning informa-
tion, (ii) backtracking when an agent arrives at the empty domain within a subproblem
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so as to prune the value in upper agents which could not lead to an optimal solution,
(iii) transferring deletions from subproblems to further subproblems to avoid redundant
messages, and (iv) asynchronous methods to ensure identical cost functions copies in
different agents by ensuring the ordering of consistency operations between every two
agents. Our experimental results show that our methods can substantially further reduce
the communication and computation efforts compared to BnB-ADOPT+-AC/FDAC,
which only consider unconditional deletions. These results allow us to consider the
proposed methods as important steps to maintain consistencies in every subproblems
asynchronously during search and improve the efficiency of optimal DCOP solving. As
a future work, we may go further to maintain the even stronger Existential Directional
Arc Consistency (EDAC) [14] during distributed and asynchronous search, but preserv-
ing privacy is a concern [15]. The study of how DAC enforcement directions affect
efficiency and the possible heuristics for such ordering is a worthwhile direction.
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