
Propagating Polynomially (Integral) Linear
Projection-Safe Global Cost Functions in WCSPs

J.H.M. Lee, K.L. Leung, and Y.W. Shum
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{jlee,klleung,ywshum}@cse.cuhk.edu.hk

Abstract—Lee and Shum consider cost functions that are Poly-
nomially Linear Projection-Safe (PLPS), but whose minimum
cost computation is usually NP-hard. They suggest how such cost
functions can still be efficiently propagated using relaxed forms of
common consistencies. In this paper, we show that conjunctions of
PLPS cost functions are still PLPS, and Lee and Shum’s relaxed
consistency method is applicable to give better runtime behavior.
We further introduce Polynomially Integral Linear Projection-
Safe (PILPS) cost functions, a subclass of PLPS cost functions,
which have (a) linear formulations with size polynomial to the
number of variables and domain sizes, (b) optimal solutions of
the linear relaxation always being integral and (c) the last two
conditions unaffected by projections/extensions, even though the
operations modify the structure of cost functions. We show that
conjunctions of PILPS cost functions are PLPS, which still satisfy
conditions (a) and (c). Given a standard WCSP consistencyα, we
give theorems showing that maintaining relaxedα on a conjunc-
tion of PILPS cost functions is stronger than maintainingα on
the individual cost functions. A useful application of our method
is on some PILPS global cost functions, whose minimum cost
computations are tractable and yet those for their conjunctions
are not. Experiments are conducted to confirm empirically that
maintaining relaxed consistencies on the conjoined cost functions
is orders of magnitude more efficient, both in runtime and search
space reduction, than maintaining the corresponding standard
consistencies on the individual cost functions.

I. I NTRODUCTION

Weighted Constraint Satisfaction Problems (WCSPs) pro-
vide a framework for modeling over-constrained and opti-
mization problems. The basic solution technique for WCSPs
is branch-and-bound search augmented with various forms of
standard consistencies, such as NC* [1], (strong)∅IC [2],
[3], (G)AC* [1], [4], [3], FD(G)AC* [5], [3], and (weak)
ED(G)AC* [6], [3]. Enforcement of these consistencies aimsat
inferring good lower bounds for the WCSP at hand, and relies
on efficient minimum cost computation of the cost functions
in the problem.

Global cost functions are important for the success of WCSP
for their versatility in modeling real applications and effi-
cient propagation algorithms. Flow-based projection-safe [3]
and polynomially decomposable global cost functions [7]
are ones with good structures allowing polytime algorithms
for minimum cost computations and the nice structures are
unaffected by the projection/extension operations. On the
other hand, many global cost functions are useful, and yet
either their minimum cost computations are NP-hard or no

polytime algorithms are discovered yet. Lee and Shum [8],
[9] introduce the notion ofPolynomially Linear Projection-
Safety (PLPS). If a difficult cost function is PLPS, then a
good lower bound for the minimum cost of the cost function
can still be computed efficiently using linear programming
techniques. Relaxed versions of the standard consistencies,
such as GAC*, FDGAC* and weak EDGAC*, are defined
using the approximated minimum costs.

In this paper, we consider conjunctions of global cost
functions sharing more than one variable. We give theorems
showing that propagating on a conjunction using the standard
consistencies is stronger than propagating on the individual
cost functions. Unfortunately, the same is not true if we prop-
agate using therelaxedconsistencies with linear programming.
Nevertheless, we present empirical results to demonstratethe
benefits of propagating on conjunctions both in terms of
runtime and pruning in general.

We introduce and give sufficient conditions for a special
subclass of PLPS cost functions, namelypolynomially integral
linear projection-safe (PILPS)cost functions. Every PLPS
function has a corresponding integer linear program formula-
tion. We require the integer linear program formulation of an
PILPS cost function to have exactly the same solutions as its
linear relaxation. An important consequence is that enforcing
the standard consistencies on PILPS cost functions is exactly
the same as enforcing their relaxed counterparts. In addition,
the minimum cost of an PILPS function can be computed in
polytime. The same is not necessarily true for conjunctions
of PILPS cost functions, which we show to be still PLPS.
Our central results show that propagating on individual PILPS
cost functions using the standard (or relaxed since they are
the same) consistencies is weaker than propagating on the
conjunction of all these PILPS cost functions using the relaxed
versions of the consistencies, which is in turn weaker than
propagating on the conjunction using the standard consistency.
The latter is NP-hard in general. These results give an exact
characterization of the strength of the relaxed and standard
consistencies on conjunctions of PILPS cost functions as
compared against the corresponding standard consistencies on
individual PILPS cost functions. Therefore, it is always more
desirable to propagate on conjunctions of PILPS cost functions
using even just relaxed consistencies.

Our central theorems are useful when we have cost functions

whose minimum cost computation is polytime but that for
conjunctions of such cost functions is not. We show that
flow-based projection safe [3] and an important subclass of
polynomially decomposable [7] cost functions are PILPS.
Although there exist polytime algorithms to compute the
minimum costs of flow-based projection-safe and polynomi-
ally decomposable cost functions, we can prune more by
propagating on conjunctions of such cost functions using just
relaxed consistencies instead of propagating on individual cost
functions using the corresponding standard consistencies. We
conduct experiments to evaluate our method against the flow-
based and polynomially decomposable approaches as well as
pure integer programming, and observe orders of magnitude
in runtime and search space improvements.

II. BACKGROUND

A Weighted Constraint Satisfaction Problem(WCSP) [10]
is a tuple (X , D, C, k). X is a set ofvariables {x1,x2,. . . ,xn}.
Each variable has its finitedomain D(xi) ∈ D of values that
can be assigned to it. Each variable can only be assigned with
one value in its corresponding domain. An assignment on a
set of variables can be represented by a tupleℓ. We denote
ℓ[xi] the value assigned toxi, ℓ[S] the tuple formed from the
assignment on variables in the setS ⊆ X , andL(S) a set
of tuples corresponding to all possible assignments on the set
of variablesS. C is a set ofcost functionsWS , each with
scopeS. WS maps tuplesL(S) to a cost valuation structure
V (k) = ([0 . . . k],⊕,≤). The structureV (k) contains a set of
integers[0, . . . , k] with standard integer ordering≤. Addition
⊕ is defined bya⊕ b = min(k, a+ b). The subtractiona⊖ b

for a, b ∈ [0 . . . k] and a ≥ b is defined asa ⊖ b = a − b if
a 6= k andk ⊖ a = k for any a.

Without loss of generality, we assumeC = {W∅} ∪
{Wi |xi ∈ X} ∪ C+. W∅ is the constant nullary cost function,
representing the lower bound of the WCSP.Wi is a unary cost
function associated with variablexi ∈ X . C+ is a set of cost
functions with scopes of two or more variables.

The cost of a tuple ℓ for a WCSP corresponding to
an assignment onX is defined ascost(ℓ) = W∅ ⊕⊕

xi∈X
Wi(ℓ[xi])⊕

⊕
WS∈C+ WS(ℓ[S]). A tuple ℓ is feasible

if cost(ℓ) < k. Our goal is to find a tupleℓ which has the
minimum cost among all the feasible tuples, and such a tuple is
a solutionof the WCSP. For convenience, we writemin{WS}
to denotemin{WS(ℓ) | ℓ ∈ L(S)}.

WCSPs are typically solved with basic branch-and-bound
search augmented with different consistency techniques.
NC* [1], (strong) ∅IC [2], [3], AC* [1], FDAC* [5], and
EDAC* [6] are defined for binary cost functions.

The enforcements of different consistencies involve find-
ing the minimum costs of the cost functions, and moving
those costs between cost functions byprojectionsand exten-
sions[11]. Projections move costs fromn-nary cost functions
to unary cost functions and from unary cost functions to the
nullary oneW∅. GivenS2 ⊂ S1, a projection of costα from
WS1

to WS2
with respect toℓ ∈ L(S2) is a transformation of

(WS1
,WS2

) to (W ′
S1
,W ′

S2
), where

W
′

S1
(ℓ′) =

{

WS1
(ℓ′)⊖ α if ℓ

′[S2] = ℓ

WS1
(ℓ′) otherwise

W
′

S2
(ℓ′) =

{

WS2
(ℓ′)⊕ α if ℓ

′ = ℓ

WS2
(ℓ′) otherwise

If S2 = ∅, it is a projection toW∅. Extensions are the
inverse of projections, and are defined similarly. In this paper,
we restrict that|S2| ≤ 1. We assume that the minimum cost
of the cost functionsmin{W ′

S} cannot be smaller than 0 after
a projection or extension operation.

A global cost functionis a cost function with special
semantics, based on which efficient algorithms can be designed
for consistency enforcements. We denote a global cost function
asSOFT GCµ(S) if it is derived from the corresponding hard
global constraintGC with aviolation measureµ and variable
scopeS. SOFT GCµ(S) returns 0iff a given tupleℓ on S

satisfies GC. Ifℓ violates GC,SOFT GCµ(S) returnsµ(ℓ)
using the violation measure to reflect how much the GC
is violated. An example is the SOFT ALL DIFFvar [12] cost
function derived from the ALL DIFF constraint, which restricts
variables to take distinct values. Thevariable-basedviolation
measurevar returns the minimum number of variable assign-
ments that needed to be changed for the constraint ALL DIFF

to be satisfied.
Definition 1: Let DX =

⋂n

i=1
Dxi

, then

SOFT ALL DIFFvar(x1, . . . , xn)
=

∑
d∈DX

max(|{i | xi = d}| − 1, 0)

To handle global cost functions which are usually of high-
arity, standard consistencies are generalized to GAC* [4] and
FDGAC* [3], and weak EDGAC* [3].

Lee and Leung [3] defineT projection-safety. A cost
functionWS is T projection-safeif (a) WS satisfies property
T , and (b)W ′

S satisfies propertyT , whereW ′
S is obtained

from WS by a valid sequence of projections or extensions.
In other words, the propertyT is preserved onWS after
projections and extensions.

Two useful propertiesT are flow-basedness and polyno-
mially decomposable.Flow-based projection-safe cost func-
tions [3] can be represented as flow networks, the minimum
cost of which can be computed efficiently by flow algorithms.
Polynomially decomposable cost functions[7] can be rep-
resented as dynamic programs, which allow the minimum
costs to be computed efficiently using divide-and-conquer and
memorization.

A cost functionWS is linear [8], [9] if it can be represented
by an integer linear program[13] IWS

, such thatmin{WS}
is equal to the minimum ofIWS

. WS is polynomially linear
if it is linear and the size ofIWS

is polynomial to |S| and
the maximum size of variable domains.WS is polynomially
linear projection-safe (PLPS)if it is polynomially linear and
remains polynomially linear after projections and extensions.

Example 1:The SOFT ALL DIFFvar(x1, . . . , xn) cost
function is PLPS as it can be represented by the following

integer linear programI:

min
∑

a∈DX

ua, s.t.

n∑

i=1

cxi,a + ua ≤ 1, ∀a ∈ DX

ua ≥ 0, ∀a ∈ DX ; cxi,a = {0, 1}, ∀a ∈ DX , 1 ≤ i ≤ n

The minimum ofI = min{SOFT ALL DIFFvar(x1, . . . , xn)}.
Thus SOFT ALL DIFFvar(x1, . . . , xn) is polynimally linear.
As there exists a variablecxi,a in I for every valuea ∈ D(xi)
in every variablexi, I can be modified easily to represent
SOFT ALL DIFFvar(x1, . . . , xn) after projections and exten-
sions. So SOFT ALL DIFFvar(x1, . . . , xn) remains polynomi-
ally linear after projections and extensions and thus it is PLPS.

Solving integer linear programs can require exponential time
in general, but a good approximation of the minimum cost
approx min{WS} can be computed with the linear relaxation
using linear programming. The approximated minimum cost
forms the basis of relaxed but weaker forms of standard
consistencies.

Standard consistencies for global cost functions include
GAC*, FDGAC* and weak EDGAC*. An important concept
for these consistencies are the notions of simple and full
supports, which can be expressed (and enforced) in terms
of the minimum costmin{WS} of cost functionsWS . The
relaxed form of these consistencies can be easily formulated
by replacingmin{WS} by approx min{WS}. We illustrate
the idea using the definition ofrelaxed GAC*as an example.

A variable xi is NC* [1] if (1) each valuev ∈ D(xi)
satisfiesWi(v) ⊕ W∅ < k and (2) there exists a value
v′ ∈ D(xi) such thatWi(v

′) = 0. A WCSP is NC* iff all
variables are NC*. A variablexi ∈ S is GAC* [4] with respect
to a cost functionWS if:

• xi is NC*, and;
• for each valuevi ∈ D(xi), there exists valuesvj ∈ D(xj)

for all j 6= i andxj ∈ S so that they form a tupleℓ with
WS(ℓ) = 0. {vj} is a simple supportof vi with respect
to CS .

A WCSP is GAC* iff all variables are GAC* with respect
to all constraints. Note that the second requirement can be
reformulated as follows.

• for each valuevi ∈ D(xi), min{WS(ℓ) | l ∈ L(S) ∧
ℓ[xi] = vi} = 0.

By replacing “min” by “ approx min” and “=” by “≤”, we
get relaxed GAC*. A variablexi ∈ S is relaxed GAC*[8],
[9] with respect to a cost functionWS if:

• xi is NC*, and;
• for each valuevi ∈ D(xi), approx min{WS(ℓ) | l ∈

L(S) ∧ ℓ[xi] = vi} ≤ 0.

Note that the real number approximated minimum cost can
be negative. The definitions of relaxed FDGAC* and relaxed
weak EDGAC* can be constructed similarly.

III. C ONJOINING PLPS COST FUNCTIONS

If two constraints or cost functions share variables, they are
overlapping. In the rest of the paper, we assume overlapping
cost functions share more than one variable. In general,
enforcing a consistency on the individual cost functions may
not imply the same consistency on the conjunction of the
two. An example is given by Bessière et al. [14] in which
enforcing GAC on two overlapping ALL DIFF constraints does
not imply GAC on the conjunction of them. It is easy to check
that the result also holds for cost functions. By discovering
extra pruning opportunities, propagating on conjunctionsof
cost functions may reduce more search space than propagating
on individual cost functions can.

Every PLPS cost function has an associated integer linear
program. PLPS cost functions can be conjoined together easily
by combining their corresponding integer linear programs in
a straightforward manner. Given two integer linear programs
IWS1

andIWS2
, we defineIWS1

∧IWS2
to be their combination

by taking the union of their linear inequalities and adding up
their objective functions. The following theorem ensures that
conjunctions of PLPS cost functions remain PLPS.

Lemma 1:SupposeWS1
andWS2

are PLPS cost functions.
The conjunctionWconj ≡WS1

∧WS2
is also PLPS.

Proof: SupposeWS1
andWS2

have their corresponding
integer linear programIWS1

andIWS2
respectively. The inte-

ger linear programIWconj
for Wconj can simply be formed by

IWconj
≡ IWS1

∧IWS2
. It is easy to check thatWconj satisfies

the conditions for PLPS.
An immediate question is whether a conjunction of PLPS

cost functions always gives a stronger bound than using
the individual PLPS cost functions, given that the same
level of consistency is maintained. Given WCSPPPLPS =
(X ,D, CPLPS , k), where each cost functionWS ∈ CPLPS

is PLPS with corresponding integer linear programIWS
. We

assume thatCPLPS contains overlapping cost functions. We
can construct an equivalent WCSPPconj = (X ,D, Cconj , k)
whereCconj = {Wconj} andWconj ≡

∧
WS∈CPLPS

WS with
the corresponding scopeSconj ≡

⋃
WS∈CPLPS

S and integer
linear programIWconj

≡
∧

WS∈CPLPS
IWS

. SinceCPLPS is a
set of PLPS cost functions, the conjunctionWconj must be an
PLPS cost function.

Given a problemP representable by two WCSP models
φ(P) andψ(P). A consistencyΦ on φ(P) is strictly stronger
than another consistencyΨ onψ(P), written asΦ on φ(P) >
Ψ on ψ(P) , iff ψ(P) is Ψ wheneverφ(P) is Φ, but notvice
versa[3].

We show that (FD)GAC* and weak EDGAC* onPconj are
strictly stronger than their counterparts onPPLPS respectively
by the following theorem.

Theorem 1:Suppose α-consistency is one of GAC*,
FDGAC*, and weak EDGAC*. We haveα-consistent on
Pconj > α-consistent onPPLPS

Proof: We prove the part for GAC*. The proofs for the
other consistencies are similar.

AssumePconj is GAC*, butPPLPS is not GAC*. There ex-
ists a variablexi ∈ X with a valuea ∈ D(xi) and a cost func-

tion WS ∈ CPLPS in PPLPS such thatmin{WS(ℓ) | ℓ[xi] =
a ∧ ℓ ∈ L(S)} > 0. Now, we have

min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(Sconj)}
≥

⊕
WS∈CPLPS

min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0

So we cannot find a simple support fora and xi cannot be
GAC* with respect toWconj in Pconj .

Consider WS1
= SOFT ALL DIFFvar(x1, x2, x3) and

WS2
= SOFT ALL DIFFvar(x2, x3, x4), where D(x1) =

{a, b}, D(x2) = D(x3) = {a, b, c} andD(x4) = {b, c}. It is
easy to check thatPPLPS = (X ,D, {WS1

,WS2
}, k) is GAC*.

However,Pconj = (X ,D, {WS1
∧WS2

}, k) is not GAC* since
the minimum cost whenx1 = a is 1 > 0.

Result follows.
When standard consistencies are replaced by their relaxed

versions, result similar to that of Theorem 1 does not hold.
For simplicity, we assumeCPLPS = {WS1

,WS2
}. Suppose

Pconj is relaxed GAC*. We have

0 ≥ approx min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(Sconj)}
≥

⊕
WS∈CPLPS

approx min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)}

In order for the sum to be non-positive, it is possible for
the approximated minimum cost of one of{WS1

,WS2
} to

be negative and the other one positive. Therefore, one of them
is not relaxed GAC*.

The peculiar bad situation just described does not hap-
pen often in practice. We demonstrate that it is worthwhile
to propagate on the conjunction instead of individual cost
functions. We use the same setup as the experiments by Lee
and Shum [8] and compare against their experimental results
using the same set of problem instances, which includes the
generalized version of the soft car sequencing problem, thesoft
magic square problem and the weighted tardiness scheduling
problem. In our models, all PLPS cost functions in a problem
are conjoined into a single one.

Results are shown in Tables 1, 2, and 3. The average
number of backtrack (bt) and the average runtime in seconds
(time) for solved cases are reported. The runtime includes the
CPU time used by both the WCSP solver Toulbar2 and the
linear program solver CPLEX. Next to the runtime, we also
report separately in brackets the CPU time used by the linear
programing solver (CPLEX) with a “*” if the execution of
one of the 10 instances exceeds the timeout of 3600 seconds.
The best result among those with the most cases solved is
highlighted in bold. The models using the conjunction of PLPS
cost functions run faster in instances with larger size, and
prune more in all cases. Greater improvements are shown
in harder instances, e.g. the largest instance in Table III.
Since the instances only contain PLPS cost functions, they are
conjoined into a single PLPS cost function in our model. In
this model, there is no propagation between cost functions and
the effects of relaxed GAC*, relaxed FDGAC*, and relaxed
weak EDGAC* are similar. So relaxed FDGAC* and relaxed
weak EDGAC* do not infer a much better bound than relaxed
GAC* when conjoined PLPS cost functions are used. The
reduction in search space does not compensate for the pruning

TABLE I
THE GENERALIZED SOFT CAR SEQUENCING PROBLEM USING

SOFT SLIDING SUMdec

Modeling with PLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
8 19.0 0.21 (0.20) 9.2 0.20 (0.19) 9.0 0.25 (0.23)
10 41.2 0.55 (0.51) 21.0 0.52 (0.49) 19.8 0.73 (0.68)
12 119.6 1.44 (1.35) 48.2 1.15 (1.07) 45.6 1.34 (1.26)
14 585.1 17.63 (16.91) 264.8 13.12 (12.76) 249.0 15.19 (14.61)

Modeling with conjoined PLPS cost function

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
8 16.0 0.19 (0.18) 12.4 0.30 (0.28) 12.4 0.38 (0.35)
10 30.6 0.46 (0.43) 20.0 0.71 (0.65) 17.8 0.86 (0.80)
12 86.4 1.07 (1.01) 43.0 1.52 (1.45) 36.4 1.62 (1.55)
14 133.0 1.30 (1.26) 74.2 1.77 (1.71) 64.1 1.77 (1.72)

TABLE II
THE SOFT MAGIC SQUARE PROBLEM USINGSOFT EGCCvar

Modeling with PLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
9 23.1 0.24 (0.23) 19.3 0.27 (0.26) 17.1 0.43 (0.41)
12 54.7 0.71 (0.65) 44.9 0.99 (0.93) 42.3 1.52 (1.43)
15 89.2 1.70 (1.59) 53.1 2.32 (2.21) 50.2 3.64 (3.46)
18 93.7 3.03 (2.89) 64.7 4.80 (4.64) 59.8 6.41 (6.13)

Modeling with conjoined PLPS cost function

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
9 12.8 0.27 (0.25) 9.8 0.43 (0.40) 9.7 0.54 (0.50)
12 33.5 0.86 (0.81) 24.6 1.55 (1.48) 24.3 1.89 (1.80)
15 39.2 1.62 (1.52) 32.6 2.95 (2.86) 32.3 3.64 (3.51)
18 49.4 2.96 (2.87) 36.7 5.78 (5.48) 36.4 7.29 (6.82)

TABLE III
THE WEIGHTED TARDINESS SCHEDULING PROBLEM USING

SOFT DISJUNCTIVEval

Modeling with PLPS cost functions

n, d, |T |
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
3,3,12 7.0 0.05 (0.05) 6.0 0.06 (0.06) 6.0 0.08 (0.08)
4,4,20 13.0 0.14 (0.13) 8.0 0.18 (0.17) 8.0 0.25 (0.24)
5,5,30 35.0 0.60 (0.56) 19.0 0.68 (0.63) 15.0 0.98 (0.92)
6,5,35 382.0 7.01 (6.75) 32.1 1.90 (1.82) 28.1 2.41 (2.32)
7,5,40 2253.6 61.89 (60.14) 27.0 2.78 (2.47) 25.2 3.51 (3.32)
8,5,45 * * (*) 214.0 22.09 (21.23) 210.1 30.16 (28.90)

Modeling with conjoined PLPS cost function

n, d, |T |
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
3,3,12 6.0 0.05 (0.05) 6.0 0.09 (0.09) 6.0 0.16 (0.13)
4,4,20 8.0 0.15 (0.14) 8.0 0.29 (0.28) 8.0 0.35 (0.34)
5,5,30 15.5 0.53 (0.50) 15.2 1.04 (1.01) 15.0 1.29 (1.25)
6,5,35 23.2 0.95 (0.90) 18.8 1.90 (1.83) 18.0 2.32 (2.24)
7,5,40 35.2 1.72 (1.64) 27.0 3.44 (3.30) 21.0 4.23 (4.07)
8,5,45 40.1 3.49 (3.24) 34.5 7.38 (7.08) 33.1 8.71 (8.31)

overhead, and the simpler and less costly relaxed GAC* gives
the best results in terms of run-time.

IV. CONJOINING TRACTABLE GLOBAL COST FUNCTIONS

OTHER THAN PLPS

Polynomially Integral Linear Projection-Safe (PILPS) cost
functions form a special subclass of PLPS cost functions [8],
[9]. A cost functionWS is polynomially integral linear if
WS is (a) polynomially linear and (b) the optimal solution,
if it exists, of the linear relaxation of its corresponding integer
linear programIWS

is always integral.
Lemma 2:Polynomially integral linear cost functions are

polynomially linear.
An immediate observation is that the exact minimum cost

of a polynomially integral linear cost function can be obtained
by solving the linear relaxation of their corresponding integer
linear programs.

Lemma 3: If WS is a polynomially integral linear cost
function,min{WS} = approx min{WS}.

Theorem 2:Minimum cost computation of polynomially
integral linear cost functions is polynomial.

Proof: Since min{WS} = approx min{WS},
min{WS} can be determined using interior point
algorithms [13] for linear programs with the worst case
complexity bounded by polynomial time.

Recall the notion ofT projection-safety. In addition to flow-
basedness and polynomially linearity, polynomially integral
linearity is another good propertyT to be maintained across
projections/extensions. Therefore, it makes sense to require
cost functions to bepolynomially integral linear projection-
safe (PILPS).

We give a possible sufficient condition to identify PILPS
cost functions.

Theorem 3:A cost functionWS is polynomially integral
linear projection-safeif:

1) WS is linear and has the corresponding integer linear
program IWS

, where the number of inequalities and
number of variables ofIWS

are polynomial to the
number of variables and the maximum domain size of
WS ;

2) there exists a surjective functionΛ′ mapping each op-
timal solutionγIWS

in IWS
to each tupleℓ[S] ∈ L(S),

whereL(S) denotes the set of tuples corresponding to
all possible assignments on variablesS, and;

3) for each valuev ∈ D(xi) in each variablexi ∈ S,
there exists an injective function mapping an assignment
{xi 7→ v} to a 0-1 variablecxi,v in IWS

such that
if ℓ[S] = Λ′(γIWS

) for an optimal solutionγIWS
in

IWS
and a tupleℓ[S] ∈ L(S), wheneverℓ[xi] = v for

some tupleℓ[S], γIWS
[cxi,v] = 1; wheneverℓ[xi] 6= v,

γIWS
[cxi,v] = 0

4) IWS
is totally dual integralor the associated matrix of

IWS
is totally unimodular.

Proof: If a linear program istotally dual integralor its
associated matrix istotally unimodular, its optimal solutions
must be integral [15]. By augmenting conditions 1, 2, and 3
from the sufficient condition for PLPS cost functions [8], [9]
straightforwardly, the sufficient conditions for PILPS is formed
as given.

Example 2:The SOFT ALL DIFFvar(x1, . . . , xn) cost
function isPILPSas the associated matrix of its corresponding
integer linear program given in Example 1 is totally
unimodular.

Polynomially integral linear projection-safe cost functions
are interesting since their conjunctions are PLPS.

By Lemma 1 and 2, we have the following corollary.
Corollary 1: SupposeWS1

andWS2
are PILPS cost func-

tions. The conjunctionWconj ≡WS1
∧WS2

is PLPS.
Corollary 2: SupposeWS is PILPS, andα-consistency is

one of GAC*, FDGAC* and weak EDGAC*. Relaxedα-
consistent onWS is equivalent toα-consistent onWS .

In general, it is NP-hard to compute the minimum cost of
the conjunction of overlapping PILPS cost functions, since
the conjunction of their corresponding linear programs may
not always give integral minimums when there exists a mini-
mum [13]. As the conjunction of PILPS cost functions remains
PLPS, linear programming techniques allow its approximated

minimum cost to be computed efficiently, and relaxed form
of standard consistencies can thus be enforced. We have the
following result when relaxed consistencies are enforced on
the conjunction of PILPS cost functions compared to the
corresponding (non-relaxed) consistencies enforced on the
individual cost functions.

Given WCSPPPILPS = (X ,D, CPILPS , k), where each
cost functionWS ∈ CPILPS is PILPS with corresponding
integer linear programIWS

. We assume thatCPILPS contains
overlapping cost functions. We can construct an equivalent
WCSP Pconj = (X ,D, Cconj , k) where Cconj = {Wconj}
andWconj ≡

∧
WS∈CPILPS

WS with the corresponding scope
Sconj ≡

⋃
WS∈CPILPS

S and integer linear programIWconj
≡∧

WS∈CPILPS
IWS

.
We show that relaxed (FD)GAC* and relaxed weak

EDGAC* on Pconj are strictly stronger than (FD)GAC* and
weak EDGAC* on PPILPS respectively by the following
theorem.

Theorem 4:Suppose α-consistency is one of GAC*,
FDGAC* and weak EDGAC*. Relaxedα-consistent onPconj

is strictly stronger thanα-consistent onPPILPS .
Proof: We prove the part for relaxed GAC*. The proofs

for the other consistencies are similar.
AssumePconj is relaxed GAC*, butPPILPS is not GAC*.

There exists a variablexi ∈ X with a value a ∈ D(xi)
and a cost functionWS ∈ CPILPS in PPILPS such that
min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0. Since all cost
functionsWS ∈ CPILPS are PILPS, we have

approx min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(S)}
≥

⊕
WS∈CPILPS

approx min{WS | ℓ[xi] = a ∧ ℓ ∈ L(S)}
=

⊕
WS∈CPILPS

min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0

Thus, a cannot have any simple support andxi cannot be
relaxed GAC* with respect toWconj in Pconj .

Consider WS1
= SOFT ALL DIFFvar(x1, x2, x3) and

WS2
= SOFT ALL DIFFvar(x2, x3, x4), where D(x1) =

{a, b}, D(x2) = D(x3) = {a, b, c} andD(x4) = {b, c}. It
is easy to check thatPPILPS = (X ,D, {WS1

,WS2
}, k) is

GAC*. However, Pconj = (X ,D, {WS1
∧ WS2

}, k) is not
relaxed GAC* since the approximated minimum cost when
x1 = a is 1 > 0.

Result follows.
Since relaxed consistencies are the weaker forms of standard

consistencies, we have the following lemma.
Lemma 4:Suppose α-consistency is one of GAC*,

FDGAC* and weak EDGAC*. We haveα-consistent onPconj

> relaxedα-consistent onPconj .
Enforcingα-consistency onPconj infers better bounds, but it
may not be worthwhile since it can be NP-hard. In contrast,
the relaxed consistencies can be enforced efficiently onPconj .

An immediate application of Theorem 4 is to existing global
cost functions with polytime minimum cost computation. In
many cases the minimum cost computation for their conjunc-
tions is NP-hard. Theorem 4 suggest that it is still worthwhile
to enforce relaxed consistencies on these cost functions. Flow-
based projection-safe cost functions [3] and polynomiallyde-

composable cost functions [7] are such examples. By enforcing
relaxed consistencies on their conjunctions, the search benefits
from the better bounds inferred.

Theorem 5:Flow-based projection-safe cost functions are
PILPS.

Proof: Every flow-based projection-safe cost function has
a corresponding network flow problem, which in turn has a
corresponding integer linear program with a totally unimodular
matrix [15]. The cost function, the flow problem, and the
integer linear program shares the same minimum cost. Since
the integer linear program always has integral solutions when
solved by linear relaxation, the result follows.

Corollary 3: The flow-based projection-safe cost
functions [3] SOFT ALL DIFFvar, SOFT ALL DIFFdec,
SOFT GCCvar, SOFT GCCval, SOFT SAMEvar,
SOFT SAMEval, SOFT REGULARvar, and
SOFT REGULARedit are PILPS cost functions.

We give the related definitions for polynomially decompos-
able cost functions to show that they are PILPS cost functions.

Lemma 5: [7] If a global cost functionWS can be repre-
sented asWS(ℓ) = minri=1{

⊕ni

j=1
ωSi,j

(ℓ[Si,j])}, where:

1)
∑r

i=1
ni is polynomial to|S| andd, and;

2) for eachi, Si,j ∩ Si,k = ∅ iff j 6= k and
⋃ni

j Si,j = S,

thenWS is safely decomposable.
Theorem 6:SupposeWS is a polynomially decomposable

cost function stated in Lemma 5, thenWS is PILPS.
Proof: We show thatWS is PILPS by first showing

that it is flow-based projection-safe. The function stated in
Lemma 5 consists of the operationsmin and

⊕
, which can

be represented and computed in flow networks. So,WS can be
represented as a min-cost flow problem with a corresponding
flow network, where each cost functionωSi,j

is represented by
a node. The operationmin is represented by connecting all the
nodes of the related cost functions to the sink. The operation⊕

is represented by a path connecting all the nodes of the
related cost functions.

As a result,WS is a flow-based projection-safe cost func-
tion. By Theorem 5,WS is an PILPS cost functions.

Corollary 4: The polynomially decomposable cost
functions [7] SOFT AMONGvar, SOFT REGULARvar,
SOFT GRAMMARvar, MAX WEIGHT, and MIN WEIGHT are
PILPS.

We note that, for the cost functions mentioned above,
their dedicated polynomial time algorithms are usually more
efficient than interior point algorithms or linear programming.

By propagating the conjunction of cost functions, extra
pruning opportunities can be discovered which may reduce
more search space than propagating the individual cost func-
tions. Unfortunately, it can be NP-hard to compute the mini-
mum cost for the conjunction of PILPS cost functions even an
efficient polynomial time algorithm is given for the individual
cost functions.

Bessìere et al. [14] show the above result on the hard
ALL DIFF constraints and it can be generalized to the
SOFT ALL DIFFvar, SOFT ALL DIFFdec, SOFT GCCvar,

SOFT GCCval, and SOFT SAMEvar cost functions.
Régin [16] also shows the above result on the hard
AMONG [17] constraints, where an AMONG constraint
restricts the number of variables to be assigned
to a value from a specific set. The result can be
generalized to the SOFT AMONGvar, SOFT REGULARvar,
SOFT REGULARedit, and SOFT GRAMMARvar cost
functions. Theorem 4 suggests that enforcing the relaxed
consistencies on the conjunction of such PILPS cost functions
can still be more efficient and worthwhile than handling them
individually.

Given WCSP PPILPS = (X ,D, CPILPS , k), where
CPILPS consists of some PILPS cost functions, and an equiva-
lent WCSPPconj = (X ,D, Cconj , k) whereCconj = {Wconj}
andWconj ≡

∧
WS∈CPILPS

WS . We give an example similar
to the one given by Bessière et al. [14] in the following
theorem. By propagating on a conjunction of PILPS cost
functions with relaxed consistencies, a higher bound can be
inferred earlier in an exponentially number of steps duringthe
branch-and-bound search.

Theorem 7:Suppose α-consistency is one of GAC*,
FDGAC* and weak EDGAC*. There exists a class of WCSP
PPILPS , so that if we enforceα-consistency onPconj and
α-consistency onPPILPS in branch-and-bound search, an
exponential search tree needs to be explored forPPILPS to
infer the same minimum cost as in the case ofPconj .

Proof: We prove the part for relaxed GAC*. The
proofs for the other consistencies are similar. Given a
WCSP PPILPS = (X ∪ Y ∪ Z,D, CPILPS , k) where
X = {x1, . . . , xn}, Y = {x1, . . . , x2n}, Z =
{x1, . . . , xn}, CPILPS = {SOFT ALL DIFFvar(X ∪ Y),
SOFT ALL DIFFvar(Y ∪ Z)}, D(Xi) = [1, 2n − 1], i =
1, . . . , n, D(Yi) = [1, 4n − 1], i = 1, . . . , 2n, andD(Zi) =
[2n, 4n− 1], i = 1, . . . , n.

Consider the WCSPPconj = (X∪Y ∪Z,D, Cconj , k) where
Cconj = {Wconj} and Wconj ≡ SOFT ALL DIFFvar(X ∪
Y) ∧ SOFT ALL DIFFvar(Y ∪ Z). Wconj gives an approxi-
mated minimum cost approxmin{Wconj} of 1 which can be
inferred by enforcing relaxed GAC* onCconj . On the other
hand, a subset ofn or fewer variables has at least2n − 1
values in their domains and a subset ofn+ 1 to 3n variables
has4n− 1 values in their domains. Thus, to infer a minimum
cost of 1 inPPILPS by enforcing GAC* onCPILPS , we must
instantiate at leastn− 1 variables.

In addition to the theoretical results, we conduct experi-
ments to show the efficiency of modeling cost functions as
PILPS cost functions and propagating their conjunctions in
the next section.

V. EXPERIMENTAL RESULTS

To demonstrate the efficiency of our framework, we com-
pare the performances of (a) models using conjunctions of
PILPS cost functions against (b) models using individual
flow-based projection-safe / polynomially decomposable cost
functions. The consistencies GAC*, FDGAC*, weak EDGAC*

and their relaxed versions are implemented in Toulbar21 v0.9.
IBM ILOG CPLEX Optimizer2 12.2 is called from Toulbar2
to solve (integer) linear programs. Our benchmarks’ models
consist of both PILPS global cost functions as well as table
cost functions, the latter of which are handled individually
using exact minimum costs even when relaxed consistencies
are used.

Variables with smaller domains and values with lower unary
costs are assigned first. The experiments are conducted on an
Intel Core2 Duo E7400 (2 x 2.80GHz) machine with 4GB
RAM. In each benchmark we use different parameter settings
to construct different instances, and 10 random cases are
generated with each parameter setting. We use the timeout
of 3600 seconds and report the average number of backtracks
(bt) and the average runtime in seconds (time) for solved cases.
The runtime includes the CPU time used by both the WCSP
solver Toulbar2 and the linear programming solver CPLEX.
Next to the runtime, we also report separately in brackets the
CPU time used by the linear programming solver (CPLEX).
We truncate the floating point variables in CPLEX at the 10-th
decimal place. We mark the entries with a “*” if the execution
of one of the 10 instances exceeds the timeout. The best result
among those with the most cases solved is highlighted in bold.

The following benchmarks utilize the global cost functions
described in the paper.

• The car sequencing problem (prob001 in CSPLib3) finds
a sequence ofn cars of u ∈ U different types to be
built. There is a set of optionsI which each type may
or may not be equipped with, and each assembly line
of an option i ∈ I restricts that at mostmi cars for
every si cars with that option equipped can be built. A
GCC [18] constraint is used to ensure that the number
of cars of each type is built according to the plan.
Overlapping SOFT AMONGvar() [19] cost functions are
used to ensure the restrictions of each assembly line are
satisfied, and they are modeled by either polynomially
decomposable cost functions or PILPS cost functions.
There are preferences for each assembly line, e.g. two
consecutive cars of the same type are preferred, and they
are modeled by table cost functions. We fix|I| = 5
and u = 5 and use instances with differentn in our
experiments.

• The examination timetabling problem finds a schedule for
n examinations overd days fors groups of students, Each
group of students attends a set of at mostd examinations
and the number of days with more than 1 examination
should be minimized for every group of students. A
SOFT ALLDIFFvar() [12] cost function is used for ev-
ery group of students, and they are modeled by either
flow-based projection-safe cost functions or PILPS cost
functions. There are preferences between examinations,
e.g. the locations of two examinations are far away and

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
2http://www-01.ibm.com/software/integration/optimization/cplex-

optimizer/
3http://www.csplib.org/

should not be scheduled on the same day in case there
are students attending both of them, and they are modeled
by table cost functions. We fixs = 4 and use differentn
andd in our experiments.

We soften the above problems by replacing the global
constraints by their soft variants, by either the flow-based
projection-safe / polynomially decomposable implementations
or the PILPS implementations. For each variablexi intro-
duced, a random unary cost from 0 to 9 is assigned to
each value inD(xi). Random preferences are added to the
instances in the form of table cost functions. The softened fair
scheduling problem (in Global Constraint Catalog4) is also
used in our experiments and similar results can be observed.
We omit the details due to the paper space limitations.

Results are shown in Tables 4 and 5. In these benchmarks,
models using conjunctions of PILPS cost functions using
relaxedα-consistency run faster and prune more than models
with individual flow-based projection-safe / polynomiallyde-
composable cost functions usingα-consistency in many cases,
especially when the problem size is large. Note that models
using PILPS cost functions contain also table cost functions,
and are thus applied with a mix of relaxedα-consistency (for
PILPS functions) andα-consistency (for table functions).

Stronger consistencies always have higher overhead. We
gain in runtime only when the extra pruning can compensate
for the overhead. This is not the case in general for relaxed
weak EDGAC* in our easy problem instances as reported
in these tables. That is why relaxed FDGAC* exhibits better
runtime behavior than weak EDGAC*.

We use slightly easier problem instances so that we can
make sensible comparisons with the weaker consistencies and
the flow-based projection-safe / polynomially decomposable
cost function implementations. Note that integer linear pro-
gramming solver can also solve our benchmarks competitively.
We use more difficult instances with more preferences (table
cost functions) to compare the performances of modeling the
problem with integer linear programs solved by the IBM ILOG
CPLEX Optimizer 12.2 with both of the models above. We use
the encoding method introduced by Koster [20] to formulate
binary cost functions as integer linear programs. We only
show the results for the models with flow-based projection-
safe / polynomially decomposable (p.d.) cost functions using
weak EDGAC* and PILPS cost functions using relaxed weak
EDGAC* as those models have the best results among the
other (relaxed) consistencies in the same model in this setting.

Results are shown in Tables 6 and 7. In almost all cases,
our models using conjunctions of PILPS cost functions run
faster and prune more. The trend is more apparent when the
problem size grows.

VI. CONCLUSION

Global cost functions are indispensable in modeling com-
plex real-life problems. The work reported here continues the
quest for efficient implementations of such functions in WCSP

4http://www.emn.fr/x-info/sdemasse/gccat/

TABLE IV
THE SOFT CAR SEQUENCING PROBLEM

Modeling with the conjunction of PILPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
12 72.6 2.22 (1.58) 12.1 0.47 (0.33) 12.0 0.85 (0.67)
14 85.7 3.11 (2.39) 15.8 0.73 (0.55) 15.0 1.30 (1.07)
16 89.3 4.33 (3.47) 16.1 1.13 (0.87) 15.6 1.92 (1.59)
18 123.3 7.20 (5.87) 18.9 1.38 (1.06) 18.0 2.24 (1.89)
20 139.7 10.29 (8.51) 22.0 2.01 (1.49) 20.6 3.31 (2.69)

Modeling with polynomially decomposable cost functions

n
GAC* FDGAC* weak EDGAC*

bt time bt time bt time
12 23667.9 23.03 563.4 2.67 210.3 1.54
14 310845 328.49 2774.9 16.53 983.1 11.89
16 * * 6653.2 53.06 2191.3 25.10
18 * * 8104.2 93.87 3651.7 49.62
20 * * 21285.5 303.10 8025.6 161.82

TABLE V
THE SOFT EXAMINATION TIMETABLING PROBLEM

Modeling with the conjunction of PILPS cost functions

n, d
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
25, 8 5507.6 405.67 (379.50) 29.8 3.77 (3.25) 25.4 4.32 (3.66)
30, 8 * * 63.4 18.37 (16.09) 50.4 8.50 (6.99)
35, 8 * * 35.8 7.96 (5.62) 35.0 10.85 (7.21)
30, 12 * * 140.1 26.49 (20.64) 124.7 30.88 (22.91)
35, 12 * * 93.0 45.02 (37.15) 78.3 51.41 (40.31)

Modeling with flow-based projection-safe cost functions

n, d
GAC* FDGAC* weak EDGAC*

bt time bt time bt time
25, 8 16747.8 41.514 97.8 0.67 92.6 0.68
30, 8 * * 224.0 7.93 208.4 8.75
35, 8 * * 72.2 0.51 62.4 0.44
30, 12 * * * * * *
35, 12 * * * * * *

TABLE VI
COMPARISON WITH ILP: SOFT CAR SEQUENCING

n
p.d. & weak EDGAC* PILPS & relaxed weak EDGAC* ILP

bt time bt time (CPLEX) time
12 527.8 119.96 37.8 103.26 (68.73) 63.28
14 2287.2 788.94 42.6 155.21 (135.49) 177.79
16 6835.1 1828.22 96.3 207.07 (175.64) 386.30
18 * * 110.1 653.82 (549.44) 662.56
20 * * 311.2 1163.03 (1026.89) 1442.44

TABLE VII
COMPARISON WITH ILP: SOFT EXAMINATION TIMETABLING

n, d
flow-based & weak EDGAC* PILPS & relaxed weak EDGAC* ILP

bt time bt time (CPLEX) time
25, 8 211.0 2.93 47.0 5.87 (4.22) 2.29
30, 8 1140.1 31.28 105.0 11.53 (9.61) 10.76
35, 8 704.2 19.77 84.1 11.07 (8.17) 12.56
30, 12 * * 790.1 544.01 (449.89) 725.54
35, 12 * * 681.0 738.09 (640.58) 876.47

solvers. Previous work suggests PLPS cost functions for in-
herently computationally expensive cost functions, and relaxed
consistencies to handle them efficiently. The conjunction of
global cost functions is well-known to give better bounds
on different consistencies. Our work gives a practical way
of conjoining PLPS cost functions by linear programming
techniques. We show a subclass of PLPS cost functions gives
better bounds on conjunctions with approximations compared
to individual cost functions. While such individual cost func-
tions are tractable to handle, their conjunctions can become
intractable to manage. Our work suggests approximation is a
useful technique to tackle conjunctions of such cost functions,
and we demonstrate that it is beneficial both in terms of
runtime and pruning.

Cooper et al. [21] suggest optimal soft arc consistency
(OSAC), the implementation of which also utilizes linear
programming techniques, for WCSPs. They model the pro-
jection opportunities of table cost functions into an integer
linear program. By optimizing the lower bound with linear
relaxation, the maximum lower bound that can be inferred
is approximated. Immediate future work is to extend our
framework to OSAC as a higher level of consistency.

ACKNOWLEDGEMENT

We thank the anonymous referees for their constructive
comments. The work described in this paper was substantially
supported by grants (CUHK413710 and CUHK413808) from
the Research Grants Council of Hong Kong SAR.

REFERENCES

[1] J. Larrosa, “Node and arc consistency in weighted CSP,” in AAAI’02,
2002, pp. 48–53.

[2] M. Zytnicki, C. Gaspin, and T. Schiex, “A new local consistency for
weighted CSP dedicated to long domains,” inSAC’06, 2007, pp. 394–
398.

[3] J. H. M. Lee and K. L. Leung, “Consistency Techniques for Flow-
Based Projection-Safe Global Cost Functions in Weighted Constraint
Satisfaction,”Journal of Artificial Intelligence Research, vol. 43, pp.
257–292, 2012.

[4] M. C. Cooper and T. Schiex, “Arc consistency for soft constraints,”
Artificial Intelligence, vol. 154, no. 1-2, pp. 199–227, 2004.

[5] J. Larrosa, “In the quest of the best form of local consistency for
weighted CSP,” inIJCAI’03, 2003, pp. 239–244.

[6] S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa, “Existential arc
consistency: Getting closer to full arc consistency in weighted CSPs,”
in IJCAI’05, 2005, pp. 84–89.

[7] J. H. M. Lee, K. L. Leung, and Y. Wu, “Polynomially Decomposable
Global Cost Functions in Weighted Constraint Satisfaction,” in AAAI’12,
2012, pp. 507–513.

[8] J. H. M. Lee and Y. W. Shum, “Modeling Soft Global Constraints as
Linear Programs in Weighted Constraint Satisfaction,” inICTAI’2011,
2011, pp. 305–312.

[9] Y. W. Shum, “Consistency Techniques for Linear Global Cost Functions
in Weighted Constraint Satisfaction,” Master’s thesis, The Chinese
University of Hong Kong, 2012.

[10] T. Schiex, H. Fargier, and G. Verfaillie, “Valued Constraint Satisfaction
Problems: Hard and Easy Problems,” inIJCAI’95, 1995, pp. 631–639.

[11] M. C. Cooper, “High-order consistency in valued constraint satisfaction,”
Constraints, vol. 10, no. 3, pp. 283–305, 2005.

[12] T. Petit, J.-C. Ŕegin, and C. Bessière, “Specific Filtering Algorithm for
Over-Constrained Problems,” inCP’2001, 2001, pp. 451–463.

[13] L. Wolsey, Integer Programming. Wiley, 1998.
[14] C. Bessìere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh, “The

SLIDE Meta-Constraint,” Technical report, 2007.
[15] C. H. Papadimitriou and K. Steiglitz,Combinatorial Optimization:

Algorithms and Complexity. Prentice-Hall, 1982.
[16] J.-C. Ŕegin, “Combination of Among and Cardinality Constraints,” in

CPAIOR’2005, 2005, pp. 288–303.
[17] N. Beldiceanu and E. Contejean, “Introducing global constraints in

CHIP,” Mathematical and Computer Modelling, vol. 20, no. 12, pp.
97–123, 1994.

[18] J.-C. Ŕegin, “Generalized Arc Consistency for Global CardinalityCon-
straints,” inAAAI’96, 1996, pp. 209–215.

[19] C. Solnon, V. Cung, A. Nguyen, and C. Artigues, “The Car Sequencing
Problem: Overview of State-of-the-Art Methods and Industrial Case-
Study of the ROADDEF’2005 Challenge Problem,”European Journal
of Operational Research, vol. 191, no. 3, pp. 912–927, 2008.

[20] A. M. Koster, “Frequency Assignment: Models and Algorithms,” Ph.D.
dissertation, University of Maastricht, 1999.

[21] M. C. Cooper, S. de Givry, and T. Schiex, “Optimal Soft ArcConsis-
tency,” in IJCAI’07, 2007, pp. 68–73.

