Journal of Artificial Intelligence Research 43 (2012) 2®22 Submitted 09/11; published 02/12

Consistency Techniques for Flow-Based Projection-Safe Gibal Cost
Functions in Weighted Constraint Satisfaction

J.H.M. Lee JLEE@CSE.CUHK.EDU.HK
K.L. Leung KLLEUNG @CSE.CUHK.EDU.HK
Department of Computer Science and Engineering

The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Abstract

Many combinatorial problems deal with preferences andatiohs, the goal of which is to find
solutions with the minimum cost. Weighted constraint $atison is a framework for modeling
such problems, which consists of a set of cost functions tasme the degree of violation or pref-
erences of different combinations of variable assignméhygical solution methods for weighted
constraint satisfaction problems (WCSPs) are based orchrand-bound search, which are made
practical through the use of powerful consistency techesgsuch as AC*, FDAC*, EDAC* to
deduce hidden cost information and value pruning duringcbeal hese technigues, however, are
designed to be efficient only on binary and ternary cost fonstwhich are represented in table
form. In tackling many real-life problems, high arity (oroplal) cost functions are required. We
investigate efficient representation scheme and algositionbring the benefits of the consistency
techniques to also high arity cost functions, which arerotterived from hard global constraints
from classical constraint satisfaction.

The literature suggests some global cost functions cangresented as flow networks, and
the minimum cost flow algorithm can be used to compute thermim costs of such networks in
polynomial time. We show that naive adoption of this flow-4dxhalgorithmic method for global
cost functions can result in a stronger forma@finverse consistency. We further show how the
method can be modified to handle cost projections and extensd maintain generalized versions
of AC* and FDAC* for cost functions with more than two variasl Similar generalization for
the stronger EDAC* is less straightforward. We reveal theillagion problem when enforcing
EDAC* on cost functions sharing more than one variable. Tadawescillation, we propose a weak
version of EDAC* and generalize it to weak EDGAC* for non-aig cost functions. Using various
benchmarks involving the soft variants of hard global caaistsALL DIFFERENT, GCC, SAME,
and REGULAR, empirical results demonstrate that our proposal givegaorgments of up to an
order of magnitude when compared with the traditional aamst optimization approach, both in
terms of time and pruning.

1. Introduction

Constraint satisfaction problems (CSPs) occur in all walkiedustrial applications and computer
science, such as scheduling, bin packing, transport mputipe checking, diagram layout, just
to name a few. Constraints in CSPs are functions returning or false. These constraints are
hard in the sense that they must be satisfied. In over-camstrand optimization scenarios, hard
constraints have to be relaxed or softened. The weightestreant satisfaction framework adopt
soft constraints asost functiongeturning a non-negative integer with an upper boundSolu-

tion techniques for solving weighted constraint satiseccpproblems (WCSPs) are made practi-

(©2012 Al Access Foundation. All rights reserved.

LEE& L EUNG

cal by enforcing various consistency notions during braawti-bound search, such as NC*, AC*,
FDAC* (Larrosa & Schiex, 2004, 2003) and EDAC* (de Givry, ldser Zytnicki, & Larrosa, 2005).
These enforcement techniques, however, are designed ffidient only on binary and ternary cost
functions which are represented in table form. On the otheadhmany real-life problems can be
modelled naturally by global cost functions of high ariti&¥e investigate efficient representation
scheme and algorithms to bring the benefits of the existimgistency techniques for binary and
ternary cost functions to also high arity cost functions,ichihare often derived from hard global
constraints from classical constraint satisfaction.

In existing WCSP solvers, these high arity cost functiomsdmiayed until they become binary
or ternary during search. The size of the tables is also aeconcThe lack of efficient handling
of high arity global cost functions in WCSP systems greadistricts the applicability of WCSP
techniques to more complex real-life problems. To overctmedifficulty, we incorporate van Ho-
eve, Pesant, and Rousseau’s (2006) flow-based algoritheticoah into WCSPs, which amounts
to representing global cost functions as flow networks amdpeging the minimum costs of such
networks using the minimum cost flow algorithm. We show thadiae incorporation of global cost
functions into WCSPs would result in a strong form of thénverse consistency (Zytnicki, Gaspin,
& Schiex, 2009), which is still relatively weak in terms ofwer bound estimation and pruning.
The question is then whether we cachieve stronger consistencies such as GAC* and FDGAC*,
the generalized versions of AC* and FDAC* respectively,rfon-binary cost functions efficiently.
Consistency algorithms for (G)AC* and FD(G)AC* involve #& main operations: (a) computing
the minimum cost of the cost functions when a variablis fixed with valuev, (b) projecting the
minimum cost of a cost function to the unary cost functionsifat valuev, and (c) extending
unary costs to the related high arity cost functions. Thesgations allow cost movements among
cost functions and shifting of costs to increase the globakl bound of the problem, which im-
plies more opportunities for domain value prunings. Parig@eadily handled using the minimum
cost flow (MCF) algorithm as proposed in van Hoeve et al.'shoét However, parts (b) and (c)
modify the cost functions, which can possibly destroy thguieed flow-based structure of the cost
functions required by van Hoeve et al.’s method. To overctimdlifficulty, we propose and give
sufficient conditions for the flow-based projection-safetgperty. If a global cost function is flow-
based projection-safe, the flow-based property of the ewsttibn is guaranteed to be retained no
matter how many times parts (b) and (c) are performed. TinesMCF algorithm can be applied
throughout the enforcements of GAC* and FDGAC* to increasarsh efficiency.

A natural next step is to generalize also the stronger ctemgig EDAC* (de Givry et al., 2005)
to EDGAC*, but this turns out to be non-trivial. We identifyé analyze an inherent limitation
of EDAC* similar to the case of Full AC* (de Givry et al., 2005ED(G)AC* enforcement will
go into oscillation if two cost functions share more than eadable, which is common when a
problem involves high arity cost functions. Sanchez, dayzand Schiex (2008) did not mention
the oscillation problem but their method for enforcing EDAGr the special case of ternary cost
functions would avoid the oscillation problem. In this pgpse give a weak form of EDAC?,
which can be generalized to weak EDGAC* for cost functionarofarity. Most importantly, weak
EDAC* is reduced to EDAC* when no two cost functions share enthran one variable. Weak
EDGAC* is stronger than FDGAC* and GAC*, but weaker than VACopper, de Givry, Sanchez,
Schiex, Zytnicki, & Werner, 2010). We also give an efficielgasithm to enforce weak EDGAC*.

Based on the theoretical results, we prove that some of thevagants of ALL DIFFERENT,
GCC, sAME, andREGULAR constraints are flow-based projection-safe, and give pohyjal time

258

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

algorithms to enforce GAC*, FDGAC* and also weak EDGAC* omdlk cost functions. Experi-
ments are carried out on different benchmarks featuringptbposed global cost functions. Em-
pirical results coincide with the theoretical predictiom the relative strengths of the various con-
sistency notions and the complexities of the enforcemeyarithms. Our experimental results also
confirm that stronger consistencies such as GAC*, FDGAC*wrdk EDGAC* are worthwhile
and essential in making global cost functions in WCSP praktiln addition, the reified approach
(Petit, Régin, & Bessiére, 2000) and stroa¢C are too weak in estimating useful lower bounds
and pruning the search space in branch-and-bound search.

The rest of the paper is organized as follows. Section 2 dgivesecessary definitions and
background, while Section 3 gives related work. Generdlimrsions of existing consistency tech-
nigues for global cost functions are presented and compargdction 4. Enforcement algorithms
for these consistencies are exponential in general. Wednte the notion of flow-based projection-
safety, and describe polynomial time consistency enfoergralgorithms for global cost functions
enjoying the flow-based projection-safety property. IntlBecs, we prove that the softened form of
some common hard global constraints are flow-based projestife and give experimental results
demonstrating the feasibility and efficiency of our propdsath in terms of runtime and search
space pruning. Section 6 summarizes our contributions hed Bght on possible directions for
future research.

2. Background

We give the preliminaries on weighted constraint satigfacproblems, global cost functions and
network flows.

2.1 Weighted Constraint Satisfaction

A weighted constraint satisfaction problem (WCSP) is a ispp@ase of valued constraint satisfac-
tion (Schiex, Fargier, & Verfaillie, 1995) with a cost stture ([0,..., T],®, <). The structure
contains a set of integers frobrto T ordered by the standard orderirg Addition @ is defined by
a®b=min(T,a+ b), and subtractiom is defined only fow > b,a ©b=a —bif a # T and

T 6a =T foranya. Formally,

Definition 1 (Schiex et al., 1995) WCSPIis a tuple(X, D, C, T), where:

e X is asetof variable§z1, xs,. .., z,} ordered by their indices;
e Dis aset of domain®(x;) for x; € X, only one value of which can be assigned:tp
e C is a set of cost functiond’s with different scopes = {zs,,...,z,,} C X that maps a

tuple? € L(S), whereL(S) = D(xs,) X ...D(xs,),t0]0,..., T].

An assignmenbf a set of variablessS C X, written as{zs, — vs,,...,Zs, + Vs, }, IS tO
assign each variable;, € S to a valuevs, € D(z;,). When the context is clear and assuming
an ordering by the variable indices, we abuse notations hgidering an assignment also a tuple
0 = (vgy,...,vs,) € L(S), whereL(S) = D(zs,) X D(xs,) x ... D(xs,). The notation/[z,]
denotes the value,, assigned ta;;, € S, and/[S’] denotes the tuple formed by projectiAgnto
S’ CS.

Without loss of generality, we assurfe= {W,} U {W; | x; € X} UCT. Wy is a constant
nullary cost function.IV; is a unary cost function associated with eaghe X. C* is a set of cost

259

LEE& L EUNG

functionsWg with scopeS containing two or more variables. W, and{WW;} are not defined, we
assuméV;(v) = 0 for all v € D(x;) andWy = 0. To simplify the notation, we denoté’,, , . .
for the cost function on variablgs:s, , zs,, . . . , x5, } if the context is clear.

Definition 2 Given a WCSRX',D,C, T). Thecostof a tuple/ € L£L(X) is defined agost(f) =
Wo & D,,cx Willlzi]) ® Byygec+ Ws({[S]). Atuplel € L(X) is feasibleif cost(¢) < T, and
is asolutionof a WCSP itost(¢) is minimum among all tuples i(X).

WCSPs are usually solved with basic branch-and-bound lseargmented with consistency
techniques which prune infeasible values from variable @iomand push costs intd’, while
preserving the equivalence of the problems, the cost of each tuplé € L£(X) is unchanged.
Different consistency notions have been defined such as WC*, FDAC* (Larrosa & Schiex,
2004, 2003), and EDAC* (de Givry et al., 2005).

Definition 3 A variable z; is node consistenfNC*) if each valuev € D(x;) satisfiesW;(v) @
Wy < T and there exists a valu¢ € D(x;) such thati;(v') = 0. A WCSP is NC* iff all
variables are NC*.

Procedureenf or ceNCx () in Algorithm 1 enforces NC*, wheranar yPr oj ect () moves unary
costs towarddV, while keeping the solution unchanged, gmduneVal () removes infeasible
values. The variable®, R, andS are global propagation queues used for further consistency
enforcements explained in later sections. They are ilyiteahpty if not specified.

Procedureenf or ceNCx ()
1 foreachz; € X dounar yPr oj ect (z;);
2 pruneVal ();

Procedureunar yPr oj ect (x;)

3 a = min{W;(v) | v € D(z;)};

4 Weg i =Wy @ a;

5 foreachv € D(z;) do W;(v) := W;(v) © a;

Procedurepr uneVal ()

6 foreachz; € X do
7 fl ag :=false
8 foreachv € D(x;) s.t. W;(v) @ Wy = T do
9 D(z;) == D(z:) \ {v}:
10 fl ag :=true;
11 if f1 ag then
/1 For further consistency enforcenent. Assune initially
enpty if not specified
12 Q:=Qu{z};
13 S:=Su{x;};
14 R:=RU{z};

Algorithm 1: Enforce NC*

260

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

Based on NC*, AC* and FDAC* have been developed for binaryrfbsa & Schiex, 2004,
2003) and ternary cost functions (Sanchez et al., 2008)orEinfy these consistency notions re-
quires two equivalence preserving transformations besiMie* enforcement, namelgrojection
and extensioriCooper & Schiex, 2004).

A projection written asPr oj ect (Ws, W;, v,) , transforms(Wg, W;) to (W§, W/) with
respect to a value € D(x;) and a costy, wherea < min{Wg(¢) | {[z;] = v AL € L(S)}, such
that:

oy Wilu)®a ifu=nw,
* Wilu) = { W;(u) otherwise.
o | Ws()©oa if Lz =,
« Wslt) = { Ws(¢) otherwise.

An extension written asExt end(Wg, W;, v, o), transforms(Wg, W;) to (W, W/') with
respect to a value € D(z;) and a costy, wherea < W;(v), such that:

o Wi(u) = { W,
.« W) :{ W

2.2 Global Constraints and Global Cost Functions

Wilu) o ifu=no,
(u otherwise.
(¢
(

)
)Da if lx;] =,
f)

otherwise.

A global constraintis a constraint with special semantics. They are usuallly khiggh arity, and thus
cannot be propagated efficiently with standard consistafgiyrithms. With their special semantics,
special propagation algorithms can be designed to achfGeacy.

A global cost functioris the soft variant of a hard global constraint. The cost ahetaple
indicates how much the tuple violates the correspondinfalloonstraint. One global constraint
can give rise to different global cost functions using d#f& violation measures A global cost
function returng) if the tuple satisfies the corresponding global constraihe notationrsoFT G CH
denotes the global cost function derived from a global caigt GC using a violation measure
For instance, thaLL DIFFERENT constraint has two soft variants.

Definition 4 (Petit, Regin, & Besstre, 2001) The cost functioc®OFT_ALL DIFFERENT'®" returns
the minimum number of variable assignments that needed ¢bdmeged so that the tuple contains
only distinct values; whilsoFT_ALL DIFFERENT? returns the number of pairs of variables having
the same assigned value.

2.3 Flow Theory

Definition 5 A flow networkG = (V, E, w, ¢, d) is a connected directed graglV, E), in which
each edge € F has a weightw,, a capacityc., and a demand, < c..

An (s, t)-flow f from a sources € V to a sinkt € V' of a valuea in G is defined as a mapping
from E to real numbers such that:

® Z(s,u)eE f(s,u) = Z(%t)eE f(u,t) =,

hd Z(u,v)eE f(u,v) = Z(v,u)EE f(v,u) VveV \ {5’ t};

261

LEE& L EUNG

e d. < fo<c.Ve€eF.
For simplicity, we call ar(s, t)-flow as a flow ifs andt have been specified.

Definition 6 The costof a flow f is defined ascost(f) = > cpwefe. A minimum cost flow
problem of a valuex is to find the flow whose valuedsand cost is minimum.

If «is not given, itis assumed to be the maximum value among alkflo

To solve minimum cost flow problems, various approaches haea developed. Two of those
are thesuccessive shortest pasimdcycle-cancelling algorithmg¢Lawler, 1976). Both algorithms
focus on the computation in the residual network of the spoeading flow network.

Definition 7 Given a flowf in the networkG = (V, E,w,c,d). Theresidual networkG"* =
(V, BT w™es, cm% d"**) is defined as:
o BT = {(u,v) ce | f(u,v) < C(u,v)} U {(v,u) ce | f(u,v) > d(u,v)};

res _ w(u,v) ’If f(u,v) < C(u,v)

(w.v) _w(u,v) ’If f(v,u) > d(v,u)

o (TS — { C(u,v) - f(u,v) !If f(u,v) < C(u,v)
(u.0) f(u,v) - d(u,v) !If f(v,u) > d(v,u)

e d;*=0,foralle € F,;

o w

The successive shortest path algorithm successivelyasessflow values of the edges along the
shortest paths betweerandt in the residual network until the value of flow reachesr no more
paths can be found. The cycle-cancelling algorithm redtliesost of the given flow to minimum
by removing negative cycles in the induced residual network

In consistency enforcement with flow, we usually deal with tbllowing problem: consider a
(s,t)-flow fin anetworkG = (V, E, w, ¢,d) with minimum cost, and an edgec E. The problem
is to determine whether increasing (or decreasijfid)y one unit keeps the flow value unchanged,
and compute the minimal cost of the new resultant flow if gaesi Again, such a problem can
be solved using the residual netwai* (Régin, 2002; van Hoeve et al., 2006): we compute the
shortest pathP from ¢’ to «’ in G™*, wheree = (v/,v') € E. If P exists, the value of the flow is
unchanged iff; is increased by one unit. The new minimum cost can be comytélae following
theorem.

Theorem 1 (Régin, 2002; van Hoeve et al., 2006) Suppgses the resultant flow by increasinfy
by one unit. Then the minimum valuecokt(f') is cost(f) + w;® + > . p wi®.

Theorem 1 reduces the problem into finding a shortest path froto «’, which can be made
incremental for consistency enforcement. If we want to ceda unit flow from an edge, we can
apply similar methods to those used in Theorem 1.

3. Related Work

Global cost functions can be handled using constraint dpdition, which focuses on efficient
computation ofmin{Wg(¢) | ¢ € L(S)} and enforcing GAC on their hard constraint forms
Ws(¢) < zg, wherezg is the variable storing costs (Petit et al., 2001). Van Haesval. (2006)

262

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

develop a framework for global cost functions represeetélyl flow networks, whose computation
is polynomial in the size of networks. Beldiceanu (2000) Betticeanu, Carlsson and Petit (2004)
further develop a representation scheme for global costifums using a graph-based approach and
an automaton approach. Under their framework, the comipataf all global cost functions can be
reduced to only considering a fixed set of global cost fumsti@.g. theSOFT_REGULAR functions.

On the other hand, to efficiently remove more search spadagdWWCSPs solving, various
consistency notions have been developed. Examples are N{roga & Schiex, 2004), BAC
(Zytnicki et al., 2009), AC* (Larrosa & Schiex, 2004), FDAGtarrosa & Schiex, 2003), and
EDAC* (de Givry et al., 2005). Stronger consistency notionamely OSAC and VAC (Cooper
et al., 2010), are also defined, but enforcement requirekatéon of the cost valuation structure
V(T) to rational numbers, and current implementations are effiadnly on binary WCSPs. For
ternary cost functions, AC, FDAC and EDAC are introducedh(®&z et al., 2008). Cooper (2005)
incorporates the concept &fconsistency into WCSPs to formompletek-consistency However,
the time and space complexities increase exponentiallyeaprbblem size increases, making com-
pletek-consistency impractical to enforce for general WCSPs.

4. Consistency Notions for Global Cost Functions

In this section, we discuss four consistency notions fohitagty cost functions: (1) strong-
inverse consistency (stromglC), (2) generalized arc consistency (GAC*), (3) full diieaal gen-
eralized arc consistency(FDGAC?*), and (4) generalized ERAThese consistency notions require
exponential time to enforce in general, but flow-based dlobst functions (van Hoeve et al., 2006)
enjoy polynomial time enforcement.

4.1 Strong@-Inverse Consistency
Strong@-inverse consistency is based @rnverse consistency(IC) (Zytnicki et al., 2009).

Definition 8 (Zytnicki et al., 2009) Given a WCSP = (X, D,C, T). A cost functioriVs € C is
g-inverse consisten(@|C) if there exists a tuplé € £(S) such thatiVg(¢) = 0. AWCSP iszIC
iff all cost functions arezIC.

The procedurenf or ceal C() in Algorithm 2 enforceszIC. Each cost functiols is made
ZIC by lines 3 to 6, which move costs frolis to W, by simple arithmetic operations.

Function enf or ceal C()
fl ag :=false
foreachWg € C do
a:=min{Ws(0) | L € L(S)};
Weg i =Wy @ a;
foreach? € L(S) doWg(¢) := Ws(¢) © o
if « > 0thenfl ag := true;

N O O B~ WwN R

return f| ag;

Algorithm 2 : Enforcing@IC on a WCSP

The time complexity ofenf or ce@l C() in Algorithm 2 depends on the time complexities
of lines 3 and 5. Line 3 computes the minimum cost and line 5ifiesdthe cost of each tuple

263

LEE& L EUNG

to maintain equivalence. In general, these two operatioasgonential in the arity of the cost
function. However, the first operation can be reduced torpmtyial time for a global cost function.
One such example ftow-based global cost functiorfgan Hoeve et al., 2006).

Definition 9 (van Hoeve et al., 2006) A global cost functidry is flow-basedf Wg can be repre-
sented as a flow networ® = (V, E, w, ¢, d) such that

min{cost(f) | fis the max{s,t}-flow of G} = min{Ws(¢) | £ € L(S5)},
wheres € V is the fixed source ande V is the fixed destination.

For examples, the cost functi®OFTALL DIFFERENT??(S) returns the number of pairs of
variables inS that share the same value, and is shown to be flow-based (\aretépal., 2006). An
example of its corresponding flow network, whete= {xz1, z2, 3,24}, is shown in Figure 1. All
edges have a capacity of The numbers on the edges represent the weight of the edgesedige
has no number, the edge has zero weight. The thick lines dteflow corresponding to the tuple
¢ = (a,c,b,b) having a cost of..

Figure 1: An example flow network f@OFT.ALL DIFFERENTY®¢

With flow-based cost functions, the first operation (commytihe minimum cost) can be re-
duced to time polynomial to the network size for those camsts. The second operation can be
reduced to constant time using thg data structure suggested by Zytnicki et al. (2009). Instfad
deducting the projected valuefrom each tuple if¥g, we simply store the projected valuexy.
When we want to know the actual valueldfy, we computdVs © Ag.

Enforcing @IC only increases$V but does not help reduce domain size. Consider the WCSP
in Figure 2. Itis@IC, but the value: € D(x1) cannot be a part of any feasible tuple. All tuples
associated with the assignment; — ¢} must have a cost of at least1 from Wy, 2 from Wy, and
1 from W ». To allow domain reduction, extra conditions are added IS to form strong&IC.

T=4,Wsz=1
x1 | W1 x1 | w2 | Wig || @1 | 22 | Wi
i) WQ
a 0 1 a | a 0 a b 0
b | 2 Z 0 al 0 [blb]| 0
2 a 1 b 1

Figure 2: AWCSP which izIC

264

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

Definition 10 Given a WCSHP = (X, D,C, T). Consider a non-unary cost functidits € C*
and a variabler; € S. Atuplel € £(S) is the@-supportof a valuev € D(z;) with respect tdlVg
iff [x;] = vandWy @ W;(v) @ Ws(¢) < T. The cost functios is strongzIC iff it is IC, and
each value in each variable ifi has a@-support with respect tél’s. A WCSP istrongaIC if it is
Z1C and all non-unary cost functions are strogC.

For instance, the WCSP in Figure 2 is not stranlfC. The valuec € D(z1) does not have &-
support, sincéVy & Wi (c) @ min{Wi 2(¢) | {[z1] = c ANl € L({z1,22})} = T = 4. Removal of
¢ € D(x1) makes it so.

Strong @IC collapses to GAC in classical CSPs when WCSPs collapseSesC Although
its definition is similar to BACG (Zytnicki et al., 2009), their strengths are incomparalBAC?
gathers cost information from all cost functions on the ltang values, while we only consider the
information from one non-unary cost function for all indivial values.

The procedurenf or ceS@l C() in Algorithm 3 enforces strongfIC, based on th&¥ ACx 3()
Algorithm (Larrosa & Schiex, 2004). The algorithm maintsnpropagation queu@ of variables.
Cost functions involving variables i@ are potentially not strongIC. At each iteration, an arbi-
trary variabler; is removed from by the functionpop() in constant time. The algorithm enforces
strong@IC for the cost functions involving:; from lines 4 to 6. The existence @f-support is
enforced byf i nd@Support (). If domain reduction occurd { nd@Support () returns true),
or Wy increasesdnf or ceal C() returns true), variables are pushed ofitat lines 6 and 7 re-
spectively, indicating thaplC are potentially broken. If the algorithm terminates, = @, no
variables are pushed in@ at line 6, orQ is not set taX at line 7. Itimplies all variables are strong
ZIC and the WCSP igIC. Thus the WCSP is strongIC after execution.

Procedureenf or ceSal ()
Q:=4;
while Q # @ do
zj :=pop (Q);
foreachWg € C* s.t.a; € Sdo
foreachz; € S\ {z;} do
L | iffind@Support (Ws,z;)thenQ := QU {x;};

o g b~ WDN PP

7 if enforceol C()then Q := X}

Function f i ndgSupport (Ws, ;)

fl ag :=false
9 foreachv € D(x;) do
10 a = min{Ws(¢) | {[z;] = v};
11 if Wo @ W;(v) ®a =T then
12 D(z;) := D(z;) \ {v};
13 L fl ag :=true;

14 return f | ag;

Algorithm 3: Enforcing strongzIC of a WCSP

The procedurenf or ceS@l () is correct and must terminate. Its complexity can be aealy
by abstracting the worst-case time complexitiesf ohd@Support () andenf or ce@l C() as

265

LEE& L EUNG

fstrong @Nd fz1c respectively. Using an augment similar to the proof of Lear@and Schiex’s
(2004) Theorems 12 and 21, the complexity can be statedlaw/fol

Theorem 2 The procedurenf or ceSal C() a time complexity o (r2edf strong+ndfz1c), Where
r is the maximum arity of all cost functionéjs maximum domain size,= |C*| andn = | X|.

Proof: The while loop at line 2 iterates at maS{nd) times. In each iteration, line 6 executes at
mostO(r - [N (j)|) times, whereV (j) is the set of soft constraints restricting. Since line 7 exe-
cutes at mosD(nd) times, the overall time complexity 8 (rdfstrong - 35—y IN (3)| +ndfzic) =
O(r?edf strong + ndfzic). O(3_7_1 IN(j)]) = O(re) holds since each cost function counts at most
rtimesiny_ ", [N(j)|. Thus, it must terminate. O

Corollary 1 The procedurenf or ceSal C() must terminate. The resultant WCSP is strari@,
and equivalent to the original WCSP.

In general, due tenf or ceal C() andf i ndaSupport (), enforcing strongzIC is exponen-
tial in . As discussed beforgnf or ce@l C() can be reduced to polynomial time for flow-based
global cost functions. Similarly,i nd@Suppor t () can be executed efficiently and incrementally
for flow-based global cost functions since line 10 can be agegin polynomial time using mini-
mum cost flow.

Another property we are interested ircenfluence A consistency? is confluentf enforcing &
always transforms a probleii into a unique problen®’ which isW. AC* is not confluent (Larrosa
& Schiex, 2004). With different variable and/or cost functiorderings, AC* enforcement can lead
to different equivalent WCSPs with different values1®f,. BAC? is confluent (Zytnicki et al.,
2009). Following the proofs of Propositions 3.3 and 4.3 bynitki et al., it can be shown that
strong@IC is also confluent.

Theorem 3 (Confluence) Given a WCSP = (X,D,C, T), there exists a unique WCSP =
(X,D’',C’, T) which is strongzIC and equivalent ta.

The above concludes the theoretical analysis of stwl@ In the following, we compare the
strength of strongzIC with the classical consistency notions used in condtigitimization. Fol-
lowing Petit et al. (2000), we define tingified form of a WCSRs follows:

Definition 11 (Petitetal., 2000) GivenaWCSP= (X, D,C, T). Thereified form,r ei fi ed(P),
of P is a constraint optimization problem (CORY", D", C", obj), where:
e X' =XxUZ whereZ = {25 | Wg € C\ {Wy}} are thecost variables
e D"(x;) = D(x;) for x; € X, and D"(zg) = {0,..., T — Wy — 1} for eachzg € Z. If
T - Wy < 1,DMNzg) = @.
e C" contains thereified constraintsﬁ’gU (25} which are the hard constraints associated with

eachWg € C \ {Wy} defined adVs(¢) < zg for each tuple/ € £(S). C"* also containg":
defined adVy & P zg < T.

e The objective is to minimizeéj, whereobj = Wy ® @zsez Zs.

25€Z

266

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

Finding the optimal solution afei f i ed(P) is equivalent to solving®. However, enforcing GAC
onr ei f i ed(P) cannot remove more values than enforcing strom@ of P. It is because strong
IC of P implies GAC ofr ei fi ed(P) but not vice versa.

In general, we define the strength comparison as follows.

Definition 12 Given a problenP representable by two modet$P) and(P). A consistency on
¢(P) is strictly stronger thaanother consistency on(P), written as® on ¢(P) > ¥ onvy(P),
or & > Uif ¢(P) = ¢(P), iff (P) is ¥ wheneveky(P) is @, but not vice versa.

Zytnicki et al. (2009) also define consistency strength caigpn in terms of unsatisfiability detec-
tion, which is subsumed by our new definition.difon ¢(P) implies ¥ on ¢ (P), and enforcingl
on(P) detects unsatisfiability, enforcin on ¢(P) can detect unsatisfiability as well.

Given a WCSPP = (X,D,C, T). We show strongzIC on P is stronger than GAC on
rei fi ed(P) by the following theorem.

Theorem 4 Strong@IC on P > GAC onr ei f i ed(P).

Proof: Figure 2 has given an example that a WCSP whose reified COP@r@ay not be strong
2IC. We have to show that stromIC on P implies GAC onr ei f i ed(P).

First,C% is GAC. If |C| < 1, the constraint is obviously GAC. J€| > 1, for eachws, € D(zs,),
to satisfy the constraint, we just let other cost variabldee tthe valug), i.e. supports for each
vg;, € D(zg,) exist.

Besides,C’S}U{Zs} is GAC. By the definition ofzIC, there exists a tupl€¢ € £(.S) such that
Ws(¢") = 0. The tuple?’ can form the support afs € D(zg) with respect t(ﬂ’gu{zs}. Besides,
the @-support/y of v € D(x;), together withvg = Wg(¢5), forms a support fov € D(x;). O

For a detailed comparison between stranfC of WCSPs and GAC of the reified approach,
readers can refer to the work of Leung (2009).

When the cost functions are binary, strablfC cannot be stronger than AC*. In the next section,
we show this fact by provin@GAC*, a generalized version of AC*, to be stronger than strohG.

4.2 Generalized Arc Consistency

Definition 13 (Cooper & Schiex, 2004) GivenaWCHP= (X, D,C, T). Consider a cost function
Wg € C* and a variabler; € S. Atuple? € £(S) is asimple supporofv € D(z;) with respect to
Wg with z; € S iff ¢[x;] = vandWgs(¢) = 0. A variablez; € S is star generalized arc consistent
(GAC*) with respect toVg iff z; is NC*, and each value; € D(z;) has a simple suppo#t with
respect tolWWs. A WCSP isGAC* iff all variables are GAC* with respect to all related non-any
cost functions.

The definition is designed with practical consideratioms] & slightly weaker than Definition 4.2
in the work of Cooper et al. (2010), which also requit€s (¢) = T if Wy © @D, cg Wi({[x:]) ©
Ws(l) =T.

GAC* collapses to AC* for binary cost functions (Larrosa &Hsex, 2004) and AC for ternary
cost functions (Sanchez et al., 2008). GAC* is stronger gteonga|C, as a WCSP which is GAC*
is also strongzIC, but not vice versa. We state without proof as follows.

Theorem 5 GAC* > stronggIC.

267

LEE& L EUNG

The procedureenf or ceGACx () in Algorithm 4 enforces GAC* for a WCSRX,D,C, T),
based on th&¢ AC 3() Algorithm (Larrosa & Schiex, 2004). The propagation gei€ustores a set
of variablesz;. If z; € Q, all variables involved in the same cost functionsrasare potentially
not GAC*. Initially, all variables are irQQ. A variablez; is pushed intdQ only after values are
removed fromD(z;). At each iteration, an arbitrary variablg is removed from the queue by
the functionpop() at line 4. The functiorf i ndSupport () at line 7 enforces GAC* of; with
respect tdls by finding the simple supports. The infeasible values areoweah by the function
pruneVal () at line 10. If a value is removed from(z;), the simple supports of other related
variables may be destroyed. Thus,is pushed back t@Q again by the proceduner uneVal (). If
GAC+ () terminates, all values in each variable domain must hasienple support. The WCSP is
now GAC*.

Procedureenf or ceGAC+ ()

1 Q.= 4,
2 GAC ();
Procedure GAC* ()
3 while Q # @ do
4 zj :=pop (Q);
5 foreachWs € C* s.t.z; € Sdo
6 foreachz; € S\ {z;} do
7 if fi ndSupport (Wg, x;) then

/1 For further consistency enforcement. Assune
initially enpty if not specified

8 S:=SuU {1‘1},
9 R:=RuU{z;};
10 | pFuneVaI 0;

Function f i ndSupport (Wg, x;)
11 fl ag :=false
12 foreachv € D(x;) do

13 a = min{Wgs(l) | {[z;] = v};

14 if W;(v) =0Aa>0thenfl ag := true;

15 W;(v) := W;(v) & o

16 foreach? € L(S) s.t.l[xz;] = ado Ws({) := Ws(¢) © a;

17 unar yProj ect (x;);
18 return f | ag;

Algorithm 4 : Enforcing GAC* for a WCSP

The procedureenf or ce GACx () in Algorithm 4 is correct and must terminate. The proof is
similar to that of Theorem 2. By replacin@ ong by faac (the worst-case time complexities
of fi ndSupport ()) and fzrc by O(nd) (the complexity ofpr uneVal ()), the complexity of
Algorithm 4 can be stated as follows.

Theorem 6 The procedur@nf or ce GACx () has a time complexity 6?(r?edfgac +n?d?), where
n, d, e, andr are as defined in Theorem 2.

268

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

Corollary 2 The procedurenf or ce GAC+ () must terminate. The resultant WCSP is GAC*, and
equivalent to the original WCSP.

In general, the procedurenf or ce GACx () is exponential in the maximum arity of the cost
function due td i ndSupport (). The functionf i ndSuppor t () consists of two operations: (1)
finding the minimum cost of the tuple associated wftk) — v} at line 13, and (2) performing
projection at lines 15 and 16. The time complexity of the fipgération is polynomial for a flow-
based global cost functioivs. The method introduced by van Hoeve et al. (2006) can beexpfui
the first operation as discussed in Section 4.1. Howevegdbend operation modifié§’s to Wg,
which requires changing the costs of an exponential numbtmptes. Cooper and Schiex (2004)
use a similar technique as the one by Zytnicki et al. (200@)il@r to the technique described in
Section 4.1) to make the modification constant time. Howeterresultingi’ may not be flow-
based, affecting the time complexity of the subsequentguiae calls. To resolve the issue, we
introduceflow-based projection-safetyf Wy is flow-based projection-safe, the flow property can
be maintained throughout enforcement.

Definition 14 Given a property7 . A global cost functioiVs is T projection-saféff W satisfies
the property7, and for allW¢ derived fromiW by a series of projections and extensiols; also
satisfiesT .

In other words, & projection-safe cost functiofl’s still satisfies7T after any numbers of pro-
jections or extensions. This facilitates the use7oto derive efficient consistency enforcement
algorithms. In the following, we consider a special form7ofprojection-safety, whefl is the
flow-based property.

In the following, we first defineF 153, and show thaf B is the sufficient condition of flow-based
projection-safety.

Definition 15 A global cost function satisfieB1 if:

1. Wy is flow-based, with the corresponding netwark= (V, E, w, ¢,d) with a fixed source
s € V and a fixed destinatiohe V;

2. there exists a subjective function mapping each maximum fflin G to each tuple/; <
L(S), and;

3. there exists an injection mapping from an assignment— v} to a subset of edges C F
such that for all maximum floyi and the corresponding tuplé:, > ..z fo = 1 whenever
Cylz;] = v, and}” 5 fe = 0 whenever[z;] # v

Lemma 1 GivenWy satisfyingFB. SupposéVy is obtained fronPr oj ect (Ws, W;, v, o) or
Ext end(Wy, W;, v, o) . ThenWy also satisfiesFB.

Proof: We only prove the part for projection, since the proof foremsion is similar. We first show
thatTVy is flow-based (condition 1). Assundeé= (V, E, w, c, d) is the corresponding flow network
of Wg. After the projection(can be modified t&' = (V, E,w’, ¢, d), wherew'(e) = w(e) — «
if e € E is an edge corresponding fa; — v} andw’(e) = w(e) otherwise. The resulting’ is

269

LEE& L EUNG

the corresponding flow network &g, since for the maximum flov in G with minimum cost:

Zw/efe Zwefe_aZfe

e€cE e€E ecE

= min{Ws(0) | € LS} ~a) fo

eck

= min{Wg(¥) | £ € L(S)}.

Moreover, since the topology 6 = (V, E, v, ¢,d) is the same as that 6 = (V, E, w, ¢, d),
Wy also satisfies conditions 2 and 3. a

Theorem 7 If a global cost functioriVg satisfiesF B, thenW is flow-based projection-safe.

Proof: Initially, if no projection and extension is performed, etitly from Definition 15,Wg is
flow-based. Assum@&’y is the cost function formed frori¥’s after a series of projections and/or
extensions. By Lemma 1V still satisfiesFB and thus flow-based. Result follows. O

As shown by Theorem 7, if a global cost function is flow-basegigetion-safe, it is always
flow-based after projections and/or extensions. Besideshbcking the conditions in Definition
15, we can determine whether a global cost function is flogetlgrojection-safe.

Note that the computation in the proof is performed understhedard integer set instead of
V(T) for practical considerations. Further investigation iguiead if the computation can be re-
stricted onV/(T).

By using Theorem 7, we can apply the results by van Hoeve €2@06) to compute the value
min{Ws(?) | £[x;] = v AL e L(S)} in polynomial time throughout GAC* enforcement. Besides,
the proof gives an efficient algorithm to perform projectinpolynomial time by simply modifying
the weights of the corresponding edges.

Again, we usesOFTALL DIFFERENT?* as an example. Van Hoeve et al. (2006) have shown
that SOFT_ALL DIFFERENT!¢(S) satisfies conditions 1 and 2 in Definition 15. Besides, frbw t
network structure shown in Figure 1, by takidg = {(z;,v)} for each assignmenfz; — v},
condition 3 can be satisfied. This)FT.ALL DIFFERENT¢ is flow-based projection-safe.

Figure 3: The flow networlsOFT_ALL DIFFERENT#¢() after projection

Consider the flow network of theoFT_ALL DIFFERENT?* in Figure 1. Suppose we perform
Pr oj ect (SOFT.ALL DIFFERENT#¢(S) , W1, a, 1) . The network is modified to the one in Fig-
ure 3, the weight of the edde, a) in which is decreased froiito —1. The flow has a cost df,
which is the cost of the tuplé, ¢, b, b) after projection.

270

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

If a global cost function is flow-based projection-sdfendSuppor t () has a time complexity
depending on the time complexity of computing the minimurstdlmw and the shortest path from
any two nodes in the network. The result is stated by theatig theorem.

Theorem 8 Given the time complexities of computing the minimum castdlad the shortest path
are K and SP respectively. IfiVg is flow-based projection-safd,i ndSupport () has a time
complexity oD (K +ed - SP), whered = max{|D(z;)| | z; € S} ande is the maximum size @.

Proof: By Theorem 1, after finding a first flow by (XC), the minimum cost at line 13 can be found
by augmenting the existing flow, which only requi@§SP). Line 15 can be done in constant time,
while line 16 can be done as follows: (a) decrease the wedflah edges corresponding 19 — v

by «, and (b) augment the current flow to the one with new minimust by changing the flow
values of the edges whose weights have been modified in thetégs The first step requiré¥(e),
while the second step requiré€ge - SP). At moste edges are required to change their flow values
to maintain minimality of the flow cost. Sinaenar yPr oj ect () requiresO(d), the overall time
iISOK+d(SP +¢e-SP)+d)=0(K+ed-SP). O

The time complexity for finding a shortest path in a graph varies by applying different
algorithms. In general§P = O(|V||E|), as negative weights are introduced in the graph. However,
it can be reduced by applying a potential value on each estias in Johnson’s (1977) algorithm.
For example, in Figure 3, we can increase the potential \@fluerticesa andt by 1, and the weight
of the edgegb,t) and(c,t) by 1. This increases the cost of all paths freno ¢ by 1, and makes
the weights of all edges non-negative. Dijkstra’s (1958pdthm can thus be applied, reducing the
time complexity toO(|E| + |V |log(|V])).

Although GAC* can be enforced in polynomial time for flow-leasprojection-safe global cost
functions, thef i ndSuppor t () function still requires runtime much higher than that kamary or
ternary table cost functions in general. To optimize thdégsarance of the solver, we can delay the
consistency enforcement of global cost functions untiballary or ternary table cost functions are
processed at line 5.

FDAC* for binary cost functions (Larrosa & Schiex, 2003) gegts that a stronger consistency
can be deduced by using the extension operator. We will slisthe generalized version of FDAC*
for non-binary cost functions in the next section.

4.3 Full Directional Generalized Arc Consistency

Definition 16 Givena WCSR’ = (X, D,C, T). Consider a cost functioW’s € C* and a variable
x; € S. Atuple/ is thefull supportof the valuev € D(z;) with respect td¥s and a subset of
variablesU' C S\ {z;} iff ([z;] = v and Ws({) © @, e W;(llz;]) = 0. A variablez; is
directional star generalized arc consistdhGAC*) with respect tdVy if it is NC* and each value
v € D(x;) has a full support with respect fa:,, | z, € S Aw > i}. AWCSP idull directional star
generalized arc consisteffDGAC?) if it is GAC* and each variable is DGAC* with respect all
related non-unary cost functions.

FDGAC* collapses to GAC when WCSPs collapse to CSPs. More®BGAC* collapses to
FDAC* (Larrosa & Schiex, 2003) when the arity of the cost ftimes is two. However, FDGAC*
is incomparable to FDAC for ternary cost functions (Sancbeal., 2008). FDAC requires full
supports with not only zero unary but also zero binary castgHe next variable irb' only, while
we only require all variables with full supports of zero unaosts.

271

LEE& L EUNG

By definition, FDGAC* is stronger than GAC* and also stroatC.
Theorem 9 FDGAC* > GAC* > strongaIC.

The procedurenf or ce FDGACk () enforces FDGAC* for a WCSP, based on IRAC+ () Al-
gorithm (Larrosa & Schiex, 2003). The propagation que@eandR store a set of variables. If
x; € Q, all variables involved in the same cost functionscaare potentially not GAC*; ifr; € R,
the variablest; involved in the same cost functions asare potentially not DGAC*. When values
are removed from the domain of variabte, =, is pushed ont@ andRR; when unary costs of the
values inD(x;) are increasedy; is pushed tdR. At each iteration, GAC* is maintained by the
procedureGAC+ (). DGAC* is then enforced b¥DGAC+ (). Enforcing DGAC* follows the ordering
from the largest index to the smallest index such that thiesfybports of values in the domains
of variables with smaller indices are not destroyed by DGAS@forcement on those with larger
indices. The variable with the largest indexlinis removed fromR by the functionpopMax ().
By implementingR as a heappopMax () requires only constant time. DGAC* enforcement is per-
formed at line 10 by i ndFul | Support (). In the last step, NC* is re-enforced py uneVal ().
The iteration continues until all propagation queues aretgnwhich implies all values in each
variable domain has a simple and full support, and all véegahre NC*. The resultant WCSP is
FDGAC*.

Procedureenf or ceFDGAC* ()

R:=Q:=4;

while R # oV Q # @ do
GAC- ();

L DGAC+ ();

pruneVal ();

a b W N B

Procedure DGAC+ ()
while R £ @ do
Zqy = popMax (R);
foreachWg € CT s.t.z, € Sdo
for i =n DownTols.t.z; € S\ {z,} do
10 L if fi ndFul | Support (Wg,z;,SN{z;|j>i})then R:=RU{z;};

© 00 N O

12 S:=8Su{z}; /1 For further consistency enforcenent.

Function f i ndFul | Support (Wg, x;, U)
13 foreachz; € U do

14 foreachv; € D(z;) do
15 foreach? € L(S) s.t.£[z;] = v; do Wgs({) := Ws(€) & W;(v;);
16 Wj (Uj) = 0;

17 flag:=findSupport (Wg, z;);

18 foreachz; € U do fi ndSupport (Wg, z;);
19 unar yProj ect (x;);

20 return f | ag;

Algorithm 5: Enforcing FDGAC* on a WCSP

272

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

The procedureenf or ceFDGAC* () in Algorithm 5 is correct and must terminate, the proof
of which is similar to those of Theorems 3 and 4 by Larrosa acliieX (2003). The worst-case
time complexity ofenf or ce FDGACk () can be stated in terms of that of ndFul | Support ()

(fpaac) andf i ndSupport () (faac) as follows.

Theorem 10 The procedureenf or ceFDGACx () has a time complexity ab(r?ed(nfpaac +
faac) +n2d?), wheren, d, e, andr are as defined in Theorem 2,

Proof: First we analyze the time complexity of enforcing DGAC*. Gater the procedure
DGAC () at line 6. The while-loop iterates at moSt(n) times. Since no value is removed in
the while-loop, oncer; is processed at line 10, wheie> j, it is not pushed back t® at line
11. Thus, line 10 executes at mastr > 7 [N (j)]) = O(r%e) times, whereN (j) is the set of
cost functions restricting;;. Therefore, the time complexity @GAC () is O(r?efpaac). Since
DGAC () executes at mosP(nd) times throughout the global enforcement iteration. Theitne
spent on enforcing DGAC* i) (nr2edfpgac)

Although GAC () is calledO(nd) times, it does nothing if no values are removed from variable
domains. Thus we count the number of times callinghdSupport (). Since the variables are
pushed intd only when a value is removeflj ndSuppor t () only executes at mog2(nd) times
throughout the global enforcement iteration. Similar angats apply tgr uneVal () at line 10
inside GACx () defined in Algorithm 4. With the proof similar to Theorem the time spent on
enforcing GAC* isO(r2edfgac + n%d?).

Thepr uneVal atline 5 execute®(nd) times, and each time it requires a time complexity of
O(nd). Therefore, the overall time complexity ¥(r2ed(nfpcac + faac) + n2d?). O

Corollary 3 The procedurenf or ce FDGAC* () must terminate. The resultant WCSP is FDGAC*
and equivalent to the original WCSP.

Again, the complexity is exponential in the maximum aritgda the functiorf i ndSupport ()
andf i ndFul | Support (). In the following, we focus the discussion bhndFul | Support ().
The first part (lines 15 and 16) performs extensions to pulsth@lunary costs back td’s. By
the time we execute line 17, all unary codt§, wherex; € U, are0, and enforcing GAC* forx;
achieves the second requirement of DGAC* (each D(x;) has a full support). Line 18 re-instates
GAC* for all variablesz; € U. Note that success in line 17 guarantees thatv;) = 0 for some
valuev; appearing in a tuplé which makedVs(¢) = 0.

Again, flow-based projection-safety helps reduce the tiomealexity off i ndFul | Support ()
throughout the enforcement. The proof of Theorem 7 givedympmial time algorithm to perform
extension and maintain efficient computationnaifn{ W (¢) | ¢ € £(S)}. Flow-based projection-
safety can be guaranteed by Theorem 7, which requires afgeckinditions 1, 2, and 3 in the
definition of flow-based projection-safety. The complexigult follows from Theorems 2 and 8.

Theorem 11 If Wy is a flow-based projection-safe global cost functibhndFul | Support ()
has a time complexity @ (KC + erd - SP), wherer, ¢, d, K and SP are as defined in Theorems 2
and 8.

Proof: Similarly to Theorem 8, lines 13 to 16 can be performed a®¥l (a) for eachr; € U
and each value; € D(z;), increase the weights of all edges correspondingatp— v;} by
W;(v;), and then reduc&’;(v;) to 0, and (b) find a flow with the new minimum cost in the new

273

LEE& L EUNG

flow network. The first step can be donedierd), as the size ot/ is bounded by the arity of
the cost functionr. The second step can be done(K), which also acts as preprocessing for
fi ndSupport () atlines 17 and 18. By Theorem 8, lines 17 and 18 can be do@¢riad - SP).
Thus, the overall complexity ©(r - ed + K + red - SP) = O(K + erd - SP). O

Similarly to GAC*, the DGAC* enforcement for global cost fctions can be delayed until all
binary and ternary table cost functions are processed.

4.4 Generalizing Existential Directional Arc Consistency

EDAC* (de Givry et al., 2005) can be generalized to EDGAC gsthe full support definition as
in FDGAC*. However, we find that naively generalizing EDAG*mot always enforceable, due to
the limitation of EDAC*. In the following, we explain and prigle a solution to this limitation.

4.4.1 AN INHERENT LIMITATION OF EDAC*

Definition 17 (de Givry et al., 2005) Consider a binary WC3P = (X,D,C, T). A variable
x; € X is existential arc consistefEACY) if it is NC* and there exists a value€ D(x;) with zero
unary cost such that it has full supports with respect to @llby cost functiond¥; ; on {x;, x;}

and{xz;}. P is existential directional arc consistefDAC*) if it is FDAC* and all variables are
EAC*.

Enforcing EAC* on a variable:; requires two main operations: (1) compute

a= min {Wi ng? i {Wi j(a,b) ® W;(b)}},

which determines whether enforcing full supports breakdN&* requirement, and (2) i > 0, en-
force full supports with respect to all cost function$; € C by invokingf i ndFul | Support (z;,
Wi 5, {x;}), implying that NC* is no longer satisfied and heriég, can be increased by enforcing
NC*. EDAC* enforcement will oscillate if constraints shameore than one variable. The situation
is similar to Example3 by de Givry et al. (2005). We demonstrate by the example inr€id(a),
which shows a WCSP with two cost functiofi§]', and W7,. It is FDAC* but not EDAC*. If
9 takes the value, W1172(v,a) @ Wi(v) > 1 for all valuesv € D(xy); if zo takes the valué,
WﬁQ(v, b) & C1(v) > 1 for all valuesv € D(z1). Thus, by enforcing full supports of each value
in D(z9) with respect to all cost functions add; }, NC* is broken and¥, can be increased. To
increaséV, we enforce full supports: the cost bin W (a) is extended t‘Wﬁz’ resulting in Fig-
ure 4(b). No costs if’; can be extended tWﬁQ. Performing projection frorﬂt)[/'l{2 to W5 results

in Figure 4(c). The WCSP is now EAC* but not FDAC*. Enforcin@/&C* converts the problem
state back to Figure 4(a).

The problem is caused by the first step, which does not tell thewnary costs are separated
for extension to increas®é’,. Although an increment is predicted, the unary cosiin(a) has a
choice of moving itself td/[/l{2 or Wﬁz. During computation, no information is obtained on how
the unary costs are moved. As shown, a wrong movement bre&Rs Without incrementingii,
resulting in oscillation.

This problem does not occur in existing solvers which handlg up to ternary cost functions.
The solvers allow only one binary cost functions for everyr p& variables. If there are indeed
two cost functions for the same two variables, the cost fanstcan be merged into one, where the

274

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

T=4,Wz=0 T=4,Wz=0 T=4,Wz=0
T | Ty Wiz ‘ T | 2 Wll2 ‘ Ty | T2 Wll2
x| Wy a | a 0 x| W1 a | a 1 z1 | Wi a | a 0
a 1 a | b 2 a | O a | b 3 a 0 a | b 3
b | 0 b | a 1 b 0 b | a 1 b 0 b | a 0
b | b 0 b | b 0 b | b 0
Ty | 20 | W2, Ty | 20 | W3 Ty | 20 | W3
xo | Wo a | a 1 xo | Wo a | a 1 xo | Wo a | a 1
a 0 a | b 0 a 0 a | b 0 a 1 a | b 0
b 0 b | a 0 b 0 b | a 0 b 0 b | a 0
b | b 2 b | b 2 b | b 2
(a) Original WCSP (b) After Extension (c) After Projection

Figure 4: Oscillation in EDAC* enforcement

cost of a tuple in the merged function is the sum of the costh@&ame tuple in the two original
functions. However, if we allow high arity global cost fuimts, sharing of more than one variable
would be common and necessary in many scenarios. A straiglafd generalization of EDAC*
for non-binary cost functions would inherit the same oatitin problem. In the case of ternary cost
functions, Sanchez et al. (2008) cleverly avoid the odmiaproblem by re-defining full supports
to include not just unary but also binary cost functions. iBgIEDAC enforcement, unary costs are
distributed through extension to binary cost functionswideer, the method is only designed for
ternary cost functions. In the following, we define a wealsigr of EDAC*, which is based on the
notion of cost-providing partitions

4.4.2 @OSTPROVIDING PARTITIONS AND WEAK EDGAC*

Definition 18 A cost-providing partitior3,, for variablez; € X is a set of set$B,, w | z; € S}
such that:

|B,,| is the number of constraints which scope includgs
Bmi,WS g S!
Bmi,Wsj N Bwi’WSk = o for any two different constraintd’s, , W, € Ct, and;

® UBIivWSEB‘Ti B:vi,Ws = (UWseCﬂ\zieS S) \ {xz}

Essentially,3,, forms a partition of the set containing all variables caaised byx;. If x; €
B, ws, the unary costs in/; can only be extended td/s when enforcing EAC* forz;. This
avoids the problem of determining how the unary costs;adre distributed when there exists more
than one constraint ofw;, z;}.

Based on the cost-providing partitions, we defiveak EDAC*

Definition 19 Consider a binary WCSP = (X, D,C, T) and cost-providing partitiond 3, |
x; € X'}. Aweak fully supported value € D(z;) of a variablez; € X is a value with zero unary
cost and for each variable; and a binary cost functiofl’”;, there exists a valug € D(z;) such
that W% (v,b) = 0if By, wm = {}, andW;(v,b) @ W;(b) = 0if By, wm = {x;}. A variablex;

is weak existential arc consistefweak EAC*) if it is NC* and there exists at least one weakyfull
supported value in its domairP is weak existential directional arc consisténieak EDAC*) if it
is FDAC* and each variable is weak EAC*.

275

LEE& L EUNG

Weak EDAC* collapses to AC when WCSPs collapse to CSPs focasttproviding partition.
Moreover, weak EDAC* is reduced to EDAC* (de Givry et al., B)@vhen the binary cost functions
share at most one variable.

We further generalize weak EDAC* tweak EDGAC*or n-ary cost functions.

Definition 20 Given a WCSFP = (X, D,C, T) and cost-providing partitiong,, | =; € X'}.

A weak fully supported value € D(z;) of a variablez; is a value with zero unary cost and full
supports with respect to all cost functiolig € C* with z; € S and B, 1. A variablez; is weak
existential generalized arc consistéweak EGAC¥) if it is NC* and there exists at least one weak
fully supported value in its domainP is weak existential directional generalized arc consistent
(weak EDGACY) if it is FDGAC* and each variable is weak EGAC*.

Weak EDAC* and weak EDGAC* can be achieved using for any postiding partitions. Weak
EDGAC* is reduced to GAC when WCSPs collapse to CSPs.

Compared with other consistency notions, weak EDGAC* igtyyr stronger than FDGAC*
and other consistency notions we have described. It candwecdd directly from the definition.

Theorem 12 For any cost-providing partitions, weak EDGAC*FDGAC* > GAC* > stronga|IC
VAC is stronger than weak EDGAC?*, as stated in the theorerovhel
Theorem 13 VAC are strictly stronger than weak EDGAC* with any costyiting partition.

Proof: A WCSP which is VAC must be weak EDGAC* for any cost-providipgrtition. Oth-
erwise, there must exist a sequence of projections and sgtento increaséV, which violates
Theorem 7.3 by Cooper et al. (2010). On another hand, Coopér(@010) give an example which
is EDAC* but not VAC. Results follow. O
However, weak EDGAC?* is incomparable to compléteonsistency (Cooper, 2005), whete>
2, for any cost-providing partition. It is because EDAC* isegldy incomparable to complete
consistency (Sanchez et al., 2008).

To compute the cost-providing partitidsy,, of a variabler;, we could apply Algorithm 6, which
is a greedy approach to partition the 3etontaining all variables related tg defined in line 1,
hoping to gathering more costs by gathering more variatiema cost function, increasing the
chance of removing more infeasible values and raiing

Proceduref i ndCost Provi di ngPartition(z;)
Y = (UWs€C+/\:m€S S)\{zi};
SortC™ in decreasing order df|;
foreachWg € CT s.t.x; € Sdo
B&L‘MWS =YnNnSs,
L Y=Y\S5;

a b~ W N P

Algorithm 6: Finding B,,

The procedurenf or ceWeak EDGACx () in Algorithm 7 enforces weak EDGAC* of a WCSP.
The cost-providing partitions are first computed in line heTprocedure makes use of four prop-
agation queue®, Q, R andS. If z; € P, the variablex; is potentially not weak EGAC* due to

276

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

Procedureenf or ceWeak EDGAC ()

foreachz; € X do fi ndCost Provi di ngPartition (x;);
R:=Q:=S:=4;

whileS A2 VR £ 2 VQ#do

P:=SU UzieS,WseC+ (S\A{zi});

weak EGAC* ();

S:=a;

DGAC+ ();

GAC- ();

pruneVal ();

© 00 N O OB~ WN B

Procedureweak EGAC+ ()

10 while P # @ do

11 x; := pop(P);

12 if fi ndExi stenti al Support (x;)then
13 R:=RU{z};

14 L]P)Z:PU{L]ZJ'|Zi,CCjEWS,WS€C+};

Function f i ndExi st enti al Support (z;)

15 fl ag :=false

16 | @=mingepe){Wila) © B, cswsecr Mt =a{Ws(l) © DBy cp,, v, Willlz])}};
17 if a > 0then

18 flag :=true;

19 L foreachWg € Ct s.t.z; € Sdo findFul | Support (Ws, z;, By, ws);

20 return f | ag;

Algorithm 7 : Enforcing weak EDGAC*

a change in unary costs or a removal of values in some vasialfie; € R, the variables; in-
volved in the same cost functions ag are potentially not DGAC*. Ifz; € Q, all variables in
the same cost functions ag are potentially not GAC*. The propagation quesidelps buildP
efficiently. The procedureeak EGACx () enforces weak EGAC* on each variable by the procedure
findExi stenti al Support()inline 12. Iffi ndExi st enti al Support () returns true, a
projection has been performed for some cost functions. Téekviully supported values of other
variables may be destroyed. Thus, the variables constrdipe:; are pushed back ont® for re-
vision in line 14. DGAC* and GAC* are enforced by the procesRIDGACk () and GAC (). A
change in unary cost requires re-examining DGAC* and weaRE&G which is done by pushing
the variables into the corresponding queues in lines 13 dndrid lines 11 and 12 in Algorithm 5.
In the last step, NC* is enforced tpr uneVal (). Again, if a value inD(z;) is removed, GAC*,
DGAC* or weak EGAC* may be destroyed, and is pushed into the corresponding queues for
re-examination byr uneVal () in Algorithm 1. If all propagation queues are empty, alliahles
are GAC*, DGAC*, and weak EGAC?*, i.e. the WCSP is weak EDGAC*.

The algorithm is correct and must terminate. We analyzeithe tcomplexity by abstracting the
worst-case time complexities 6f ndSupport (), f i ndFul | Support () and

277

LEE& L EUNG

fi ndExi stenti al Support () as faac, fpaac, and fegac respectively. The overall time
complexity is stated as follows.

Theorem 14 The procedurenf or ce\WWeak EDGAC* () requiresO((nd+T)(fegac+r?efpaac+
nd) + r2edfGAc), wheren, d, e, andr are defined in Theorem 2.

Proof: As line 1 requires only)(nr), we only analyze the overall time complexity spent by each
sub-procedure and compute the overall time complexity.

A variable is pushed int§ if a value is removed or weak EGAC* is violated. The former
happeng)(nd) times, while the latter occur@(T) times (each time weak EGAC* is violatet/
will be increased). Sinc® is built onS, fi ndExi st enti al Support () is executed at most
O(nd+ T) times throughout the global enforcement. Thus, the timeptexity spent on enforcing
weak EGAC* ISO((nd + T)fEG’AC)-

A variable is pushed int® if either a value is removed, or unary costs are moved by GAC*
or weak EGAC* enforcement. ThuBGACx () is calledO(nd + T) times. Each timéGACx () is
called, by Theorem 10, it requirefz(r?efDGAC) for DGAC* enforcement. Thus, the time com-
plexity of enforcing DGAC* isO((nd + T)r?efpgac)-

A variable is pushed intd@) only if a value is removed. Thug,i ndSupport () inside the
procedureGAC* () is called at most(nd) times throughout the global enforcement. Using the
proof similar to Theorem 6, the overall time spent on enfdGAC* is O(r?edfgac + n2d?).

The main while-loop in line 3 terminates when all propagatioeues are empty. Thus, the main
while-loop iteratesD(nd + T) times. The time complexity for re-enforcing NC* Ipy uneVal ()
atline 9isO((nd + T)nd).

By summing up all time complexity results, the overall tinoeplexity isO((nd+T)(fecac+
r?efpaac + nd) + r’edfgac). O

Corollary 4 The procedureenf or ceWeak EDGACx () must terminate. The resultant WCSP is
weak EDGAC?*, and equivalent to the original WCSP.

The procedurenf or ceWeak EDGACk () is again exponential due fd ndSupport (),
fi ndFul | Support ()andfi ndExi st enti al Support (). In the following, we focus on the
last procedure. It first checks whether a weak fully suppbvedue exists by computing, which
determines whether NC* still holds if we perforfmi ndFul | Suppor t () from line 19. Ifa equals
0, aweak fully supported value exists and nothing should e gotherwise, this value can be made
weak fully supported by the for-loop at line 19. The time céemly depends on two operations:
(1) computing the value ok in line 16, and; (2) finding full supports by the line 19. Thes®
operations are exponential j§| in general. However, if all global cost functions are flonséd
projection-safe, the time complexity of the above operetican be reduced to polynomial time.

In the next section, we put theory into practice. We dematestour framework with different
benchmarks and compare the results with the current agproac

5. Towards a Library of Efficient Global Cost Functions

In the previous section, we only shasoFT.ALL DIFFERENTY® is flow-based projection-safe. In
the following, we further show that a range of common glokadtdunctions are also flow-based
projection-safe. We give experimental results on varioeschmarks with different consistency
notions and different global cost functions.

278

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

5.1 A List of Flow-Based Projection-Safe Global Cost Functins

In this section, we show that a number of common global casttfons are flow-based projection-
safe. They include the soft variants ot A DIFFERENT, GCC,SAME, andREGULAR constraints.

5.1.1 THE SOFT VARIANTS OF ALLDIFFERENT

The ALL DIFFERENT() constraint restricts variables to take distinct valuesugiere, 1978). There
are two possible soft variants, namelpFTALL DIFFERENT??() and ALL DIFFERENT?" (). The
former returns the number of pairs of variables that shazest#me value, while the latter returns
the least number of variables that must be changed so thetrédbles take distinct values. The
cost functionsoFT_ALL DIFFERENT?*¢() is shown to be flow-based projection-safe in Section 4.2.
In fact, this also implies that another cost function

SOFT.ALL DIFFERENT"®"() is flow-based projection-safe. TB®FT.ALL DIFFERENT'*" () function
also corresponds to a flow network with structure similamit bf SOFT_ALL DIFFERENT?¢() but
different in weights on the edges connecting twan Hoeve et al., 2006). We state the results as
follows.

Theorem 15 The cost functionsSOFT.ALL DIFFERENT'®" (S) andSOFT_ALL DIFFERENT?*¢(S) are
flow-based projection-safe.

5.1.2 THE SOFT VARIANTS OF GCC

Given a set of values = (J, . ¢ D(;) and functiondb andub that maps fronk to non-negative
integers. Each value € ¥ is associated with a upper boumd, and a lower boundb,. The
GCC(S, ub, Ib) constraint is satisfied by a tuplec £(S) if the number of occurrences of a value
v € ¥ in ¢ (denoted by#(¢, v)) is at mostub, times and at leadb, times (Régin, 1996). There
are two soft variants of GCC constraints, nametyrT.GCC’® () andSoFT.GCC%() (van Hoeve
et al., 2006).

Definition 21 (van Hoeve et al., 2006) Define two functios(g, v) and e(¢,v): s(¢,v) returns
by — #(l,v) if #(¢,v) < 1b,, and0 otherwise;e(¢, v) returns# (¢, v) — ub, if #(¢,v) > ub,, and
0 otherwise.

The global cost functionsoFT.GCC""(S) returns max{} s, s({,v), >, s e({,v)}, pro-
vided that)", .5 b, < |S] < 3, cx uby; While SOFT.GCC'™(S) returnsy_, .- (s(¢, v) +e(£, v)).

Van Hoeve et al. (2006) show that bl FT.GCC’*" andsSorFT.GCC%c are flow-based, and the
flow networks have structures similar to teeFT ALL DIFFERENT cost functions. With a proof
similar to Theorem 15, we can show the following theorem.

Theorem 16 The cost functionsoFT.GCC’?" (S) andsoFT.GCC'*(S) are flow-based projection-
safe.

5.1.3 THE SOFT VARIANTS OF SAME

Given two sets of variable§; and Sy with |S1| = |S3] and S; NSy = &. The SAME(S],S55)
constraint is satisfied by the tupfec £(S; U Ss) if £[S;] is a permutation of[S;] (Beldiceanu,
Katriel, & Thiel, 2004). The hargamE() constraint can be softened to the global cost function
SOFT_SAME"""() (van Hoeve et al., 2006):

279

LEE& L EUNG

Definition 22 (van Hoeve et al., 2006) Given that the union operatiois the multi-set union, and
©1Ayo returns the symmetric difference between two multi-getand 9, i.ep1Aps = (1 \

©2) U (02 \ 1)
The global cost functioBOFT_SAME"*" (51, S2) returns|(U,,, e s, {€[z:] D AU, e s, {1yl }I/2.

Theorem 17 The cost functiosOFT SAMEY*"(S1, S2) is flow-based projection-safe.

Proof: Van Hoeve et al. (2006) have shown tlstFT_SAMEY*" satisfies conditions 1 and 2 in
Definition 15. For instance, considSi = {xz1, z2,x3} andSy = {z4, x5, z¢} With D(z1) = {a},
D(z9) = {a,b}, D(z3) = {b}, D(x4) = {a,b} ,andD(x5) = D(zg) = {a}. The flow network
corresponding t@OFT_SAMEY?" (51, Ss) is shown in Fig. 5. Solid edges have zero weight and unit
capacity. Dotted edges have unit weight and a capacify dhe thick edges show the, ¢)-flow
corresponding to the tuple= (a, b,b,b,a,a).

e:":s‘:

Figure 5: The flow network corresponding to theFT SAMEY®" (S, Ss) constraint

Moreover, from the network structure, by takity= {(z;,v)} for z; € S; andv € D(x;),
andE = {(v,y;)} for y; € Sy andv € D(y;), the cost function satisfies condition 3. Thus, it is
flow-based projection-safe. d

5.1.4 THE SOFT VARIANTS OF REGULAR

The REGULAR constraint are defined based on regular languages. A relgnigmagel (M) can
be represented by a finite state automatér= (Q, X, d, qo, F'). Q is the set of states. is a set of
characters. The symbg) € @ denotes the initial state arfd C @ is the set of final states. The
transition functiory is defined ag : Q x ¥ — (). An automaton can be represented graphically as
shown in Figure 6, where the final states are denoted by dairoles.

Given D(x;) C X for eachx; € S. The REGULAR(S, M) constraint accepts the tuplec
L(S) if the corresponding string belongs to a regular languag¥) represented by a finite state
automatonV/ = (Q, %, 6, qo, F) (Pesant, 2004).

Figure 6: The graphical representation of a automaton.

280

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

Two soft variants are defined for tlREGULAR constraint, namelsOFT_REGULAR"*"() and
SOFT_.REGULAR*() (van Hoeve et al., 2006):

Definition 23 (van Hoeve et al., 2006) Defing to be the string formed from the tupfec L£(S).
The cost functionsSOFT_REGULARY® (S) returnsmin{H (r;,7) | 7 € L(M)}, whereH (11, 72)
returns the number of positions at which two stringsand 2 differ; while SOFT_.REGULAR®®*(S)
returnsmin{E(7,,7) | 7 € L(M)}, whereE(r!, 72) returns the minimum number of insertions,
deletions and substitutions to transforrhto 72 .

Theorem 18 The cost functionSOFT_.REGULAR® (S) and SOFT_.REGULAR®?(S) are flow-based
projection-safe.

Proof. Van Hoeve et al. (2006) show that conditions 1 and 2 are satisfior example, consider the
automaton)/ shown in Figure 6 and = {xz1, z2,x3} with D(z1) = {a} andD(z3) = D(z3) =
{a,b}. The flow networks corresponding to tReFT_REGULARY®" (S) andSOFT_REGULAR®(S)
functions are shown in Figure 7(a) and 7(b) respectivelye 3dlid edges have zero weight and the
dotted edges have unit weight. The thick edges show the floregmonding to the tuplé:, b, a).

The graphs are constructed as follows (van Hoeve et al.,)2006 vertices are separated into
n + 1 layers, where: = |X|, and each layer containg| nodes. The sourceis connected t@y o
at the first layer, and the sirtkis connected byq,+1, | ¢i € F'} at the last layer. Between the
and (i + 1) layers, an zero weighted edge representing D(z;) connectsy; ;, at theit® layer
andg; 1 x atthe(i + 1)*" layer if §(gx,, v) = q,. FOr SOFT.REGULARY™ (S), a set of unit-weighted
edgesEy,,; is added to the graph, whete,,, = {(¢ik, dit1,0)u | i € X ANu € D(z;) A Jv #

w s.t. §(qr,v) = qp}. FOr SOFT.REGULAR¥*(S), a set of unit-weighted edgds,,;; is added to
the graph, wher&.q;; = Equp U {(¢ik, qin) | ©i € X A Fv st §(qr,v) = qn} U {(Giks Gik)u |
xi € X Nu € D(z;)}.

Moreover, each assignmefit; — v} maps to a set of edgdslabelled as at the layerr; in the
networks. For exampldx; — a} maps to the edges labeledaat the layerr; shown in Fig. 7(a).
Thus, theSOFT_REGULAR cost functions satisfy condition 3 and are flow-based ptimeesafe. O

For thesOFT REGULAR cost functions, instead of the general flow computationritlyos, the
dynamic programming approach can be applied to compute thienom cost (van Hoeve et al.,
2006; Demassey, Pesant, & Rousseau, 2006).

5.2 Experimental Results

In this section, a series of experiments with different Imenarks is conducted to demonstrate the
efficiency and practicality of different consistencieshitifferent global cost functions. We im-
plemented the strongIC, GAC*, FDGAC* and weak EDGAC* enforcement algorithms fbese
global cost functions in ToulBar2 version 6.5We compare their performance using five bench-
marks of different natures. In case of the reified COP modedsinstances are solved using ILOG
Solver 6.0.

All benchmarks are crisp in nature, and are softened aswslloFor each variable; intro-
duced, a random unary cost frairto 9 is assigned to each value In(x;). Soft variants of global
constraints are implemented as proposed. The target ofatiHmarks is to find the optimal value
within 1 hour.

1. http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/Ttarintro

281

LEE& L EUNG

S~

(b) SOFT.REGULAR®?()

Figure 7: The flow network corresponding to the STiGULAR constraints

In the experiments, variables are assigned in lexicogcapbider. Value assignment starts with
the value with minimum unary cost. The test was conducted SaraBlade 2500 (% 1.6GHz
USIIIi) machine with 2GB memory. The average runtime and benof nodes of five instances
are measured for each valuerofvith no initial upper bound. Entries are marked with a “*” ifet
average runtime exceeds the limit of 1 hour. The best reatdtsnarked using theé symbol.

5.2.1 BENCHMARKS BASED ON SOFT ALLDIFFERENT

The ALL DIFFERENT() constraint has various applications. In the following f@cus on two: the
all-interval series and the Latin Square problem.

ALL INTERVAL SERIES

The all-interval series problem (pra®7 in CSPLib) is modelled as a WCSP by two sets of vari-
ables{s;} and{d;} with domains{0, ...n — 1} to denote the elements and the adjacent difference
respectively. Random unary costs ranging frono 9 is placed on each variable. We apply two
soft ALL DIFFERENT cost functions on{s;} and {d;} respectively, with a set of hard arithmetic
constraintsl; = |s; — s;+1| foreachi = 1,...,n — 1.

The experiment is divided into two parts. We first comparellteson enforcing different con-
sistencies using global cost functions derived frein DIFFERENT() . Then we compare the result
on using different approaches on modellsgrFT_ALL DIFFERENT!() functions.

The result of the first experiment is shown in Table 1, whicteag with the theoretical strength
of the consistency notions as shown by the number of nodesGAD and GAC* always out-
performs strongzIC and the reified modelling, but FDGAC* requires more timarttGAC*. One
explanation for this phenomenon is the problem structurdeit; andz; ., are assignedy; is

282

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

automatically assigned due to the hard constréjnt |xz; — x;11|. Thus, enforcing FDGAC* on
the variableqd;} on every search node is not worthwhile.

(a) SOFTALL DIFFERENT’*"()

Reified Approach StrongoIC GAC* FDGAC* Weak EDGAC*
n Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes| Time(s) | Nodes | Time(s) | Nodes
8 13| 571.0 02| 296.4 f0.1| 181.0 f0.1| 86.4 f0.1| 7154
9 3.9 | 1445.0 1.0 542.2 0.6 300.2 12| 197.2 f0.1| f20.2

10 52.0 | 15860.6 20.2| 5706.6 10.8| 2589.4 15.2| 1612.4 f0.2| 47.4
11 59.6 | 13286.2 31.8| 7536.4 16.4| 3273.6 21.0| 1715.4 f0.1| 133.6
12 180.1| 31015.2 77.8| 12886.4 37.6| 5204.6 46.8 | 2259.0 f0.8| 147.6

(b) SOFTALL DIFFERENT®*¢()

Reified Approach StrongoIC GAC* FDGAC* Weak EDGAC*
n Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes| Time(s) | Nodes | Time(s) | Nodes
8 1.6] 777.0 0.2] 396.8 0.2] 219.6 f0.1| 938 f0.1| 716.0
9 3.9 | 1480.4 1.0 553.2 0.6| 301.8 1.2| 195.0 f0.1| f28.8

10 56.8 | 17753.8 21.2| 5999.2 11.6 | 2654.6 16.0 | 1604.2 t0.8| 70.4
11 70.1| 16149.6 38.4| 9113.2 18.6 | 3551.8 23.0| 1812.6 f1.0| 168.6
12| 214.9| 38438.6 96.4 | 16355.2 46.8 | 6405.0 52.6 | 2451.6 f1.8| f71.2

Table 1: The time (in seconds) and the number of nodes inrapthie all-interval series instances

The second experiment is based on the following fact. SteT_ALL DIFFERENT?(S) is flow-
based projection-safe. It can be modelled as a flow netwarkdiosistency enforcement efficiently.
Another way to model the global cost functions is to apply deeomposition directly. The cost
returned bysoFTALL DIFFERENT?¢(S) is equal to the sum of the costs returned by a set of soft
binary cost functiongW; ; | i > j A x;,z; € S}, whereW; ;(a,b) returns0 if a # b and 1
otherwise. Thus, binary consistency notions, such as A@*R-DAC* can be applied directly.

We compare the performance on solving the all interval sgmieblem with different modelling
methods orsoFT_ALL DIFFERENT#(). The results are shown in Table 2. Under the same level of
consistency, global cost functions remove an order of ntadeil0 to 100 times more nodes than
the binary decomposition. However, the time required foaby cost functions is much smaller than
global cost functions for AC* and FDAC*. This is because @nfiog consistency notions on binary
cost functions is faster than global cost functions, and-¢neoval of nodes is not great enough to
compensate the extra time for consistency enforcementotfagjicost functions. The runtime of
weak EDGAC*, however, is the fastest among all (2 times okerEDAC* counterpart) since it
is able to utilize global information to prune drasticallyora search space than any of the binary
decomposition approaches.

LATIN SQUARES

The Latin Square problem (pro@®3 in CSPLib) of ordem is to fill an initially emptyn x n table
using numbers fror{0,...,n — 1} such that each number occurs once in every row and every
column. We model and relax the problem as a WCSP by a set aiblesi{z;;} denoting the
value placed in the cell at th#” row and thej*" column with random unary costs. These costs
are essentially restrictions/preferences on the value taken by each cell. Thus, our formulation
can model different variants of the Latin Square probleroluiding the Latin Square Completion
problem. OnesOFT_ALL DIFFERENT() cost function is posted on the variables at each row anll eac

283

LEE& L EUNG

Binary Decomposition Global Cost Functions

n AC* FDAC* EDAC* GAC* FDGAC* Weak EDGAC*

Time(s) | Nodes | Time(s)| Nodes | Time(s)| Nodes| Time(s)| Nodes| Time(s)| Nodes| Time(s) | Nodes
8 fo.l| 317.2 T0.1] 231.6 f0.1] 161.8 0.2] 219.6 f0.1] 93.8 f0.1] 716.0
9 f0.1| 596.0 f0.1| 358.2 f0.1| 333.0 0.6| 301.8 1.2| 195.0 f0.1| f28.8
10 1.4| 9113.8 1.0| 5957.4 1.0 | 5483.2 11.6 | 2654.6 16.0 | 1604.2 f0.8| 170.4
11 1.6| 7672.2 1.2| 4578.4 1.2 | 4318.6 18.6 | 3551.8 23.0| 1812.6 f1.0| 168.6
12 4.6 | 15897.2 3.2 | 10534.8 2.6 | 7414.4 46.8 | 6405.0 52.6| 2451.6 f1.8| 171.2

Table 2: The time (in seconds) and the number of nodes inrgplie all-interval series instances
with different modelling

column, denoting that same elements on the same rows anudmslare allowed but with violation
costs so that the resultant cost is optimal. The result is/shin Table 3, which is similar to Table
1. Besides, the runtime also agrees with the theoreticahgtin of the consistency notions.

(a) SOFTALL DIFFERENT'*"()

Reified Approach StronggIC GAC* FDGAC* Weak EDGAC*
n Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes| Time(s)| Nodes
4 69.0 | 129958.0 18| 3511.0 fo.1| 188.0 fo.1| 21.8 f0.1]| T16.6
5 * * 490.2 | 348790.4 26.0 | 12368.0 0.1 66.2 t0.1 t41.2
6 * * * * * * 34| 2444 1.4 193.6
7 * * * * * * 43.2| 1429.4| 116.2| 14252
8 * * * * * * * * | 1148.2| 12066.5

(b) SOFT.ALL DIFFERENT®%()

Reified Approach StronggIC GAC* FDGAC* Weak EDGAC*
n Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes| Time(s)| Nodes
4 62.7 | 121319.0 2.6 3859.8 fo.1 187.6 fo.1 21.8 f0.1 16.6
5 * * 531.4| 376526.2 25.2| 12254.0 fo.1 66.2 t0.1 141.2
6 * * * * * * 34| 2444 1.4 193.6
7 * * * * * * 43.4| 1429.6| Tf158| 14252
8 * * * * * * * * | 1147.2| 12066.5

Table 3: The time (in seconds) and the number of nodes inrgpthie Latin Square instances using
SOFT ALL DIFFERENT cost functions

The SOFT_ALL DIFFERENT!¢() cost functions can also be decomposed into binary disigégua
cost functions. We also perform experiments to compare ithery decomposition approach and
our global cost function approach. The result is shown idddbThe result confirms that enforcing
stronger consistency on global cost functions is efficiarierms of the number of nodes explored
and also as the problem size grows large.

5.2.2 BENCHMARKS BASED ONSOFTGCC

The GCC() constraint has various applications. In the ¥alhg, we focus on the Latin Square
problem and round robin tournament problem.

284

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

Binary Decomposition Global Constraint Approaches

n AC* FDAC* EDAC* GAC* FDGAC* Weak EDGAC*

Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes
4 f0.1 264.0 0.1 71.8 f0.1 39.4 0.1 187.6 0.1 21.8 0.1 716.6
5 3.0 17955.8 0.4 3059.6 f0.1 828.2 25.2| 12254.0 0.1 66.2 f0.1 f41.2
6 639.2| 2188035.4| 167.8| 346797.6 28.2| 45817.8 * * 34| 2444 1.4 193.6
7 * * * * * * * * 43.4| 1429.6| t15.8| f4252
8 * * * * * * * * * *]‘1472]‘20665

Table 4: The time (in seconds) and the number of nodes inrgpthie Latin Square instances with
different modelling

(a) soFT.GCC"

Reified Approach StronggIC GAC* FDGAC* Weak EDGAC*
n Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes| Time(s)| Nodes
4 3.8 4865.6 2.8 3859.8 0.1 220.8 f0.1 22 f0.1 f17.0
5| 653.7| 460989.2| 621.2| 376526.2| 38.6 | 14482.8 t0.1| 66.2 to.1| Tf48.2
6 * * * * * * 48| 2446 f12| 187.0
7 * * * * * * 58.4|1431.2| 16.4| 13318
8 * * * * * * * * | 1459.6| 14730.8

(b) soFT.GCC'*

Reified Approach StronggIC GAC* FDGAC* Weak EDGAC*
" Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes| Time(s)| Nodes
4 2.2 2815.8 1.4 2326.6 0.1 131.8 0.1 20.4 0.1 T17.0
5| 165.2| 122840.0| 153.4| 102493.6|/ 10.0| 4818.2 t0.1| 61.2 f0.1| 145.2
6 * * * * | 1407.4| 357529.8 36| 211.0 t1.0| t82.2
7 * * * * * * 40.4 | 1243.6| 113.4| 1318.4
8 * * * * * * * * | 1285.2| 13700.4

Table 5: The time (in seconds) and the number of nodes inrgpthie Latin Square instances using
soft GCC constraints

LATIN SQUARES

We first focus on the Latin Square problem, which is describeglection 5.2.1. We use the same
soft version but we replac8OFT.ALL DIFFERENT by either SOFT.GCC'%"() or SOFT.GCC"%()
cost functions which measure the violation differently. eTiesults are shown in Table 5, which
shows a similar result as Table 3. Weak EDGAC* always perfothe best in terms of time and
reduction in search space.

RouND ROBIN TOURNAMENT

The round robin problem problem (pras in CSPLib) of ordem is to schedule a tournamentof
teams oven — 1 weeks. Each week is divided intg'2 periods, and each period is divided into two
slots. A tournament must satisfy the following three caaists: (1) every team plays at least once a
week, (2) every team plays at most twice in the same periodtbe¢ournament, and (3) every team
plays every other team. Van Hentenryck, Michel, Perron,Rigin (1999) give a CSP model only
based on GCC constraints: atriple of variallgs, ¢;;, m;;) represents the match played on ttfe
week at thej!" period. The assignmed;; — a, t;; — b, m;; — ab} represents teamis played
against the tearb. Ternary constraints link;;, ¢;; andm,; together such that;; takes the value

285

LEE& L EUNG

(a) soFT.GCC"

(N, P, M) Reified Approach| StrongoIC GAC* FDGAC* Weak EDGAC*
T Time(s) | Nodes | Time(s) | Nodes | Time(s) | Nodes| Time(s) | Nodes| Time(s)| Nodes
4,3,2) 1.7| 1119.2 06| 827.4 0.4 470.2 02| 1422 f0.1] 334
(5,4,2) 45| 2016.6 2.2 1242.0 1.8 | 836.2 0.6| 171.6 fo.1 t44.6
(6,5,3) * * * * * * * * | 1583.4| 16508.8
(7,5,3) * * * * * * * * | 11283.4| 17476.6

(b) soFT.GCC™

(N, P, M) Reified Approach, StrongaIC GAC* FDGAC* Weak EDGAC*
B Time(s) | Nodes | Time(s) | Nodes| Time(s) | Nodes| Time(s) | Nodes| Time(s) | Nodes
(4,3,2) 15| 1046.8 0.4| 794.6 0.4| 464.6 0.2 | 141.0 f0.1 733.0
(5,4,2) 3.5| 1821.4 0.6| 171.0 1.4| 824.6 0.6| 171.0 f0.1 142.8
(6,5,3) * * * * * * * * | 1438.2| 16499.6
(7,5,3) * * * * * * * * | 1765.0| 7413.6

Table 6: The time (in seconds) and the number of nodes inrgplthie round robin tournament
problems usingOFT GCC cost functions

andt;; takes the valué iff m;; takes the valuab or ba. The first and the second requirements are
represented by the GCC constraints{efy, ¢;; | i = w} for eachw!™ week and{s;;, t;; | 7 = p}
for eachp® period. The third requirement is represented by a GCC anson{m;;}.

The problem can be generalized by three paramét¥rs?, M): scheduling a tournament of
N teams overM weeks, with each week divided int® periods. Besides placing random unary
costs, we also replace the GCC constraints by the soft taridfie try different combinations of
N, P,andM. The results are shown in Table 6, which agrees with the #tieal strength of each
consistency. It also shows that although enforcing strongesistency is more expensive, it helps
to reduce search space more. Thus, stronger consistensy/thedolve larger instances.

5.2.3 BENCHMARKS BASED ON SOFT SAME

The saME() constraint can be used to model the following two proble(i} fair scheduling, and
(2) people-mission scheduling.

FAIR SCHEDULING

The problem is suggested in the Global Constraint Cafaldte goal is to schedule persons
into s shifts overd days such that the schedule is faie. each person should be assigned to the
same number of thé" shift. For example, the schedule in Figure 8(a) is not faliire Persorp; is
assigned to the AM shift two times bpi is assigned to the AM shift once only. Figure 8(b) shows
a schedule that is fair to everyone: bathandp, are assigned to the AM shift and Overnight shift
once, and the PM shift twice.

We model and soften the problem by a set of varialles}, which denote the shift assigned
to thei’” person on thg'" day with random unary costs. TIS®FT_SAME ™" ({x},;}, {7p,;}) COSt
functions are placed between each pair of perggrendp-, allowing violation for the fairness of
the schedule to obtain minimum cost. We §ix= 4 andd = 5 and varyn. The results are shown
in Table 7. Similarly to Table 5, weak EDGAC* produces the Besa number of nodes. However,

2. http://www.emn.fr/x-info/sdemasse/gccat/

286

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

Day1 | Day2 Day 3 Day4 Day1 | Day2 Day 3 Day 4
p1 | AM PM PM AM p1 | AM PM PM Overnight
p2 | AM PM | Overnight| PM p2 | AM PM | Overnight PM

(a) Unfair Schedule (b) Fair Schedule

Figure 8: Examples of Fair Scheduling

Reified Approach StrongoIC GAC* FDGAC* Weak EDGAC*
" Time(s) Nodes | Time(s) Nodes | Time(s)| Nodes | Time(s) | Nodes| Time(s) | Nodes
5 | 1983.9| 1457812.6| 74.2| 20610.4| 16.6| 3511.8 fo.l| 274 fo.1| 725.4
6 * * | 1884.0| 1038613.2 78.8| 11031.8 0.4 40.4 1.0| 34.0
7 * * * * 377.0| 36063.0 1.0 45.0 1.2| 406
8 * * * * | 1630.0| 124920.8 2.0 454 22| 1450
9 * * * * * * t2.6 | 149.0 3.2| f49.0
10 * * * * * * t4.0| 58.0 46| 156.8
11 * * * * * * 5.8 67.2 6.4| 761.6

Table 7: The time (in seconds) and the number of nodes inrgplfie fair scheduling problem by
enforcing different consistency notions.

weak EDGAC* requires more time to solve than FDGAC*. We loaloithe execution and discover
that FDGAC* is so strong that the first lower bound computealrisady very close, if not identical,
to the objective value of the optimal solution. Thereforg#oecing weak EDGAC* gives only little
improvement on reducing the search space.

PEOPLEMISSION SCHEDULING

This problem extends the doctor-nurse rostering problestried by Beldiceanu, Katriel and
Thiel (2004). Given three groups af personsyn missions must be assigned to a team contain-
ing exactly one person in each group. We are also given a sairsttraints restricting the com-
bination of each team in one mission. The problem is to sdeetihose people into teams for
missions such that no restriction is violated. We model tiodlem by{x;;} denoting the mission
assigned to thé’" person in thej’ group with random unary costs. The combination restriction
is softened as ternary cost functions. Two global cost fanstSOFT_SAME"*" ({z;1 }, {zi2}) and
SOFT_SAME""" ({z;2}, {3 }) are posted to ensure each team exactly contains one pessoe#fch
group. We fixm = 6 and varyn. The results are shown in Table 8. Similarly to Table 7, weak
EDGAC* produces the smallest number of nodes, but requiee time than FDGAC*.

5.2.4 BENCHMARKS BASED ON SOFT REGULAR

TheREGULAR() constraint has many applications. In the following, weu® on two: (1) the nurse
rostering problem, and; (2) tterReTCH) constraint modelling.

NURSE ROSTERING PROBLEM

The nurse rostering problem (Cheng, Lee, & Wu, 1997) is tedale a group of. nurses into four
shifts, PM shift, AM shift, Overnight, and Day-Off, over arpm with most requirements satisfied.

287

LEE& L EUNG

Reified Approach StrongoIC GAC* FDGAC* weak EDGAC*
Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes

3

4 175 16992.0 40| 5931.6 16| 1517.4 0.2 247.8 0.4 7238.8
5| 427.8| 283950.2 45.2| 51029.8 11.2| 7073.8 13.4 831.2 13.4 1693.4
6 * * 666.6 | 553001.2| 156.6| 75481.6| f55.6| 11065.2 69.2| f10957.8
7 * * * * * * | 11348.0| 333937.6| 1714.0| 1296019.2

Table 8: The time (in seconds) and the number of nodes inrgplvie people-mission scheduling
problem by enforcing different consistency notions.

(a) SOFT_.REGULAR""()
Reified Approach StronggIC GAC* FDGAC* weak EDGAC*
Time(s) | Nodes | Time(s) | Nodes | Time(s)| Nodes| Time(s)| Nodes | Time(s)| Nodes
260.66| 118562| 152.6| 91661.4 2.0| 956.2 f0.1 28.6 0.1 722.8

n

3

4 * * * * 25.4| 6983.4 0.1 32.6 0.1 128.0
5 * * * * * * 40| 379.0 36| 1273.6
6 * * * * * * 63.4| 4017.6| Tf37.8| 11927.2
7 * * * * * * 207.6| 12242.0| t42.8| 72167.6
8 * * * * * *

821.2| 44414.0| f229.2| 110437.0

(b) SOFT.REGULAR®?()

Reified Approach StrongzIC GAC* FDGAC* weak EDGAC*
Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes
286.6 | 122542.4| 178.4| 91933.8 9.2| 2850.4 5.6 841.4 6.2 7803.2
* * * * 126.2| 27267.6| 125.4| 2568.8 27.6| f2424.0
* * * * * * | 1535.6| 47091.2| 546.8| 140244.0

g~ w

Table 9: The time (in seconds) and the number of nodes inrgpl¥ie nurse scheduling problem
by enforcing different consistency notions.

In the experiment, the nurses are scheduled over four dapdisat (1) each nurse must have at most
three AM shifts, at least two PM shifts, at least one Overighd at least one day-off; (2) each AM
shift must have two nurses, each PM shift and each Overnigist rave one nurse, and; (3) AM-
shifts are preferred to be packed together, and the samergnet is also posted on Day-Offs. We
model this problem by a set of variablés;; } to denote the shift assigned to e nurse on thg*”

day with random unary costs. Restrictions (1) and (2) areaieatbysoFT.GCC’® cost functions,
and (3) is modeled by eithe&YOFT.REGULARY®" or SOFT.REGULAR®®* cost functions. All restric-
tions are allowed to be violated. The results are shown ifeT@bWhensoFT.REGULAR® () is
used, FDGAC* wins in term of runtime. However,SDFT_REGULAR"?"() is used, weak EDGAC*
again requires the least time and the least number of nodesdve.

MODELLING THE STRETCH() CONSTRAINT

Another application of theEGULAR() constraint is to model constraints that describe patte@me
example is th&sTRETCH)) constraint.

288

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

(a) SOFT_.REGULAR""()

Reified Approach StrongaIC GAC* FDGAC* weak EDGAC*
Time(s) | Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s)| Nodes
30| 183.5| 7346.2 68.2 5203.2 36.4| 573.0]/ T30.0] 1714 35.2| 7162.6
35 419.4| 13845.2| 162.2| 10297.8 80.6 971.6 157.6| 239.8 69.0| f233.4
40 842.4| 23485.0f 335.6| 18067.2| 148.4| 1423.2 f92.2| 328.6 108.2| 1316.0
45| 2318.2| 55976.0| 900.4| 42007.0| 378.2| 3042.0| f240.6| 651.8 246.4| 1570.6
50 * * | 1142.2| 88616.8| 165.8| 10762.2| 130.2| 1660.6| f118.2| f1316.0
55 * * | 2231.4| 146901.6| 306.0| 17130.0| 208.0| 2291.8| f193.8| 11856.8

n

(b) SOFT.REGULAR®?()

Reified Approach Strong@IC GAC* FDGAC* weak EDGAC*
Time(s) | Nodes | Time(s)| Nodes | Time(s)| Nodes | Time(s) | Nodes| Time(s) | Nodes
30 216.2| 6038.6 83.2| 3861.6 40.6 447.4| T34.2] 12338 39.6| T122.4
35 561.6| 12487.6| 204.2| 7626.0 86.8 706.0| 160.6| 164.0 70.8 | f162.8
40| 1128.1| 20585.8| 413.0| 12789.6/ 165.8| 1080.0| 190.8| 208.4| 101.6| f194.0

n

45 1151.8| 30480.6| 446.4| 2346.2| 239.6| 371.0| 7207.8| 1299.6
50 * * | 2122.8| 62225.2| 348.6| 9189.0| 204.8| 967.6| '185.0| 1823.2
55 * * * * 623.8| 13496.8| 264.2| 972.8| 234.6| 777.6

Table 10: The time (in seconds) and the number of nodes imsplkie sliding problem by enforc-
ing different consistency notions.

Definition 24 (Pesant, 2001) Given a valueand a tuple/ € L(S). A v-stretchis the maximal
subsequence of identical valuesn ¢. TheSTRETCH.S, ub, Ib) constraint is satisfied by if the
length of thev-stretch in/ is at mostub, and at leastb,,.

For simplicity, we omit the case when tllgRETCH) constraint is circular. However, it can be
handled by variable duplication (Pesant, 2004).

The sSTRETCH) constraint can be described by an automaton and thus hladdasing the
REGULAR() constraint (Pesant, 2004). TIS®FT.REGULAR'® () and SOFT_.REGULAR®?*() cost
functions can be directly applied to define two soft variasftthe STRETCH) constraint, namely
SOFT.STRETCH® () and SOFT_.STRETCH*(). They are flow-based projection-safe by inheriting
the same property frorBOFT_.REGULAR"® () andSOFT_REGULAR®¥() respectively.

To demonstrate the idea, we conduct experiments using tlesviog sliding problem. The
sliding problem of ordern consists a set of variablgs, . .., z,, } with domainsD(x;) = {a,b}
and random unary costs. Each subsequenge. .., z,_54i}, Wherel < ¢ < 5, is required to
containa-stretches of lengtl2 andb-stretches of lengtl2 or 3. This restriction can be enforced
through STRETCH constraints. We allow violations by modeling the constsainsing either the
SOFT_.REGULARY™ Or SOFT.REGULAR®®" cost functions. The results are shown in Table 10. Weak
EDGAC* needs more time than FDGAC* when the instances ardl stud weak EDGAC* pays
off for large instances. This experiment also shows thatsthRETCH constraint, an important
constraint for modeling patterns, can be efficiently prged in the WCSP framework.

5.2.5 DSCUSSIONS

A control comparison should have been conducted to exarhmefficiency of ToulBar2 on the
global cost functions encoded explicitly as tables as w&his cannot be done in a meaningful
manner since the tables will be prohibitively large. Coasi@ simple cost function on 10 variables,

289

LEE& L EUNG

each with a domain size of 10. The table already requiresgoin the order of0'* integers or
tens of gigabytes.

Based on our experiments, two conclusions can be made, fhiesexperiments show that the
reified approach and strorgIC are too weak both in terms of search space pruning andwmenti
reduction as compared to GAC*, FDGAC*, and weak EDGAC*. Swl;dhe stronger consistency
notions, weak EDGAC*, FDGAC* and GAC*, are worthwhile altigh they are more expensive
to enforce. As shown from the experiments, GAC* reduces tivaber of search nodes at least
3 times more than the reified approach and times more than stronglC. GAC* has runtime
at least4 times less than the reified approach anitimes less strongsIC. Weak EDGAC* and
FDGAC* can reduce the search space by a much greater extarit.agdditional pruning can usually
compensate for the extra effort. Although Table 7 and Tablea® shown cases where weak
EDGAC* results in slower runtime, FDGAC* only wins by a smaflargin. In general, weak
EDGAC* is still worthwhile to enforce. Table 10 further camfis that a stronger consistency is
more desirable as the problem becomes large.

6. Conclusion and Remarks

In this section, we summarize our contributions and shelt lam possible future directions of
research.

Our contributions are five-fold. First, we introduce strabtfC based orzIC (Zytnicki et al.,
2009) and give an algorithm to enforce strontC. Besides, we prove that stromC is confluent.
We also show that enforcing stromgC on a WCSP is stronger than GAC in the reified approach.
Second, we give an algorithm to enforce GAC* for a WCSP, bftreement is exponential. For ef-
ficient enforcement, we introdudkw-based projection-safetyhich preserves the basic structure
of global cost functions. We give sufficient conditions foglabal cost function to be flow-based
projection-safe. We also show as a part of the proof how ptioje and extension can be done
so that the flow property is preserved. Third, we generalRAE* (Larrosa & Schiex, 2003) to
FDGAC* and give an enforcement algorithm. Again, flow-bapegjection-safety helps FDGAC*
enforcement. Fourth, we attempt to generalize EDAC* usimilar methods, but find it to be non-
trivial. We discover and give an example of a limitation of &CF. When cost functions share
more than one variable, oscillation similar to the one destrated in Full AC* (de Givry et al.,
2005) will occur. To solve this problem, we introduce cosiMiding partitions, which restrict the
distribution of costs when enforcing EDAC*. Based on casiviling partitions, we define weak
EDGAC?*, which can be enforced in polynomial time for flow-bdsprojection-safe global cost
functions. Last but not least, we show that soft versionsLefDIFFERENT(), GCC(), SAME() and
REGULAR() are flow-based projection-safe. We also prove the pradiicof our framework with
empirical results on various benchmarks involving thesbagjl cost functions. The empirical results
agree with the theoretical strength of the consistencig¢erins of search tree pruning. The results
also show that stronger consistency notions like weak EDGa@ FDGAC* are more worthwhile
to enforce, especially when solving large problems.

Three directions of future work are possible. The first orte investigate if other even stronger
consistency notions, such as VAC (Cooper et al., 2010), smbeenefit from projection-safety to
make their enforcement practical for global cost functiddscond, the current sufficient conditions
for flow-based projection-safety might still be overly ragtve. For example, the global cost func-
tion SOFT.SEQUENCE (Maher, Narodytska, Quimper, & Walsh, 2008) da¢satisfy the three

290

CONSISTENCYTECHNIQUES FORSOFT GLOBAL COSTFUNCTIONS INWCSPFs

conditions. It is interesting to find out other possible défin of flow-based projection-safety,
which allow efficient projection and extension operatiofi$ird, we only consider the minimum
cost flow computation for finding the minimum cost in a globastcfunction. It is interesting to
check if other approaches, such as mathematical progragnroém be used to achieve the same
results.

Acknowledgments

Work described in this paper was generously supported byg@JHK413808 and CUHK413710
from the Research Grants Council of Hong Kong SAR.

References

Beldiceanu, N. (2000). Global Constraints as Graph Prigseoh a Structured Network of Elemen-
tary Constraints of the Same Type. Pnoceedings of CP’0Qop. 52—67.

Beldiceanu, N., Carlsson, M., & Petit, T. (2004). Derivinitéting Algorithms from Constraint
Checkers. IrProceedings of CP’04pp. 107-122.

Beldiceanu, N., Katriel, I., & Thiel, S. (2004). Filteringldorithms for the Same Constraints. In
Proceedings of CPAIOR’'Q4p. 65-79.

Cheng, B., Lee, J. H. M., & Wu, J. (1997). A Nurse Rosteringt&ysUsing Constraint Pro-
gramming and Redundant ModelinglEEE Transactions on Information Technology in
Biomedicine 1, 44-54.

Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnidki, & Werner, T. (2010). Soft Arc
Consistency Revisitedartificial Intelligence 174, 449-478.

Cooper, M., & Schiex, T. (2004). Arc Consistency for Soft Gtaints. Artifical Intelligence 154,
199-227.

Cooper, M. C. (2005). High-Order Consistency in Valued @amst Satisfaction. Constraints
10(3), 283-305.

de Givry, S., Heras, F., Zytnicki, M., & Larrosa, J. (2005)xigential Arc Consistency: Getting
Closer to Full Arc Consistency in Weighted CSPsPhoceedings of IJCAI'05p. 84—89.

Demassey, S., Pesant, G., & Rousseau, L.-M. (2006). A Cegtiar Based Hybrid Column Gen-
eration ApproachConstraints 11, 315-333.

Dijkstra, E. W. (1959). A Note on Two Problems in ConnexiorihnGraphs.Numerische Mathe-
matik 1, 269-271.

Johnson, D. (1977). Efficient Algorithms for Shortest PathSparse NetworksJournal of the
ACM, 24(1), 1-13.

Larrosa, J., & Schiex, T. (2003). In the Quest of the Best Foftnocal Consistency for Weighted
CSP. InProceedings of IJCAI'03pp. 239-244.

Larrosa, J., & Schiex, T. (2004). Solving Weighted CSP byi¥kining Arc ConsistencyArtificial
Intelligence 1591-2), 1-26.

Lauriére, J.-L. (1978). A Language and a Program for Sgatimd Solving Combinatorial Problems.
Artificial Intelligence 10, 29-127.

201

LEE& L EUNG

Lawler, E. (1976).Combinatorial Optimization: Networks and Matroidslolt, Rinehart and Win-
ston.

Leung, K. L. (2009). Soft Global Constraints in Constrairgti@ization and Weighted Constraint
Satisfaction. Master’s thesis, The Chinese University ofgiKong.

Maher, M., Narodytska, N., Quimper, C.-G., & Walsh, T. (2D0Blow-Based Propagators for the
SEQUENCE and Related Global ConstraintsPhoceedings of CP'08p. 159-174.

Pesant, G. (2001). A Filtering Algorithm for the Stretch Gtaint. InProceedings of CP’'Q1pp.
183-195.

Pesant, G. (2004). A Regular Language Membership Consfaifrinite Sequences of Variables.
In Proceedings of CP'04pop. 482—-495.

Petit, T., Régin, J.-C., & Bessiére, C. (2000). Meta-¢@ists on Violations for Over Constrained
Problems. IrProceedings of ICTAI'0O0pp. 358—-365.

Petit, T., Régin, J.-C., & Bessiere, C. (2001). SpecifiteFing Algorithm for Over-Constrained
Problems. IrProceedings of CP’Qlpp. 451-463.

Régin, J.-C. (1996). Generalized Arc Consistency for Gldbardinality Constraints. |Rroceed-
ings of AAAI'96 pp. 209-215.

Régin, J.-C. (2002). Cost-Based Arc Consistency for Gl@zadinality ConstraintsConstraints
7, 387-405.

Sanchez, M., de Givry, S., & Schiex, T. (2008). MendeliaroEBetection in Complex Pedigrees
using Weighted Constraint Satisfaction Technigu@snstraints 13(1), 130-154.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued Gatraint Satisfaction Problems: Hard and
Easy Problems. IRroceedings of IJCAI'95p. 631-637.

Van Hentenryck, P., Michel, L., Perron, L., & Régin, J.-C999). Constraint Programming in OPL.
In Proceedings of the International Conference on the Prilesignd Practice of Declarative
Programming pp. 98-116.

van Hoeve, W.-J., Pesant, G., & Rousseau, L.-M. (2006). Qub&@I|Warming: Flow-based Soft
Global ConstraintsJ. Heuristics 12(4-5), 347-373.

Zytnicki, M., Gaspin, C., & Schiex, T. (2009). Bounds Arc Gistency for Weighted CSP3ournal
of Artificial Intelligence Researcl35, 593-621.

292

