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Abstract—Lee and Shum consider cost functions that are Poly- polytime algorithms are discovered yet. Lee and Shum [8],
nomially Linear Projection-Safe (PLPS), but whose minimum [9] introduce the notion ofPolynomially Linear Projection-
cost computation is usually NP-hard. They suggest how such COStSafety (PLPS)If a difficult cost function is PLPS, then a

functions can still be efficiently propagated using relaxed forms of dl b d for th .. t of th t functi
common consistencies. In this paper, we show that conjunction$ o good lower bound Tor theé minimum cost of the cost Tunction

PLPS cost functions are still PLPS, and Lee and Shum's relaxed can still be computed efficiently using linear programming
consistency method is applicable to give better runtime behavior. techniques. Relaxed versions of the standard consisgncie

We further introduce Polynomially Integral Linear Projection-  such as GAC*, FDGAC* and weak EDGAC*, are defined
Safe (PILPS) cost functions, a subclass of PLPS cost functions,using the approximated minimum costs.

which have (a) linear formulations with size polynomial to the In_thi id uncti f alobal i
number of variables and domain sizes, (b) optimal solutions of n IS papér, we consider conjunclions o giobal cos

the linear relaxation always being integral and (c) the last two functions sharing more than one variable. We give theorems
conditions unaffected by projections/extensions, even thougihé¢ showing that propagating on a conjunction using the stahdar
operations modify the structure of cost functions. We show that consistencies is stronger than propagating on the indiidu
conjunctions of PILPS cost functions are PLPS, which still satisfy cost functions. Unfortunately, the same is not true if weppro
conditions (a) and (c). Given a standard WCSP consistenay, we - S - .

give theorems showing that maintaining relaxedx on a conjunc- agate using theelaxedcon3|stenf:|_es with linear programming.
tion of PILPS cost functions is stronger than maintaininge. on  Nevertheless, we present empirical results to demonstnate
the individual cost functions. A useful application of our method benefits of propagating on conjunctions both in terms of
is on some PILPS global cost functions, whose minimum cost ryntime and pruning in general.

computations are tractable and yet those for their conjunctions We introduce and give sufficient conditions for a special

are not. Experiments are conducted to confirm empirically that . - .
maintaining relaxed consistencies on the conjoined cost functions SUPCass of PLPS cost functions, namggfynomially integral

is orders of magnitude more efficient, both in runtime and search linear projection-safe (PILPSyost functions. Every PLPS
space reduction, than maintaining the corresponding standard function has a corresponding integer linear program foamul

consistencies on the individual cost functions. tion. We require the integer linear program formulation of a
PILPS cost function to have exactly the same solutions as its
|. INTRODUCTION linear relaxation. An important consequence is that eirigrc

Weighted Constraint Satisfaction Problems (WCSPs) prtite standard consistencies on PILPS cost functions is lgxact
vide a framework for modeling over-constrained and optthe same as enforcing their relaxed counterparts. In adeliti
mization problems. The basic solution technique for WCSRse minimum cost of an PILPS function can be computed in
is branch-and-bound search augmented with various formspaflytime. The same is not necessarily true for conjunctions
standard consistencies, such as NC* [1], (stropdL [2], of PILPS cost functions, which we show to be still PLPS.
[3], (G)AC* [1], [4], [3], FD(G)AC* [5], [3], and (weak) Our central results show that propagating on individualF8L
ED(G)AC* [6], [3]. Enforcement of these consistencies aahs cost functions using the standard (or relaxed since they are
inferring good lower bounds for the WCSP at hand, and relifse same) consistencies is weaker than propagating on the
on efficient minimum cost computation of the cost functionsonjunction of all these PILPS cost functions using thexesda
in the problem. versions of the consistencies, which is in turn weaker than

Global cost functions are important for the success of WCSiPopagating on the conjunction using the standard comsigte
for their versatility in modeling real applications and effiThe latter is NP-hard in general. These results give an exact
cient propagation algorithms. Flow-based projectiored8] characterization of the strength of the relaxed and standar
and polynomially decomposable global cost functions [@onsistencies on conjunctions of PILPS cost functions as
are ones with good structures allowing polytime algorithmsompared against the corresponding standard consissencie
for minimum cost computations and the nice structures aredividual PILPS cost functions. Therefore, it is alwaysrao
unaffected by the projection/extension operations. On tkesirable to propagate on conjunctions of PILPS cost fansti
other hand, many global cost functions are useful, and ye&ting even just relaxed consistencies.
either their minimum cost computations are NP-hard or no Our central theorems are useful when we have cost functions



whose minimum cost computation is polytime but that fofiWs,, Ws,) to (Ws ,Wg, ), where
conjunctions of such cost functions is not. We show that

flow-based projection safe [3] and an important subclass of W, (£) = Ws, (g:) Sa if ﬁ'[sz] =1t

polynomially decomposable [7] cost functions are PILPS. %51 (6’) ,‘;t;rl”';e

Although there exist polytime algorithms to compute the Ws, (') = W?gé,;@a :JtherT/vise
2

minimum costs of flow-based projection-safe and polynomi-
ally decomposable cost functions, we can prune more bif S, = @, it is a projection tolV,. Extensions are the
propagating on conjunctions of such cost functions usisg junverse of projections, and are defined similarly. In thipgra
relaxed consistencies instead of propagating on individost we restrict that.Sz| < 1. We assume that the minimum cost
functions using the corresponding standard consistendies of the cost functionsnin{ W} cannot be smaller than 0 after
conduct experiments to evaluate our method against the flaaprojection or extension operation.

based and polynomially decomposable approaches as well as global cost functionis a cost function with special
pure integer programming, and observe orders of magnitusiemantics, based on which efficient algorithms can be design
in runtime and search space improvements. for consistency enforcements. We denote a global costiimct
assoFT_GC/(9) if it is derived from the corresponding hard
global constraintGC with aviolation measurg: and variable
scopeS. SOFT_GCH(S) returns 0iff a given tuple/ on S
satisfies GC. If¢ violates GC,SOFT_GC*(S) returns u(¢)
using the violation measure to reflect how much the GC

Ea;[]uple.(\?b,thC, k)t /f lstgosetioﬁ)griablesgxlf,xg,I. - x?l’}lt is violated. An example is the &T_ALLDIFF’®" [12] cost
ach variable has its finitéomain D(z;) € D of values that ¢ o1 derived from the ALDIFF constraint, which restricts

can be assigned to it. Each variable can only be assigned WHliables to take distinct values. Thariable-basedviolation

one value in its corresponding domain. An assignment ONRasurevar returns the minimum number of variable assign-

set of variables can be represented by a wpleve denote ments that needed to be changed for the constraimtDAFF
[z;] the value assigned te;, ¢S] the tuple formed from the to be satisfied

assignment on varla_bles in the sﬁ_tg X, and L(S) a set Definition 1: Let Dx — (", Ds,, then
of tuples corresponding to all possible assignments onéhe s
of variablesS. C is a set ofcost functionsi¥g, each with SOFT_ALLDIFF"" (z, )
scopesS. Ws maps tuplesC(S) to a cost valuation structure _ - T
V(k) _ H Zder maX(HZ | Ty = d}‘ 1’0)
= ([0...k],®, <). The structuréd/ (k) contains a set of

integers|0, .. ., k] with standard integer ordering. Addition  To handle global cost functions which are usually of high-
@ is defined bya © b = min(k, a + b). The subtractiom ©b  arity, standard consistencies are generalized to GAC* 4] a
for a,b € [0...k] anda > b is defined am © b = a — b if FDGAC* [3], and weak EDGAC* [3].
a#kandk©a=k foranya. Lee and Leung [3] definel projection-safety A cost

Without loss of generality, we assum@ = {Wy} U function Wy is T projection-safef (a) Wy satisfies property
{Wi|z; € X} UCT. Wy is the constant nullary cost function, 7, and (b) W satisfies propertyT, where W} is obtained
representing the lower bound of the WCSR, is a unary cost from Wy by a valid sequence of projections or extensions.
function associated with variable € X. C* is a set of cost In other words, the property is preserved oV after

Il. BACKGROUND

A Weighted Constraint Satisfaction Problgf?WCSP) [10]

functions with scopes of two or more variables. projections and extensions.
The cost of a tuple ¢ for a WCSP corresponding to Two useful properties] are flow-basedness and polyno-
an assignment onX is defined ascost({) = Wy @ mially decomposableFlow-based projection-safe cost func-

D.,cx Will[zi]) © Dyyiccr Ws(£[S]). A tuple £ is feasible tions [3] can be represented as flow networks, the minimum
if cost(¢) < k. Our goal is to find a tuplé¢ which has the cost of which can be computed efficiently by flow algorithms.
minimum cost among all the feasible tuples, and such a tgpleHolynomially decomposable cost functiofd can be rep-
asolutionof the WCSP. For convenience, we writén{Ws} resented as dynamic programs, which allow the minimum
to denotemin{Ws(¢) | £ € L(S)}. costs to be computed efficiently using divide-and-conquer a
WCSPs are typically solved with basic branch-and-bourfiemorization.
search augmented with different consistency techniquesA cost functioniWs is linear [8], [9] if it can be represented
NC* [1], (strong) @IC [2], [3], AC* [1], FDAC* [5], and by aninteger linear program[13] Iy, such thatmin{Ws}
EDAC* [6] are defined for binary cost functions. is equal to the minimum ofy,. W is polynomially linear
The enforcements of different consistencies involve findf it is linear and the size offyy . is polynomial to|S| and
ing the minimum costs of the cost functions, and movinghe maximum size of variable domaind/s is polynomially
those costs between cost functions fpjectionsand exten- |inear projection-safe (PLPSH it is polynomially linear and

sions[11]. Projections move costs from-nary cost functions . . ) S .
to unary cost functions and from unary cost functions to tgMmains polynomially linear after projections and extensi

nullary oneW. Given S, C S;, a projection of cost from Example 1:The =~ SOFT_ALLDIFF** (z1,...,2,) cOst
Ws, to Wg, with respect tof € L(52) is a transformation of function is PLPS as it can be represented by the following



integer linear prograni: 1. CONJOININGPLPS GSTFUNCTIONS

) If two constraints or cost functions share variables, they a
min E Uq, S.T . .
overlapping In the rest of the paper, we assume overlapping

aebx cost functions share more than one variable. In general,
n enforcing a consistency on the individual cost functionyy ma
ZC%“ +u, < 1,Va € Dx not imply the same consistency on the conjunction of the
i=1 two. An example is given by Besse et al. [14] in which

enforcing GAC on two overlapping 1A DIFF constraints does
not imply GAC on the conjunction of them. It is easy to check
The minimum of] = min{SOFT_ALLDIFF'® (z1,...,z,)}. that the result also holds for cost functions. By discowgrin
Thus SFT_ALLDIFF'® (21,...,,) is polynimally linear. €Xtra pruning opportunities, propagating on conjunctiofs
As there exists a variable,, , in I for every values € D(z;) COSt functions may reduce more search space than propggatin

in every variabler;, I can be modified easily to represenfn individual cost functions can. _ _ _
SOFT_ALLDIFF** (21, ..., x,) after projections and exten- EVvery PLPS cost function has an associated integer linear

sions. So ®FT_ALLDIFF’* (x4, ..., z,) remains polynomi- Program. PLPS cost functions can be conjoined togethelyeasi

ally linear after projections and extensions and thus iti8®. Py combining their corresponding integer linear programs i
Solving integer linear programs can require exponentiati 2 straightforward manner. Given two mteger' linear program
in general, but a good approximation of the minimum codtvs, andlws, , we definely, Aly;, to be their combination
approxz_min{Ws} can be computed with the linear relaxatior?y _takm_g the union _of their linear m_equalltles and addiqg u
using linear programming. The approximated minimum Cogielr objgcuve functions. The foI!owmg theprem ensureat t
forms the basis of relaxed but weaker forms of standaf@njunctions of PLPS cost functions remain PLPS.
consistencies. Lemma 1:SupposéVs, andWg, are PLPS cost functions.
Standard consistencies for global cost functions includd'® coniunctionWe,,; = Ws, A W, is also PLPS. _
GAC*, FDGAC* and weak EDGAC*. An important concept. " 100f: SupposelVs, and W, have their corresponding
for these consistencies are the notions of simple and fillfe9er linear prograniyy,, andly,, respectively. The inte-
supports, which can be expressed (and enforced) in terff linear progranyy,,; for Weon; can simply be formed by

of the minimum costmin{Ws} of cost functionsWs. The Weo; = Iws, Alws,. Itis easy to check thal’.,,,; satisfies

relaxed form of these consistencies can be easily forrrmlalrge co.ndition's for PLP,S' . , . u
An immediate question is whether a conjunction of PLPS

by replacingmin{Ws} by approz_min{Ws}. We illustrate ) _ .
the idea using the definition aélaxed GAC*as an example. cost functions always gives a stronger bound than using
the individual PLPS cost functions, given that the same

A variable z; is NC* [1] if (1) each valuev € D(x;) . . A . N
satisfiesW;(v) @ Wy < k and (2) there exists a valueli/egoé consmgencyh IS mamtr;';unedt. fleetn thcwéps -
o' € D(x;) such thatiW;(v') = 0. A WCSP is NC*iff all Lpa b ), where d.eac. tcos s Ea rre
variables are NC*. A variable; € S is GAC* [4] with respect IS WIth ‘corresponaing Integer finear program, . Yve
. e assume thatpyps contains overlapping cost functions. We
to a cost functioniVy if: .
) . _ can construct an equivalent WCSR,,,; = (X, D,Ceon;, k)
e x; IS NC*, and, _ whereCeon; = {Weonj} and Weo,,; = /\Wsechps Ws with
« foreach value); € D(z;), there exists values; € D(z;) e corresponding SCOpS.o.; = | J S'and integer
for all j # ¢ andz; € S so that they form a tuplé with ~; A WseCrrps -
W(€) = 0. {u;} is asimple Supporof v; with respect oo PIOGIaMIwcn, = \Wsccpsps IWe: SINCECrLps 1S @
s(€) = 0. {v;} i Imple supp v WI p set of PLPS cost functions, the conjunctidn,,,,; must be an
to Cs. PLPS cost function.
A WCSP is GAC* iff all variables are GAC* with respect Given a problemP representable by two WCSP models
to all constraints. Note that the second requirement can beP) and+(P). A consistency® on ¢(P) is strictly stronger

Ug > 0,¥a € Dx;cy, o =1{0,1},Va € Dx,1 <i<n

reformulated as follows. than another consistendy on ¢ (P), written as® on ¢(P) >
« for each valuev; € D(x;), min{Ws(¢)|l € £(S) A Y ony(P),iff 4(P)is ¥ wheneverg(P) is @, but notvice
L) =v;} =0. versa[3].

We show that (FD)GAC* and weak EDGAC* oR.,,; are
strictly stronger than their counterparts Bp; ps respectively
by the following theorem.

Theorem 1:Suppose a-consistency is one of GAC*,

By replacing ‘min” by “approx_min” and “=" by “ <", we
get relaxed GAC*. A variabler; € S is relaxed GAC*[8],
[9] with respect to a cost functiolg if:

o x; is NC*, and; . FDGAC*, and weak EDGAC*. We havex-consistent on
o for each valuev; € D(z;), approx_min{Ws({) | | € Pyon; > a-consistent onPp ps
L(S) ANz} = v} 0. Proof: We prove the part for GAC*. The proofs for the

Note that the real number approximated minimum cost cather consistencies are similar.
be negative. The definitions of relaxed FDGAC* and relaxed Assumer,,,; is GAC*, but Ppps is not GAC*. There ex-
weak EDGAC* can be constructed similarly. ists a variabler; € X with a valuea € D(z;) and a cost func-



TABLE |

tion Ws € Cprps in Pprps such thatmin{Wg(¢) | {[z;] = THE GENERALIZED SOFT CAR SEQUENCING PROBLEM USING
aNle L(S)}>0. Now, we have SOFT_SLIDING Sum¢dec
Inin{Wconj ‘ E[IEZ] =a /\ g e £(SC07Lj)} relaxed G"Tgfling With P;T;:;S;I;g:g?ns relaxed weak EDGAC*
2 @Owecerprs Mn{Ws(0) | el =a L€ L(S)} >0 o 3 A R X AL
. . 10 12 055 (0:51) 210 [ 052 (0:49) 98 [ 073 (0:68)
So we cannot find a simple support ferand z; cannot be T2 | 1196 | 144(135) | 482 | Li15(1.07) | 456 | 134 (L26)
. . 14 5851 | 17.63 (16.91) | 264.8 | 13.12 (12.76) | 249.0 | 15.19 (14.61)
GAC* W|th respeCt tOWconj n Pconj- Modeling with conjoined PLPS cost function
Consider Ws, = SOFT_ALLDIFF’®" (21, 29,23) and n T e (CPLER | ] e [CPLERy b ] fine CPLEX) |
va 8 16.0 0.19 (0.18) | 124 | 030(0.28) | 124 | 0.38 (0.35
WSz = SOFT_ALLDIFFUL”(JZQ,.1'3,.%‘4), where D('rl) : 10 30.6 0.46 (0.43) | 200 | 0.71(0.65) | 178 0.86 (0.80
{a,b}, D(@2) = D(x3) = {a,b,c} and D(z4) = {b,c}. Itis o Twaz [l A e e
easy to check thabpyps = (X, D, {Wsl s WSQ}, k) is GAC*. TABLE II
However,P.,,; = (X, D,{Ws, A€W, }, k) is not GAC* since THE SOFT MAGIC SQUARE PROBLEM USINGSOFT_EGCCVe”
the minimum cost when; = a is 1 > 0.
Result fO||OWS ™ Modeling with PLPS cost functions
. relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
When standard consistencies are replaced by their relaxed R T s
versions, result similar to that of Theorem 1 does not hold. B L L T e o e e
For simplicity, we assumep;ps = {Ws, Ws, }. Suppose BTl s T ] i 5o ] suei
A * laxed * laxed - laxed weak -
Peonj is relaxed GAC*. We have n BT e CPER B | e (CPLERy Bt fine (CPLEX;
. 9 1238 0.27 (0.25) 9.8 0.43 (0.40) 9.7 0.54 (0.50)
0 > approx min{Weon; | £[zi] = a Al € L(Seonj) } e T [ Ee ] eue [ mel tEam
> EBWSGCPLps approx mln{Ws (0) | g[l‘l] =aANlc K(S)} 18 794 | 296 (287) | 36.7 | 578 (548) | 364 | 7.29 (6.82)

L . TABLE Il
In order for the sum to be non-positive, it is possible for THE WEIGHTED TARDINESS SCHEDULING PROBLEM USING

the approximated minimum cost of one ¢Ws,,Ws,} to SOFT_DISJUNCTIVEY#
be negative and the other one positive. Therefore, one af the
is not relaxed GAC*.

Modeling with PLPS cost functions

; L . s d IT| | P e CPTERT | e [CPLERT | br-— ] Time (CPLEX)

The pecullar bad situation just described does not hap- 3312 70 | 0.05(005) | 60 | 006006 | 60 | 0.08 (0.08)
pen often in practice. We demonstrate that it is worthwhile A e e T e
to propagate on the conjunction instead of individual cost |53 mes e 0| zm e [ B S
functions. We use the same setup as the experiments by Lee = L — L0 o rres st mmion o0
and Shum [8] and compare against their experimental results |, 4,z [ @SS/ [ et FoACT 1 e weak EDCA

using the same set of problem instances, which includes the 3312 | 60 | 005(005 [ 60 [ 009(009) | 60 | 016013

4,4,20 8.0 0.15 (0.14) 8.0 0.29 (0.28) 8.0 0.35 (0.34)

generalized version of the soft car sequencing problensdfte 5530 | 155 | 053(050) | 152 | T04(LOD) | 150 [ 1.29 (1.25)
. . . . 6,5,35 23.2 0.95 (0.90) 18.8 1.90 (1.83) 18.0 2.32 (2.24)
magic square problem and the weighted tardiness scheduling [75a0 [ 352 | 172064 [ 270 | 344(330) | 210 | 223 @07
. . 8,5,45 40.1 3.49 (3.24) 345 7.38 (7.08) 33.1 8.71 (8.31)

problem. In our models, all PLPS cost functions in a problem
are conjoined into a single one.

Results are shown in Tables 1, 2, and 3. The averaggerhead, and the simpler and less costly relaxed GAC* gives
number of backtrack (bt) and the average runtime in seconglg pest results in terms of run-time.
(time) for solved cases are reported. The runtime includes t
CPU time used by both the WCSP solver Toulbar2 and the/- CONJOINING TRACTABLE GLOBAL COSTFUNCTIONS
linear program solver CPLEX. Next to the runtime, we also OTHER THAN PLPS
report separately in brackets the CPU time used by the lineaPolynomially Integral Linear Projection-Safe (PILPS) cos
programing solver (CPLEX) with a “*" if the execution of functions form a special subclass of PLPS cost functions [8]
one of the 10 instances exceeds the timeout of 3600 secorj@k. A cost function Wy is polynomially integral linearif
The best result among those with the most cases solvediiis is (a) polynomially linear and (b) the optimal solution,
highlighted in bold. The models using the conjunction of BLPIif it exists, of the linear relaxation of its correspondimgeiger
cost functions run faster in instances with larger size, afidear programlyy,, is always integral.
prune more in all cases. Greater improvements are showrLemma 2:Polynomially integral linear cost functions are
in harder instances, e.g. the largest instance in Table plolynomially linear.
Since the instances only contain PLPS cost functions, theey a An immediate observation is that the exact minimum cost
conjoined into a single PLPS cost function in our model. lof a polynomially integral linear cost function can be ob&ad
this model, there is no propagation between cost functiods ey solving the linear relaxation of their correspondingeger
the effects of relaxed GAC*, relaxed FDGAC*, and relaxetinear programs.
weak EDGAC* are similar. So relaxed FDGAC* and relaxed Lemma 3:If Wy is a polynomially integral linear cost
weak EDGAC* do not infer a much better bound than relaxednction, min{Ws} = approx_min{Wyg}.
GAC* when conjoined PLPS cost functions are used. The Theorem 2:Minimum cost computation of polynomially
reduction in search space does not compensate for the grunimegral linear cost functions is polynomial.




Proof: Since min{Ws} =  approx_min{Ws}, minimum cost to be computed efficiently, and relaxed form
min{Wgs} can be determined using interior poinbf standard consistencies can thus be enforced. We have the
algorithms [13] for linear programs with the worst caséollowing result when relaxed consistencies are enforced o
complexity bounded by polynomial time. B the conjunction of PILPS cost functions compared to the

Recall the notion off” projection-safety. In addition to flow- corresponding (non-relaxed) consistencies enforced en th
basedness and polynomially linearity, polynomially imgdg individual cost functions.
linearity is another good property to be maintained across Given WCSPPp;ps = (X,D,Cprrps, k), Where each
projections/extensions. Therefore, it makes sense toireeqicost functionWy € Cprrps is PILPS with corresponding
cost functions to begolynomially integral linear projection- integer linear prograniy,,. We assume thatp;z, ps contains

safe (PILPS) overlapping cost functions. We can construct an equivalent
We give a possible sufficient condition to identify PILPSNCSP P.,,; = (X,D,Cconj,k) Where Ceonj = {Weon;}
cost functions. andWeopn; = /\Wsecmms Wg with the corresponding scope

' Theorem 3.:A cost. function Ws is polynomially integral S,,,; = Uwsecp,,ps © @nd integer linear prografy,,,,, =
linear projection-saféf: /\Wsecpms Iy,

1) Wy is linear and has the corresponding integer linear We show that relaxed (FD)GAC* and relaxed weak
program Iy, where the number of inequalities andEDGAC* on P.,,; are strictly stronger than (FD)GAC* and
number of variables offy,, are polynomial to the weak EDGAC* on Pprrpg respectively by the following
number of variables and the maximum domain size ¢fieorem.

Ws; Theorem 4:Suppose a-consistency is one of GAC*,

2) there exists a surjective functioi mapping each op- FDGAC* and weak EDGAC*. Relaxed-consistent o, ;
timal solutionwws in Iy, to each tuple/[S] € L(S), is strictly stronger thamw-consistent onPp;rps.
where L(S) denotes the set of tuples corresponding to  Proof: We prove the part for relaxed GAC*. The proofs
all possible assignments on variablgésand; for the other consistencies are similar.

3) for each valuev € D(z;) in each variabler; € S, AssumeP,,,,; is relaxed GAC*, butPp;,pg is not GAC*.
there exists an injective function mapping an assignmenhhere exists a variable; € X with a valuea € D(x;)
{z; — v} to a 0-1 variablec,, , in Iy, such that and a cost functionVs € Cprrps in Pprrps such that
if £[S] = A'(v1,,) for an optimal solutionyy,,, in min{Ws(¢)[¢[z;] = a Al € L(S)} > 0. Since all cost
Iy, and a tuple/[S] € L(S), whenever/[x;] = v for functionsWg € Cp;rps are PILPS, we have
some tuple?[S], 1, [cz,,0] = 1; wheneverl[z;] # v, approx_ min{Wen; | £zi] = a A £ € £(S)}

Viw [Cwi,v] =0 ; 11—
4) IWSS is totally dual integralor the associated matrix of %WSGCPILPS Zﬁiﬁ/};f_r&ﬁ{;{[ﬁ] |f[zl]Az g /E\(ES§}£>(SO) }
Iy, is totally unimodular Ws€CpiLps s Co
Proof: If a linear program igotally dual integralor its Thus, a cannot have any simple support amg cannot be
associated matrix ifotally unimodular its optimal solutions relaxed GAC* with respect t&Veo,; IN Peon;.
must be integral [15]. By augmenting conditions 1, 2, and 3 Consider Ws, = SOFT_ALLDIFF**"(z1,z2,73) and
from the sufficient condition for PLPS cost functions [8]] [9Ws, = SOFT_ALLDIFF’*"(z2,23,24), where D(z1) =
straightforwardly, the sufficient conditions for PILPSdsthed {a,b}, D(z2) = D(x3) = {a,b,c} and D(z4) = {b,c}. It
as given. m is easy to check thaPprrps = (X,D,{Ws,,Ws, }, k) is
Example 2:The  SOFT_ALLDIFF'"(zy,...,z,) cost GAC*. However, Pn; = (X,D,{Ws, A Wg,},k) is not
function isPILPSas the associated matrix of its correspondingglaxed GAC* since the approximated minimum cost when
integer linear program given in Example 1 is totally1 =ais1>0.

v

unimodular. Result follows. ]
Polynomially integral linear projection-safe cost functs Since relaxed consistencies are the weaker forms of sténdar
are interesting since their conjunctions are PLPS. consistencies, we have the following lemma.
By Lemma 1 and 2, we have the following corollary. Lemma 4:Suppose a-consistency is one of GAC*,
Corollary 1: SupposeéVs, andWg, are PILPS cost func- FDGAC* and weak EDGAC*. We hava-consistent orP,,,,;
tions. The conjunctioiV,,,; = Wg, A Wg, is PLPS. > relaxeda-consistent onP.,,, ;.

Corollary 2: SupposelVs is PILPS, anda-consistency is Enforcing a-consistency orP.,,; infers better bounds, but it
one of GAC*, FDGAC* and weak EDGAC*. Relaxed- may not be worthwhile since it can be NP-hard. In contrast,
consistent oV is equivalent ton-consistent oridg. the relaxed consistencies can be enforced efficiently.op;.

In general, it is NP-hard to compute the minimum cost of An immediate application of Theorem 4 is to existing global
the conjunction of overlapping PILPS cost functions, sinasost functions with polytime minimum cost computation. In
the conjunction of their corresponding linear programs magany cases the minimum cost computation for their conjunc-
not always give integral minimums when there exists a miniions is NP-hard. Theorem 4 suggest that it is still wortHevhi
mum [13]. As the conjunction of PILPS cost functions remain® enforce relaxed consistencies on these cost functidos- F
PLPS, linear programming techniques allow its approxichatdased projection-safe cost functions [3] and polynomidby



composable cost functions [7] are such examples. By emfigrciSOFT_GCC’®, and SFT_SAMEY®" cost functions.
relaxed consistencies on their conjunctions, the seancbfite Régin [16] also shows the above result on the hard
from the better bounds inferred. AMONG [17] constraints, where an MONG constraint
Theorem 5:Flow-based projection-safe cost functions areestricts the number of variables to be assigned
PILPS. to a value from a specific set. The result can be
Proof: Every flow-based projection-safe cost function hageneralized to the &T_AMONG"*", SOFT_REGULAR""",
a corresponding network flow problem, which in turn has SOFT_REGULAR™, and  SFT_GRAMMAR"®"  cost
corresponding integer linear program with a totally unimlad functions. Theorem 4 suggests that enforcing the relaxed
matrix [15]. The cost function, the flow problem, and theonsistencies on the conjunction of such PILPS cost funstio
integer linear program shares the same minimum cost. Sirean still be more efficient and worthwhile than handling them
the integer linear program always has integral solutionerwhindividually.
solved by linear relaxation, the result follows. [ ] Given WCSP Pprrps = (X,D,Cpirps,k), Where
Corollary 3: The  flow-based  projection-safe  cos€p;rps consists of some PILPS cost functions, and an equiva-
functions [3] SDFT_ALLDIFF'®", SOFT_ALL DIFeec, lent WCSPP,o,; = (X,D,Ceonj, k) WhereCeon; = {Weon; }

SoFT_GCC™", SoFT_GCC', SorT_SAME"™",  and Weonj = Awaecp,,ps We- We give an example similar
SOFT_SAME"Y, SOFT_REGULAR"", and to the one given by Begsie et al. [14] in the following
SOFT_REGULAR®¥ are PILPS cost functions. theorem. By propagating on a conjunction of PILPS cost

We give the related definitions for polynomially decompodunctions with relaxed consistencies, a higher bound can be
able cost functions to show that they are PILPS cost funstiornferred earlier in an exponentially number of steps dutmg

Lemma 5: [7] If a global cost functioniVs can be repre- branch-and-bound search.
sented adVs(¢) = minj_ {D}~, ws, , (¢[Si ;])}, where: Theorem 7:Suppose a-consistency is one of GAC*,

1) S°7_, n; is polynomial to|S| andd, and; FDGAC* and Wea_lk EDGAC*. There (_exists a class of WCSP

2) for eachi, S;; N S; ), = @ iff j # k and U; S =8, PPILPS:‘, so that if we enf_orcex—con3|stency onP..,; and

’ ’ ’ a-consistency onPprrpg in branch-and-bound search, an

exponential search tree needs to be exploredHpr;ps to
infer the same minimum cost as in the caserpf,;.

then Wy is safely decomposable.

Theorem 6:SupposelVs is a polynomially decomposable
cost function stated in Lemma 5, théWs is PILPS. Proof: We prove the part for relaxed GAC*. The

Proof: We show thatWs is PILPS by first showing ,.,qfs for the other consistencies are similar. Given a

that it is flow-based projection-safe. The function stated WCSP Ppjips = (X UY U Z,D,Cprps. k) where
Lemma 5 consists of the operationsin and @), which can - ~"_ "¢ 77 4Ty {75(71’ . x2n7} 7
be represented and computed in flow networks 18g.canbe ), ’CPI’LPS' _  {SoFT AL’LD”’:FW»(’X UY),
represented as a min-cost flow problem with a correspondiég,z’T ’LLDIFFuar(Y u 2}, D(Xi_) — M,2n—1], i =
flow network, where each cost function, ; is represented by , o D(Y;) = [1,4n —1],i = 1,... 2n’, and D(Z;) =
anode. The operatiomin is represented by connecting all the, "~ 1, i=1 o Y
nodes of the related cost functions to the sink. The operati éonsider the V\;CSli;”wnj — (XUYUZ, D, Coony, k) where

P is representeq by a path connecting all the nodes of t@gmj (W} and Wogn, = SOFT_ALLDIFE™ (X U
related cost functions. ;

| ) flow-based o ¢ ; Y) A SOFT_ALLDIFF*" (Y U Z). Weon; gives an approxi-
. As a result,Ws is a ow-base prOJect|on-s§1 e cost UNCrated minimum cost approxnin{W,,,;} of 1 which can be
tion. By Theorem 5 is an PILPS cost functions. ]

. inferred by enforcing relaxed GAC* od..,;. On the other
Corollary 4: The  polynomially  decomposable  COSh,n4 4 subset of, or fewer variables has at leagt, — 1
functions [7] SOFT_AMONG"®", SOFT_REGULAR"?",

v q values in their domains and a subsetof 1 to 3n variables
SOFT_GRAMMAR ™", MAX_WEIGHT, and MN_WEIGHT are has4n — 1 values in their domains. Thus, to infer a minimum

PILPS. ) ) cost of 1 inPp;ypg by enforcing GAC* onCp; 1 ps, We must
We note that, for the cost functions mentioned abo"?nstantiate at least — 1 variables. -

their dedicated polynomial time algorithms are usually enor In addition to the theoretical results, we conduct experi-

efficient than interior point algorithms or linear programm ments to show the efficiency of modeling cost functions as

By propagating the conjunction of cost functions, exirg| ps cost functions and propagating their conjunctions in
pruning opportunities can be discovered which may redugg. next section.

more search space than propagating the individual cost func
tions. Unfortunately, it can be NP-hard to compute the mini-
mum cost for the conjunction of PILPS cost functions even an
efficient polynomial time algorithm is given for the individl To demonstrate the efficiency of our framework, we com-
cost functions. pare the performances of (a) models using conjunctions of
Bessere et al. [14] show the above result on the hard?ILPS cost functions against (b) models using individual
ALLDIFF constraints and it can be generalized to thibow-based projection-safe / polynomially decomposablst co
SOFT_ALLDIFF'®, SofFT ALLDIFF?°, SoFT_GCC'®, functions. The consistencies GAC*, FDGAC*, weak EDGAC*

V. EXPERIMENTAL RESULTS



and their relaxed versions are implemented in Toulbaf®29. should not be scheduled on the same day in case there
IBM ILOG CPLEX Optimizef 12.2 is called from Toulbar2 are students attending both of them, and they are modeled
to solve (integer) linear programs. Our benchmarks’ models by table cost functions. We fix = 4 and use different
consist of both PILPS global cost functions as well as table andd in our experiments.

cost functions, the latter of which are handled individpall\we soften the above problems by replacing the global
using exact minimum costs even when relaxed consistencigfstraints by their soft variants, by either the flow-based
are used. projection-safe / polynomially decomposable implemeatest
Variables with smaller domains and values with lower unagy; the PILPS implementations. For each variableintro-
costs are assigned first. The experiments are conducted oryafed, a random unary cost from 0 to 9 is assigned to
Intel Core2 Duo E7400 (2 x 2.80GHz) machine with 4GRach value inD(z;). Random preferences are added to the
RAM. In each benchmark we use different parameter settingistances in the form of table cost functions. The softerérd f
to construct different instances, and 10 random cases 8t®ieduling problem (in Global Constraint Catdlpgs also
generated with each parameter setting. We use the timegyged in our experiments and similar results can be observed.
of 3600 seconds and report the average number of backtragls omit the details due to the paper space limitations.
(bt) and the average runtime in seconds (time) for solveeas Results are shown in Tables 4 and 5. In these benchmarks,
The runtime includes the CPU time used by both the WCSRodels using conjunctions of PILPS cost functions using
solver Toulbar2 and the linear programming solver CPLEXg|axeda-consistency run faster and prune more than models
Next to the runtime, we also report separately in brackeds t{yith individual flow-based projection-safe / polynomialie-
CPU time used by the linear programming solver (CPLEX}omposable cost functions usingconsistency in many cases,
We truncate the floating point variables in CPLEX at the 10‘@5pecially when the problem size is large. Note that models
decimal place. We mark the entries with a ** if the executiogsing PILPS cost functions contain also table cost funstion
of one of the 10 instances exceeds the timeout. The best regdly are thus applied with a mix of relaxedconsistency (for
among those with the most cases solved is highlighted in.bofsi| ps functions) and-consistency (for table functions).
The following benchmarks utilize the global cost functions Stronger consistencies always have higher overhead. We
described in the paper. gain in runtime only when the extra pruning can compensate
« The car sequencing problem (prob001 in CSPLEinds  for the overhead. This is not the case in general for relaxed
a sequence of. cars ofu € U different types to be weak EDGAC* in our easy problem instances as reported
built. There is a set of options which each type may in these tables. That is why relaxed FDGAC* exhibits better
or may not be equipped with, and each assembly liRgntime behavior than weak EDGAC*.
of an optioni € I restricts that at mostn; cars for e use slightly easier problem instances so that we can
every s; cars with that option equipped can be built. Anake sensible comparisons with the weaker consistencis an
GCC [18] constraint is used to ensure that the numbgfe flow-based projection-safe / polynomially decomposabl
of cars of each type is built according to the plargost function implementations. Note that integer lineas- pr
Overlapping ®FT_AMONG"*"() [19] cost functions are gramming solver can also solve our benchmarks competjtivel
used to ensure the restrictions of each assembly line gt use more difficult instances with more preferences (table
satisfied, and they are modeled by either polynomialbost functions) to compare the performances of modeling the
decomposable cost functions or PILPS cost functiongroblem with integer linear programs solved by the IBM ILOG
There are preferences for each assembly line, e.g. t@®LEX Optimizer 12.2 with both of the models above. We use
consecutive cars of the same type are preferred, and thig¥ encoding method introduced by Koster [20] to formulate
are modeled by table cost functions. We fik = 5 pinary cost functions as integer linear programs. We only
andu = 5 and use instances with different in our show the results for the models with flow-based projection-
experiments. safe / polynomially decomposable (p.d.) cost functionsigisi
« The examination timetabling problem finds a schedule fQfeak EDGAC* and PILPS cost functions using relaxed weak
n examinations oved days fors groups of students, EachEDGAC* as those models have the best results among the
group of students attends a set of at mbskaminations other (relaxed) consistencies in the same model in thiggett
and the number of days with more than 1 examination Results are shown in Tables 6 and 7. In almost all cases,
should be minimized for every group of students. Ayr models using conjunctions of PILPS cost functions run

SOFT_ALLDIFF"*"() [12] cost function is used for ev- faster and prune more. The trend is more apparent when the
ery group of students, and they are modeled by eithgfoblem size grows.

flow-based projection-safe cost functions or PILPS cost
functions. There are preferences between examinations, VI. CONCLUSION

e.g. the locations of two examinations are far away and Global cost functions are indispensable in modeling com-
Ihttp://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ TtBarlintro plex real_“fe, PrObI,emS' The Wf)rk reported here-cont_mlhm t
2http:/Avww-01.ibm.com/software/integration/optimizatioplex- quest for efficient implementations of such functions in WCSP

optimizer/
Shttp://www.csplib.org/ 4hitp://www.emn.fr/x-info/sdemasse/gccat/



TABLE IV
THE SOFT CAR SEQUENCING PROBLEM

Cooper et al. [21] suggest optimal soft arc consistency
(OSAC), the implementation of which also utilizes linear
programming techniques, for WCSPs. They model the pro-
jection opportunities of table cost functions into an imeg
linear program. By optimizing the lower bound with linear
relaxation, the maximum lower bound that can be inferred
is approximated. Immediate future work is to extend our
framework to OSAC as a higher level of consistency.
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Modeling with the conjunction of PILPS cost functions
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
" Bt Time (CPLEX) Bt fime (CPLEX) Bt fime (CPLEX)
12 72.6 2.22 (1.58) 121 0.47 (0.33) 12.0 0.85 (0.67)
14 85.7 3.11 (2.39) 15.8 0.73 (0.55) 15.0 1.30 (1.07)
16 89.3 4.33 (3.47) 16.1 1.13 (0.87) 15.6 1.92 (1.59)
18 1233 7.20 (5.87) 18.9 1.38 (1.06) 18.0 2.24 (1.89)
20 139.7 10.29 (8.51) 22.0 2.01 (1.49) 20.6 3.31 (2.69)
Modeling with polynomially decomposable cost functions
" GAC* FDGAC* weak EDGAC*
bt time bt time bt time
12 23667.9 23.03 563.4 2.67 210.3 1.54
14 310845 328.49 2774.9 16.53 983.1 11.89
16 * * 6653.2 53.06 2191.3 25.10
18 * * 8104.2 93.87 3651.7 49.62
20 * * 21285.5 303.10 8025.6 161.82
TABLE V

THE SOFT EXAMINATION TIMETABLING PROBLEM

supported by grants (CUHK413710 and CUHK413808) from

the Research Grants Council of Hong Kong SAR.

Modeling with the conjunction of PILPS cost functions
P relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
s bt time (CPLEX) bt fime (CPLEX) bt time (CPLEX)
75,8 5507.6 405.67 (379.50) 29.8 3.77 (3.25) 254 4.32 (3.66)
30,8 + G 634 1837 (16.09) | 504 850 (6.99) [1]
35, 8 ¥ = 3538 7.96 (5.62) 35.0 10.85 (7.21)
30, 12 * * 140.1 26.49 (20.64) 124.7 30.88 (22.91)
35, 12 * * 93.0 45.02 (37.15) 78.3 51.41 (40.31) [2]
Modeling with flow-based projection-safe cost functions
a GAC* FDGAC* weak EDGAC*
™, e bt time bt time bt fime
75,8 | 167478 41514 978 0.67 926 0.68 [3]
30, 8 * * 224.0 7.93 208.4 8.75
35, 8 * * 72.2 0.51 62.4 0.44
30, 12 ¥ ¥ * ¥ ¥ g
35 12 ¥ * * ¥ * *
[4]
TABLE VI [5]
COMPARISON WITHILP: SOFT CAR SEQUENCING
(6]
" p.d. & weak EDGAC* PILPS & relaxed weak EDGAC* ILP
) bt fime fime (CPLEX) fime
12 527.8 119.96 37.8 103.26 (68.73) 63.28
14 2287.2 788.94 126 15521 (135.49) 177.79 [7]
16 6835.1 1828.22 96.3 207.07 (175.64) 386.30
18 * * 110.1 653.82 (549.44) 662.56
20 * * 311.2 1163.03 (1026.89) 1442.44
(8]
TABLE VII

El

COMPARISON WITHILP: SOFT EXAMINATION TIMETABLING

. d flow-based & weal_< EDGAC* PILPS & relaxe‘d weak EDGAC* I_LP
’ bt time bt time (CPLEX) time [10]
25,8 211.0 2.93 47.0 5.87 (4.22) 2.29
30, 8 1140.1 31.28 105.0 11.53 (9.61) 10.76
35, 8 704.2 19.77 84.1 11.07 (8.17) 12.56 []_1]
30, 12 * * 790.1 544.01 (449.89) 72554
35, 12 * * 681.0 738.09 (640.58) 876.47
[12]
[13]

solvers. Previous work suggests PLPS cost functions for %ﬁﬂ
herently computationally expensive cost functions, amakes [15]
consistencies to handle them efficiently. The conjunctibn @6]
global cost functions is well-known to give better bound
on different consistencies. Our work gives a practical wdy7]
of conjoining PLPS cost functions by linear programming
techniques. We show a subclass of PLPS cost functions giyag
better bounds on conjunctions with approximations contghare
to individual cost functions. While such individual cost éun [1°]
tions are tractable to handle, their conjunctions can becom
intractable to manage. Our work suggests approximation is a
useful technique to tackle conjunctions of such cost fomstj (20]
and we demonstrate that it is beneficial both in terms gfy
runtime and pruning.
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