A Value Ordering Heuristic for Solving Ultra-Weak
Solutions in Minimax Weighted CSPs

Jimmy H.M. Lee & Terrence W.K. Mak
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong
{jlee,wkmak @cse.cuhk.edu.hk

Abstract—Minimax Weighted Constraint Satisfaction Prob- and strongly solved Ultra-weakly solved means the game-
lems (formerly called Quantified Weighted CSPs) are a frame- theoretic value of the initial position has been determined
work for modeling soft constrained problems with adversaral This means we can determine the outcome of the scenario

conditions. In this paper, we study the effects of a value orering . .
heuristic in solving ultra-weak solutions on top of the alpte- when both players are playing perfectly (i.e. best-worsega

beta tree search with constraint propagation. The value oréring  Finding an ultra-weak solution for the graph coloring game
heuristic is based on minimax heuristics from adversarial sarch, indicates the guarantee reward for player 1, i.e. the reward
which selects values for variables according to the semagtiof player 1 can at least obtain regardless of player 2’'s moves.
quantifiers by considering the problem as a two-player zero- Weakly solved means a strategy, noted as winning stratdgy [4

sum game. In practice, implementing the heuristic requirexosts . . L o ;
approximations, and we devise three heuristic variants: HWary, in Quantified CSPs [5], for the initial position to achieve

HBinary, and HFullBinary to approximate costs. In particul ar, we ~ the game-theoretic value against any opposition is fouod. F

observe that combining these heuristic variants with constency the graph coloring game, solving the problem weakly allows
notions can achieve a better efficiency and a further reductin  player 1 to maximize his rewards against any moves (possibly
of search space. We perform experiments on three benchmarks not worst case move) played by player 2. Strongly solved is

to compare the effects on applying these heuristic variantsand . :
confirm the feasibility and efficiency of our proposal. being used for a game for which such a strategy has been

Index Terms—constraint optimization, soft constraint satisfac- determined for all legal positions. A strongly solved swint

tion, value ordering heuristics, minimax game search for the graph coloring game allows player 1 to maximize his
rewards not only against any moves played by player 2, but
|. INTRODUCTION also against all moves played by himself/herself. Once aegam

Our work aims to tackle a class of optimization problemis solved at a stronger level, the game is automaticallyesblv
with adversarial conditions. As an example, we begin witht weaker ones. Finding solutions at stronger levels, hewev
a graph coloring game in which numbers are used insteiaplies substantially higher computation requirementspar-
of colors. The game is played by two players, and nodes dieular in terms of space, ultra-weak solutions are lingar i
partitioned into two sets: a sé for player 1 and a sef, for ~size, while the other two stronger ones are exponential. In
player 2. The game is played in a turn-based manner, andtfis paper, we focus on ultra-weakly solved solutions, dred t
each turn, a node corresponding to the turn will be chosen pimal goal is to understand how well we can defend against
the chosen node belongs to st (S, resp.), player 1 (player the worst adversaries for planning purposes.

2 resp.) will write a number on the node. We assume bothMinimax Weighted Constraint Satisfaction Problems

players know which node will be chosen at which turn befofWCSPs) (previously called Quantified Weighted Constrain

the game starts, and they can observe the numbers writterPatisfaction Problems) [6], [7] are proposed to tackle
previous turns. After all the nodes are chosen, player limbtaoptimization problems with adversarial conditions, comirb

a reward equal to the total difference between numbers @fantifier structures from Quantified CSPs [5] to model the
adjacent nodes. However player 2 is player 1's worst adugrsaadversaries and soft constraints from Weighted CSPs [8]
and the goal of player 2 is to minimize player 1's reward. TH® model costs information. Previous work gives formal

natural question for player 1 is to find the best strategy @gfinitions for the framework, introduces how to adopt atpha

maximize his/her reward against his/her worst adversary. beta prunings to tackle the problem in branch and bound,

The graph coloring game described is a typical two-persétggests sufficient pruning conditions to achieve prunargs
zero-sum game with perfect information [1], [2], and we caBacktrackings, and introduces various consistency nstton
solve it at different levels. Allis [3] proposes three salyilev- increase the efficiency of the search.
els for this type of gamesiltra-weakly solvedweakly solved  In this paper, we study the effects of a value ordering

heuristic in solving ultra-weak solutions of MWCSPs on top

*We are grateful to the anonymous referees for their cortsteuicomments.  of the alpha-beta tree search. The value ordering heuisstic
The work described in this paper was generously supportedgriants based on minimax heuristics from adversarial search [9], by
CUHK413808 and CUHK413710 from the Research Grants Cowfi¢ciong ’
Kong SAR. viewing MWCSPs as a two-player zero-sum game. The two



playersmin player andnax players, compete with each other.

The min player controls minimization variables to minimize

costs, while themax player controls maximization variables na
to maximize costs. Both of them can observe each other’s Q
moves, and play the game by assigning values to variables
in a turn-based manner. By viewing the problem as a game, 1
ultra-weak solutions for MWCSPs will then be scenarios when

both players are playing perfectly, where thén player

(max player resp.) chooses values leading to sub-problemg. 2.

Game graphG

Fig. 3.

Constraints for Example 1

with the smallest (largest resp.) costs. By following théor Example 1

game semantics, if a variable hasn (max resp.) quantifier,

the value ordering heuristic will then choose values legdi
to sub-problems with the smallest (largest resp.) costs.
practice, however, implementing such heuristic is infiglasi
and requires costs approximations. We propose three kieuri
variants: HUnary, HBinary, and HFullBinary to perform cost

approximation. In particular, we observe that combiningsth
heuristic variants with consistency notions can achievetteb

efficiency and a further reduction of search space. We parfo
experiments on three benchmarks to compare the effects'%
applying these heuristic variants, and confirm the feasibil

and efficiency of our proposal.

II. BACKGROUND

In the first part, we give definitions and semantics of

Andices. We define a variable within (max resp.) quantifier

tp. be a minimization variable (maximization variable résp.
Let 7)[%'1 = ail][xiz = aiz]...[:vim = aim] be thesub-
groblemobtained fromP by assigning value;, to variable
z;,, assigning value:,;, to variablez,,,..., assigning value
a;,, to variablez; . Let firstx(P) returns the first unassigned
variable in the variable sequence. If there are no suchhlaga
F returns L. Supposd is a complete assignment &f. The
—ﬁ:osw?) of an MWCSPP is defined recursively as follows:

cost(l), if firstx(P) = L
max(M,), if firstx(P) = z; andQ; = max
min(M,), if firstx(P) = z; andQ; = min

A-cost(P) =

MWCSPs, followed by an example. In the second part, weherel is the complete assignment of the completely assigned
highlight the general branch and bound algorithm with alpharoblem? (i.e. firstx(P) = L), andM; = {A-cost(P[z; =

beta prunings for solving MWCSPs.

A. Definitions and Semantics

v])|v € D;}. An MWCSPP is satisfiableiff A-cost(P) < k.
We now define three solution concepts corresponding to the
three solved levels introduced in the introduction. Altra-

A Minimax Weighted Constraint Satisfaction Problemveak solutior{7] of an MWCSPP is a complete assignment

(MWCSP) [6], [7] P is a tuple(X,D,C, Q, k), whereX =
(z1,...,2,) is defined as an ordered sequencevafiables
D = (D,...,D,)isan ordered sequence of findemainsC
is a set ofsoft constraintsQ = (Q1, ..., Q,) is aquantifiers
sequencevhere(; is eithermax or min associated with;,
and k is the global upper bound. We denatg = v; an
assignmentssigning valuey; € D; to variablez;, and the
set of assignments = {1 = v1, 22 = vo,..., 2, = U,} @
complete assignmewn variables int', wherew; is the value
assigned tar;. A partial assignment[S] is a projection of
[ onto variables inS C X. C is a set ofsoft constraints
(sometimes called cost functions), ea€ly of which repre-

{1 = v1,...,2y = vp} St A-cost(P) = A-cost(P[z; =
v]...[z; = v]),¥Vl < @ < n. Ultra-weak solution cor-
responds to the scenario where both players are playing
perfectly. Without loss of generality, we assume thex
player is the adversary. weak solutiorf7] (strong solutior{7]
resp.) is a set of functiong, where each functiorf; € F
corresponds to anin variablexz;. Let G; be the set of do-
mains ofmax variables (all variables resp.) preceding i.e.
Gi ={D; € D|Q; = maxAj < i} (G; = {D; € D|j < i}
resp.). We defing; : xp.cq, D; — D;. If G; is an empty set,
thenf; is a constant function returning values fram. Let P’
be a sub-problem of an MWCSP, where the next unassigned

sents a function mapping tuples corresponding to assigtamevariable x; is a min variable, andl be the set of assigned
on a subset of variable$, to a cost valuation structurevalues formax variables (all variables respz); wherej < i.
V (k) = ([0...k], ®, <). The structurel/ (k) contains a set of For weak solutions, we further require the assigned val@ies o

integers|0...k] with standard integer ordering. Addition &
is defined bya ® b = min(k,a + b). For any integer and
b wherea > b, subtractiono is defined bya © b = a — b if

min variablesz; wherej < ¢ in P’ follow f;. We require all
fi to satisfy: A-cost(P’[x; = fi(1)]) = A-cost(P’). In other
words, we requiref;(l) to return the best value for thain

a#k,andao b=k if a = k. Without loss of generality, we player, and the set of functions will then be a best strategy
assume the existence 6f; denoting the lower bound of the for the min player.This work focuses on ultra-weak solutions
minimum cost of the problem. If it is not defined, we assume Example 1:We use the graph coloring game described in

Cz = 0. Thecostof a complete assignmehin X is defined
as:cost(l) = Co © D cc CsU[S]).

the introduction as an example. Given a graph coloring game
with a graphG of four nodesni,ns,ns, andn, and three

In an MWCSP, ordering of variables is important. Withouedgese; 2, e1 3, andes 4 as shown in Figure 2. We have two
loss of generality, we assume variables are ordered by thgliayers, playerd and playerB, playing in the game. Player



Fig. 1. The labeling tree for Example 1

A will write numbers on node:; andns and playerB will  (line 8 and 10). Iflb > ub (line 12), then one of the previous
write numbers on node, andny. To simplify the example, branch must dominate over the current sub-tree, and we can
we assume both players can only write integers ranging frgmerform backtrack.

1 to 3. At turn ¢, noden; will be chosen. Both players are

allowed to observe numbers written by players in previowdgorithm 1 Alpha-beta for MWCSPs

turns. Suppose playés is playerA’s adversary. The problem 1: functional pha_bet a(P,ib,ub):
is to help playerA finding his/her guaranteed reward. 2 if firstx(P) == L then
We model the problem by a Minimax Weighted C$P if en:ﬁ?m cost(P)
with four variableszq,r2,23 and x4, and each variable is 5. 2 = firstx(P)
associated with a domain df..3]. Variable z; is used t0 ¢: for v € D, do
represent the number being written on nadeWe associate 7: if Q; == min then
max quantifiers to variable:; andzs; andmin quantifiers to 8 ub = min(ub, al pha_bet a(P[z; = v], b, ub))
variablex andz,. We use three binary constrair@ 2, C1,3 1?)': elslcz  max(lb. al pha_bet a(Ple: = . 1b, ub))
and C 4 to model costs given by edges s, e13 andezs 110 opqg if
in the graphG. Figure 3 shows the constraint graph of thgy. it ub <= b then
problem”P. For unary constraints, unary costs are depicted: break

inside a circle and domain values are placed above the circlé:  end if
For binary constraints, binary costs are depicted as latrels 15 €nd for ,
; . . 16 return  (Q; == min)?ub : Ib
edges connecting the corresponding pair of values. To gimpl
th_e drawing, we skip all zero unary costs and remove edges |||, A VALUE ORDERING HEURISTIC FORMINIMAX
with zero binary costs. By observing the constraint graph, w WEIGHTED CSPs
can easily infer the maximum costs playércan get is less
than7. Therefore, we set the global upper boundtb 7.

We show a labeling tree in Figure 1 for one sub-proble
P’ = Plz; = 1]. By following the tree, we can easily infer
the A-cost for the sub-problen?’ is 2, and{z; = 1,25 =
1,23 = 3,24 = 1} is one of the ultra-weak solutions f@¥'.

Value ordering heuristic is an important topic in consttrain
ﬁ]olving community, and has been successfully applied in
solving many constraint problems including: classical -con
straint optimization problems (COPs), Weighted CSPs, and
Quantified CSPs. This section is splitted into two parts. In
the first part, we describe the principle of our value ordgrin
heuristic, followed by an example. In the second part, three

B. Alpha-Beta Prunings in B & B . oo . .
variants approximating the heuristic are given.
MWCSPs can be solved by applying alpha-beta pruning

in branch and bound search [6] as shown in Algorithm £\ Principle

by treatingmax and min variables asnax and min players In Weighted CSPs, our goal is to find complete assignments
respectively. Alpha-beta pruning utilizes two boundgnds,  with minimum costs. We often apply a value ordering heuristi
for storing the current best costs forx andmin players. We which orders values with increasing order of unary cost$,[10
renamea and 8 as lowerlb and upperb bounds to fit with [11]. The idea behind is that choosing a value with smaller
the common notations for bounds in constraint and integenary costs will have a higher chance leading to optimal
programming. We initializeb (ub resp.) to the lowest (largestsolutions. Even if the search cannot obtain optimal sohgio
resp.) possible costs, i.e. @ fesp.), and maintain the twothe heuristic will have a high chance leading to solutions
bounds during assignments by the branch and bound. Whecdli@se to the optimal and improve the upper bound quickly.
smaller costs (larger costs resp.) fain (max resp.) variable In Quantified CSPs, Stynes and Brown devise a type of
is found after exploring sub-trees) (Ib resp.) will be updated heuristics called solution-focused adversarial hewessfiL2].



The heuristics view Quantified CSPs as two-person zero-sum
games and successfully applied the minimax heuristics from
adversarial search. MWCSPs are generalizations of Welghte
CSPs and Quantified CSPs [6], and can be also viewed as two-
person zero-sum games. We show that concepts and ideas for
both frameworks can be adapted and re-used, and our value
ordering heuristic can be seen as a further extension oeStyn
and Brown’s work [12] to MWCSPs, which also considers
costs information from soft constraints. Fig. 4. Alpha-beta search with lexicographic ordering irafyple 2
We now describe the idea of our value ordering heuristic.
There are two playeranin player andmax player compet-
ing with each other. Thenin player controls minimization mmax &3
variables to minimize costs, while th@ax player controls
maximization variables to maximize costs. They can observe
the other player's moves and are played in a turn-based
manner, by assigning values to variables. By viewing the
problem as a game, ultra-weak solutions for MWCSPs will
then be scenarios where both players are playing perfectly.
If both players are playing perfectly, then thein player Fig. 5. Alpha-beta search with minimax adversarial heigssin Example 2

will choose values which can lead to sub-problems with tr}ﬁpha-beta search, by ordering values (from left to right) i

smallest A-costs. _On the other hand, thmax p'a!yef will lexicographic ordering. Nodes marked with 'X' are pruned
choose values which can lead to sub-problems with the IargB§ alpha-beta search. We can see the right-most sub-tree is

A'COSt.Si We n.ow_ define the deswed_heunstlc formally_. pruned. Suppose now we order values according to minimax
D_eﬂmhon .1' Given an MWCSFP with t_h_e next una55|gr_1ed adversarial heuristics. Figure 5 shows we can obtain a emall
variable z; (i.e. firstx(P) = x;). The minimax adversan.al search tree by pruning more nodes in the alpha-beta search.
heuristicis a function selecting € D; for z; wherevu € D;: The reason is that variable; will first explore sub-problem

A-cost(P[z; = v]) < A-cost(P[z; = u]), if Q; = min P"[x3 = 3] instead of sub-probler®”[x3 = 1]. Traversing
A-cost(Plz; = v]) > A-cost(P[z; = u]), if Q; = max sub-problenP”[x3 = 3] earlier allowsP” to obtain a stronger

o ) lower boundib of 3 earlier. This causes an earlier backtrack.
The above definition always assumes assigned values during

backtrack (in branch and bound) will be removed from the d&. Implementing the heuristic via approximations

main, and these values will not be considered in the heawristi We propose three approximations to implement the minimax
Lemma 1:Given an MWCSPP. By applying the minimax adversarial heuristic. All consider only parts of the pesblby

adversarial heuristic on branch and bound search (in Algéxamining variables and constraints related to the vazihb}

rithm 1), the first encountered complete assignment must ipg assigned. We start by showing the basic heuristic HUnary

an ultra-weak solution. which covers only one unary constraint, followed by the othe

The proof follows from the heuristic and problem definitiongwo: HBinary and HFullBinary. We write®; for the unary
However, computing the heuristiexactly in branch and constraint on variable:;, C;; for the binary constraint on

bound for an MWCSP in general is too computational expegariablesz; andz; wherei < j, C;(u) for the cost returned

sive. It is essentially equivalent to solving the whole geo. by the unary constraint whenis assigned ta;;, andc; ; (u,v)

One way to relax the requirement is to restrict the heuristigr the cost returned by the binary constraint whemand v

to examine only parts of the problem, hence, reducing tge assigned te; andz;, respectively.

computational requirements. Even the heuristic canndl lea Definition 2: Given an MWCSPP and the next unassigned

the search to the desired solution, if we can obtain (corapletariablez;. HUnary(P) is a function returning value € D;

assignments which are close enough, we can tighten the bogyds; wherevu € D;, Ci(v) < Cj(u) if Q; = min, and

earlier and achieve better prunings. We give an example @(v) > Cy(u) if Q; = max.

Example 2 to illustrate the idea. Definition 3: Given an MWCSPP and the next unassigned
Example 2:We re-use the graph coloring game in Examyariablez;. We denote seB; to be the set of binary constraints

ple 1. Suppose now the search finished searching the s@bnstraining variable;; and all future variables;, i.e. B; =

problemP’ = P[z; = 1][z2 = 1], and we obtain al\-cost {(; ; € C|j > i}. HBinary(P) is a function returning value

of 2 for P’. Since the quantifier ofr; is min, we set the 4 ¢ p, for z; s.t.Vu € D;:

upper boundub in alpha-beta pruning (Algorithm 1) to 2.

By observing the labeling tree in Figure 1, we can see the If Qi = min : C;(v) © @ ( @ {Ci;(v,w)})

search now aims to find whether there exists better, i.e.lemal CigeB; WEDs

A-costs for the problem. Suppose the search explores sub- < Ci(u)® @ (Q; {Cij(u,w)})

problem P” = Plz; = 1][z2 = 2]. Figure 4 shows the Ci,eB; WED;

max xj3

min x4




If Qi =max: Ci(v)® P (Q; {Cij(v,w)})

Ci,;€B; weD;

>cwe @ (Q {Ciyluw))

Ci,;€B; weD;

whererweDj{Ci,j(v,w)} is equal tomin,ep; C; j(v, w) if
@Q; = min, and equal tanax,cp; C; (v, w) if Q; = max.
Similarly, HFullBinary(P) is a function returning value €
D, for x; s.t.Vu € D;:

If Qi =min: Ci(v) & €D (Q; {Ci;(v,w)® Cj(w)})

Ci,;€B; weD;

<Cwe P (Q {Ciju,w)eCj(w)})

Ci;EB; weD;

If Qi =max:Ci(v)® @ (Q; {Cij(v,w)®Cj(w)})
Ci;€B; weD;

>Ciw)e P (Q {Cij(u,w)eCj(w)})

Ci,;€B; weD;

where  Q;,cp {Cij(v,w) & Cj(w)} is equal to
minyep, {Cij(v,w) & Cj(w)} if Q; = min, and equal
to max,ep; {Ci j(v,w) ® Cj(w)} if Q; = max.

Theorem 1:Given an MWCSPP and firstx(P) = x;. If
C; is the only constraint constraining:;, then HUnary is
equivalent to minimax adversarial heuristic.

Theorem 2:Given an MWCSPP andfirstx(P) = z,;. We
denoteS; to be the set of variables constraining with and

U|S;] to be the set of unary constraints on these variabl

ie. U[S;] = {Cj|lz; € S;}. If the set of constraints3; U

{C;} (B; U{C;} UU[S,] resp.) is theonly set of constraints

constrainingz; and all variables irf;, HBinary (HFullBinary
resp.) is equivalent to minimax adversarial heuristic.

To prove Theorem 1 and Theorem 2, we begin by introdu

ing Lemma 2.

Lemma 2:Given an MWCSPP. Suppose there exists a se

S of variables inP, such that each of these variablgsc S is
being constrained by the respective unary constr@inonly.

We letU|[S] be the set of unary constraints covering variabl

in .S, and further letP’ be a modified sub-problem &® by

removing all variables in the sef, including the associated
domains, the associated quantifiers, and the set of assdci

constraints/[S]. Then,
A-cost(P) = @ Q;C; & A-cost(P’)
C,euls]

where Q;C; is equal tomin,cp, Cj(v) if Q; = min, and
equal tomax,cp, C;j(v) if Q; = max.
The proof follows from the definition ofA-costs.

es.

Proof: (Theorem 1) LetP’ be a modified sub-problem
of P by removing variable:;, the associated domaif;, the
associated quantifief);, and all constraints associated with
x;. Suppose variable; is covered by only constrain®;. By
Lemma 2,

A-cost(P) = Q;C; & A-cost(P’)
‘P’ does not involve variable;. Therefore,
Vu € D;, A-cost(P[z; = u]) = Ci(u) & A-cost(P’)
By taking minimum/maximum on values iP;,
. R — . . _ !
min A-cost(Plz; = v)) 7frenDni{C'l(v)} @ A-cost(P’), and

!
max A-cost(Plz; = v]) = 1%%%{01(@)} @ A-cost(P’)
The above two equations show if we want to find a value
minimizing/maximizingA-cost(P[z; = v]), it is equivalent to
finding the valuev giving the minimum/maximum costs ¢f;,
hence implementing HUnary. This shows we can implement
minimax adversarial heuristic by implementing HUnarym
Proof: (Theorem 2) The proof is similar to the proof
for Theorem 1, by reusing Lemma 2. We skip the proof for
HBinary, and show the proof for HFullBinary which is more
general. LetP’ be a modified sub-problem ¢ by removing
all variables in the seb; U {z;}. Similar to previous proof,
we also remove all the associated domains, all the assdciate
guantifiers, and all the associated constraints relateldetsét
S;U{z;} of variables inP’. To simplify our notations, we de-
fidte the expressiof; (u) © P, LB (ijeDj {Ci,j(u,w) @
Cj(w)}) asEli,u] |
Suppose the sef; U {z,} of variables covers by only the
set of constraintsB; U {C;} U U[S;]. If we assign a value
U of z; to the problemP, the set of binary constraintB;
will become unary. We can mergB; and the set of unary
onstraintd/[S;] to give a new set of unary constrairfs[S;].
he set of unary constraints’[S;] is constructed as follows.
For all unary constraint§’; € U[S;], if there exists a binary
constraintC; ; € B, then for all valuesw in D;, the merged

Efﬁ'lary constrainC}; € U'[S;] will return C;(w) & C; ;(u, w).

We can see after a value assignment= u on z;, there

a;‘;&re only unary constraints covering on the set of variables
@

U {z;}. By using Lemma 2yu € D,

A-cost(Plz; = u]) = Ci(u) ® { @ Q;C}} ® A-cost(P')

CleU’[S)]

We then replace the set of merged unary constr&ifis;]
into the set of unary constraint$[S;] and the set of binary
constraintsB; in the equation. This gives,

Vu € D;, A-cost(Pz; = u]) = FEli,u] & A-cost(P’)

One direct consequence of Lemma 2 is that if there exists
a set of variables (after a series of assignments in branth ®ecall sub-problen?’ does not involve the set of variables
bound) which are constrained by unary constraints only, We U {z,}. By taking minimum/maximum on valueb;,
can divide theA-cost of the problemP into two parts/sub- ] . _ ,
problems: P 75 @;C; and A-cost(P’). It is easy to ,ep, A-cost(Pla; = v]) = gg{E[lav]} @ A-cost(P'), and
observe that computing the first part is easy and essentiglly, . A-cost(Pla; = v]) = max{E[i,v]} ® A-cost(P’)
solves the ultra-weak solution for variables.Snh veD; vED;



The above two equations show if we want to find a value and the costs for each binary constraint are generated uni-
minimizing/maximizing A-cost(P[xz; = v]), it is equivalent formly in [0..30]. Quantifiers are generated randomly witfh
to finding the valuev giving the minimum/maximum costs probability formin (max resp.), and the number of quantifier
for E[i,v], hence implementing HFullBinary. By similar ar-levels vary from instances to instances. Time limit is set to
guments, we can prove the case of HBinary. This complet@80 seconds, and Table | shows the result.
the proof. |

By observing the two theorems, it is natural for us t®. Graph Coloring Games

ask whether apply_ing the three heuristic variants on génerayy, perform experiments on the graph coloring game in the
MWCSPs can achieve better performance and smaller seafgh,qyction section. The benchmark instances are ceftect

space. We will test and show these heuristics are worthwhiles.o 1, | ee Mak. and Yip [6]. The instances are generated with

the experimental section. At current stage, all three Is&ari parametersu( ¢, d), wherev is an even number of nodes in
variants consideunary and binary constraints only. Gener- o graph,c is the range of numbers allowed to place, and

alizing these heuristics to high arity/global constraistsan ~ ; js the probability of an edge between two vertices. Player
interesting future W_orl_<. Note thz?\t our approach only c_(_)eIS|d1 (Player 2 resp.) is assigned to play the odd (even resp.)
value ordering heuristic for a variable at a time. By consitf¢ ,;mpered turns, and the node corresponding to each turn is

multiple variables at a time, there may exists cases Wh&fgnerated randomly. Time limit is set to 1800 seconds, and
many variables are constrained by unary constraints only. B,pie 11 shows the results.

following Lemma 2, this could allows us to derive stronger
and more effective heuristics in the future. C. Generalized Radio Link Frequency Assignment Problem

IV. PERFORMANCEEVALUATION We re-use the benchmark Generalized Radio Link Fre-
In this section, we compare the effects of the three valG&/€NCY Assignment Problem (GRLFAP) instances by Lal-

ordering heuristics: HUnary, HBinary, and HFullBinary. TdoUet: Lee, and Mak [7]. The problem consists of assigning
further evaluate the effects on using the three heuristies, Tedueéncies to a set of radio links located between pairs
also perform experiments on three heuristics: HUnary R& Sites, with the goal of preventing interferences. Howeve
HBinary Rev, HFullBinary Rev, which are the reverse of HU2 Certain set of links are placed in unsecured areas, and
nary, HBinary, and HFullBinary respectively. All six hestits teITorists/spies may hijack/control these links. We areaibe

will be compared against the static lexicographic orderig "€-adiust the frequencies for the other links immedyatel
(Lex). Apart from running these heuristics using only alphéo minimize the interferences on the functioning ones. We

beta prunings in the branch and bound search, we also test §iaPt t© find frequency assignments such that we can minimize

heuristics on two consistencies: DC-NC[proj-NC*] and pcthe degree of radio links affected for the worst possibleecas
AC[proj-AC*] [7], which are used to increase prunings and e instances are generated according to two small but hard
backtrackings in the search, by filtering infeasible valaed CELAR sub-instances [13], which are extracted from a large
inferring backtrackings on top of alpha-beta prunings. \ten instance CELARG. All GRLFAP_ mstances are generated with
there are also other consistency notions introduced iniguev Parametersi( n, d, r), where: is the index of the CELAR
work [7]. However, as the resuits are similar to DC-NCprojSub-instances use@€&LARG- SUB;), n is an even number of
NC*] and DC-AC[proj-AC*], we skip reporting the details. links, d_ is an even numbe_r of allowed frequencies, anis

We generate 20 instances for each benchmark's partic fd# "atio of links placed in unsecured are@s< r < 1.
parameter setting. Results for each benchmark are tatjula't:@r each instance, we randqmly extra_lct a sequence of
with average time used (in sec.) and average number of tiiiks from CELARG- SUB; and fix a domalln otl frgquenmes.
nodes encountered. We take average for solved instamtgs e randomly choosg(r x n + 1)/2] pairs of links to be
If there are any unsolved instances, we give the numbt‘g?secured. !f twq links are restricted not to take frequesici
of solved instances beside the average time (superscript/in@nd f; with distance less than, we measure the costs
brackets). Winning entries are highlighted in bold. A syrlnb(?f interference by using a binary constraint with violation

‘-’ represents all 20 instances fail to run within a time ﬁmimeasuremax(o,t— |fi = fj]). We set the time limit to 3600

set differently for each benchmark problem. The experimeﬁ?conds' Table 1l shows the results.

is conducted on a Core2 Duo 2.8GHz with 3.2GB memoryD Results & DiScUssions

A. Randomly Generated Problems In all the three benchmarks, applying value ordering heuris
We perform experiments on randomly generated MWCSR&s have runtime improvement over the static lexicograph
These benchmarks are previously used by Lee, Mak, adering. When the solver is maintaining consistencies,2Gy.
Yip [6]. The random MWCSP instances are generated wittiC[proj-NC*]/DC-AC[proj-AC*], even the simplest heurist
parameters(, d, p), wheren is the number of variables] HUnary runs faster than applying lexicographic orderingg W
is the domain size for each variable, ands the probability first discuss results when the solver is running alpha-beta
for a binary constraint to occur between two variables. €hepruningsonly (i.e. no consistency enforcement), followed by
are no unary constraints which makes the instances hardesults when the solver enforces consistencies.



TABLE |

RANDOMLY GENERATED PROBLEM

=

Alpha-beta Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
n,d,p Time #nodes Time #nodes| Time #nodes | Time #nodes | Time #nodes | Time #nodes | Time #nodes
i d i d i d i d i d i d i d
(12,5,0.4] 66.84 50967,461] 75.39 5,897,438 75.40 5,897,434 39.06 2,830,764 141.76 10,339,204 39.18 2,830,764 143.00 10,339,20
12,5, 0.6] 53.32  4,782,541| 90.46 6,796,54p 90.43 6,796,546 41.82 2,947,470109.73° 7,515,682 42.02 2,947,470/110.61° 7,515,682
(12, 5, 0.8 37.65° 2,795,500 | 61.65° 3,691,1361.76-° 3,691,135| 30.95° 1,666,716/145.51° 8,166,657 31.39"° 1,666,716|146.66° 8,166,657
(16, 5, 0.4) 510.46 26,269,025 - - - - 461.87° 20,304,664 - - 463.83° 20,304,664 - -
16, 5, 0.6) 679.8 36,315,673 - - - - 620.3 22,689,337 - - 627.5 22,689,337 - -
3 21 21
16, 5, 0.8) 738.3 33,096,934 - - - - 641.04 21,783,224 - - 646.40° 21,783,224 - -
4 3 6]
(20, 5,0.4) - - - - - - - - - - - - - -
(20, 5, 0.6 - - - - - - - - - - - - - -
(20, 5, 0.8 - - - - - - - - - - - - - -
DC-NCJ[proj-NC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
n,d,p ime #nodes ime #nodes| Time #nodes ime #nodes ime #nodes ime #nodes ime #nodes
d Ti d Ti d Ti d Ti d Ti d Ti d Ti d
(12,5,0.4) 5.73 131,468 1.30 26,185| 32.74 861,341 0.82 15,318 | 41.62 1,040,848 0.77 14,159 | 54.13 1,393,713
3 9, U g ) . i . ’ i . ’ . ) ) 4 . ’ . ’ ’
12,5,0.6) 4.52 101,690 1.23 24,307 | 45.10 1,178,818 0.85 15,340 | 65.18 1,607,882 0.71 12,402 | 83.64 2,096,126
(12,5,0.8) 6.61 147,525 1.82 34,649 | 4796 1,163,18Q0 1.43 24,362 | 65.49 1,495977 1.28 21,263 | 81.18 1,875,534
(16, 5, 0.4)325.82° 4,617,612 30.94  380,305/252.57 3,242,046| 25.59 290,328 583.4% 7,311,226 20.99  232,784| 346.20 3,860,844
(16, 5, 0.6]454.36° 6,157,070 | 34.94  426,025/889.40 11,811,844 26.71 296,878 - - 20.71 226,329 - -
(16, 5, 0.8]428.38% 5,681,283 | 39.19 470,231 - - 31.24 339,084 - - 26.13 277,702 - -
20, 5,04 - - 464.5 3,631,220 - - 310.8 2,339,663 - - 240.1 1,752,855 - -
g4 26 g°¢
20, 5, 0.6 - - 663.1 5,081,144 - - 363.7 2,599,439 - - 339.7 2,379,827 - -
gt g3 24
(20, 5, 0.8 - - 544.28 4,113,674 - - 416.80° 2,903,194 - - 344.94° 2,361,805 - -
DC-AC[proj-AC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
n,d,p ime #nodes ime #nodes| Time #nodes ime #nodes ime #nodes ime #nodes ime #nodes
d Ti d Ti d Ti d Ti d Ti d Ti d Ti d
(12, 5,0.4) 3.03 30,165 0.46 3,075 | 17.55  244,219] 0.38 2,431 18.79 254,453 0.35 2,072 27.76 391,213
(12, 5,0.6) 2.96 26,093 0.68 4,047 | 30.00 413,976| 0.66 3,691 33.76 434,281 0.46 2,345 51.13 688,959
(12, 5,0.8) 4.43 37,663 0.99 4,832 | 34.58 407,730 0.98 4,400 39.96 453,413 0.83 3,541 51.98 612,295
(16, 5, 0.4) 161.42 1,047,900, 11.02 45,766 |434.01* 3,828,107| 10.03 39,879 | 96.4F7 548,633 7.11 26,312 | 106.15 654,593
(16, 5, 0.6) 319.80 1,816,642 17.42 63,918 |670.46 4,138,239 17.55 61,632 | 560.04 3,124,293 14.55 48,842 | 639.42 4,254,183
(16, 5, 0.8] 281.85 1,454,321 20.47 68,347 - - 21.04 67,158 - - 15.79 47,765 - -
(20, 5, 0.4 - - 234.46% 665,502| - - 201.52% 572,188 - - 125.62% 338,949 - -
(20, 5,0.6| - - 296.41° 720,776 - - 306.22 704,623 - - 227.17  495816| - -
(20, 5, 0.8 - - 426.33% 965,016| - - 430.55°% 918,563 - - 326.23 661,739 - -
TABLE 1l
GRAPH COLORING GAME
Alpha-beta Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(v,c,d) |Time #nodes Time #nodes| Time #nodes| Time #nodes| Time  #nodes | Time #nodes| Time  #nodes
(14, 4, 0.4)19.50 1,572,978 22.72 1,572,97822.82 1,572,978 8.08 500,744|108.26 6,910,142 8.11 500,7441109.15 6,910,142
(14, 4, 0.6) 23.81 1,730,473 29.25 1,730,47329.32 1,730,473 8.21 428,177|299.31 16,328,108 8.28  428,177|301.15 16,328,103
(24, 4,0.4) - - - - - - - - - - - - -
(24,5, 0.6) - - - - - - - - - - - - -
(22, 6,0.4) - - - - - - - - - - - - -
(32, 4,04) - - - - - - - - - - - - -
DC-NCJproj-NC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(v,c,d) [Time #nodes Time #nodes| Time #nodes| Time #nodes| Time  #nodes | Time #nodes| Time  #nodes
(14, 4, 0.4) 6.53 122,266 0.65 11,053 | 57.50 1,145,83F 0.31 4,922 (117.72 2,227,353 0.21 3,346 |129.41 2,436,701
(14, 4, 0.6) 10.08 185,111 0.85 13,957 |104.00 2,025,421l 0.33 4,991 (261.54 4,825,831 0.29 4,348 (243.36 4,516,024
(24, 4,0.4) - - 696.27 3,934,006 - 118.24 643,280 - - 77.97 421,340 - -
(24, 5, 0.6] - - 1,322.98 7,225,728 - 209.88 1,063,488 - - 206.64 1,045,374 - -
(22, 6,04) - - 408.73 2,527,344 - 694.777 4,164,208 - - 655.62° 3,930,443 - -
(32,4,04) - - - - - - 1,229.56 3,807,544 - - 1,103.53 3,410,637 - -
DC-AC[proj-AC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(v, c,d) [Time #nodes Time #nodes| Time #nodes| Time #nodes| Time  #nodes Time #nodes| Time  #nodes
(14, 4, 0.4) 4.30 37,252 0.62 4,230 | 31.04 335,624/ 0.35 2,290 [ 50.19 520,860 0.23 1,500 | 64.37 651,782
(14, 4, 0.6) 7.49 59,359 0.94 5,602 | 59.23 582,871 0.42 2,350 |108.84 1,012,054 0.35 1,944 |129.50 1,191,19
(24, 4,04) - - 626.15 1,485,89D - 128.95 290,397 - - 84.66 189,681 - -
(24,5,0.6) - - 1,509.69 2,979,983 - 263.27 469,303 - - 24579 437,889 - -
(22, 6,0.4) - - 338.84 756,394 - 762.247 1,722,831 - - 716.31° 1,642,269 - -
(32, 4,04) - - - - - 1,301.1% 1,666,841 - - 1,199.46 1,506,866 - -
TABLE Il
GENERALIZED RADIO LINK FREQUENCYASSIGNMENTPROBLEM
Alpha-beta Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(i,n,d,r) Time #nodes | Time #nodes| Time #nodes| Time #nodes| Time #nodes| Time #nodes| Time #nodes
(1,24,4,02 - - - - - - - - - - - - -
0, 24, 4,0.4 - - - - - - - - - - - - -
(1,22, 6,02 - - - - - - - - - - - - -
(0, 22, 6, 0.4 - - - - - - - - - - - - -
DC-NCJproj-NC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(i,n,d,r) Time #nodes | Time #nodes| Time #nodes| Time #nodes| Time #nodes| Time #nodes| Time #nodes
(1, 24,4,02) 79.42 442,362 77.92 421,818| 105.63 664,543 8155 424,536 108.03 641,524 80.22 416,453 120.81 738,909
(0, 24, 4, 0.4) 136.06 828,286| 72.50 426,532 704.26 4,887,26D 73.35 420,142 731.51 4,968,38B332.17 180,044 821.89 5,551,10
(1, 22, 6,0.2) 577.32 3,580,88% 546.69 3,292,62P 731.60 4,971,87p 585.65 3,303,538 787.67 5,081,59[1594.15 3,319,014 841.33 5,452,801
(0, 22, 6, 0.4)1,101.79° 7,862,914/571.24° 3,757,9991,058.49 9,531,187580.28° 3,641,5831,002.93 8,855,429260.53 1,583,673248.97 1,995,544
DC-AC[proj-AC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(i,n,d,r) Time #nodes | Time #nodes| Time #nodes| Time #nodes| Time #nodes| Time #nodes| Time #nodes
(1, 24,4,02) 49.87 74,182 | 48.96 68,381 67.64 133,192 49.34 67,766| 70.64  138,577| 47.38 64,413| 75.67 156,642
(0, 24, 4, 0.4) 99.92 295,743 54.49 137,407| 673.12 2,605,76B 61.63 159,094 651.44 2,516,19Pp38.61 91,439| 836.59 3,165,730
(1, 22, 6, 0.2) 309.21 352,439| 304.87 316,659| 394.91 582,929 305.54 311,648| 405.28 594,559306.15 311,994 424.82 680,745
0, 22, 6, 0.4) 1,281.30 4,448,644 576.36 1,506,98p975.4 4,463,350 742.64 2,058,20p1,211.09 5,492,821410.46 972,607/1,121.03 5,116,597
g § 3




Alpha-beta prunings only For randomly generated problems For GRLFAP, the number of backtracks is the smallest when
and the graph coloring games, applying HUnary and its rever=pplying HFullBinary (exception for (1, 22, 6, 0.2)) and HiFu
on alpha-beta prunings gives the same number of backtra@isary has shown best runtime in many cases. However, the
and similar runtimes. In addition, applying HBinary (Rev)esults for other heuristics, especially for HBinary, aiféeedent
and HFullBinary (Rev) on alpha-beta prunings has the sarftem the other two benchmarks. Applying HBinary on DC-
number of backtracks. However, HBinary (Rev) runs slightl¥C[proj-NC*]/DC-AC[proj-AC*] does not always achieve a
faster than HFullBinary (Rev). The reason is that there asenaller number of backtracks and run faster than HUnary.
no unary constraints on these two problems. For HUnary aiée also observe for benchmarks when- 0.2, applying the
HUnary Rev, both of them cannot distinguish which valuthree heuristics: HUnary, HBinary, and HFullBinary canyonl
of a variable is better. In this case, we degenerate them isi@htly improve the runtime and backtracks.
the same ordering (in an arbitrary manner). For HFullBinary This suggests when two heuristics are both approximating
(Rev), it is degenerated into HBinary (Rev) according tthe costs for minimax adversarial heuristic, a heuristicsod-
definitions. However, HFullBinary (Rev) requires compgtinering more constraints does not necessarily work better tha
costs from more constraints than HBinary (Rev). Therefiore,the other one. It is problem/benchmark dependent.
runs slightly slower than HBinary (Rev). Ove_rall,_ HBinarg o V. CONCLUDING REMARKS
alpha-beta prunings runs the fastest and maintains théesnal ) o )
number of backtracks on these two benchmarks. In this paper, we study the effects of minimax adversarial
In fact, we can also observe applying the reverse of HBinaRfU"iStic, which orders values of variables according ® th
and HFullBinary, which can be viewed as approximating tiEFMantic of quantifiers, in solving ultra-weak solutions fo
reverse of the minimax adversarial heuristic, both have theVCSPs. The heuristic selects values by viewing MWCSPs

worst number of backtracks. This suggest devising hecsist?S & two-playgr Z€ro-sum game based on minimax heunstl_cs
to approximate minimax adversarial heuristic is worthehil from adversarial search. To implement the heuristic for effi

One point to note is that when maintaining the two consisten€'€nt sol.vmg in practice, we propose and define three higuris
notions, we are required to upeojectionoperations [7], which variants: HUnary, HBinary, and HFullBinary. We further giv

is an equivalence-preserving transformation by tranisfgrr sufficient conditions to show when these heuristics will be

costs from binary constraints to unary constraints. Eveanwh€duivalent to minimax ad\{ersarlal heuristic. Experlmeulfrhs.
unary constraints do not exist in the problem, they may ﬁgree benchmarks comparing the effects of the three hiurist

created when enforcing consistencies. The degenerationvaf'ants with different consistencies are shown. Otheurtit

HUnary/HFullBinary (Rev) is unlikely to appear once Wé/vork on MWCSPs_ includes: consistencies for_(high arity)
enforce consistencies. soft global constraints [14], algorithms for tackling stger

With Consistencies For all of the three benchmarks, everyolution concepts, and distributed versions of MWCSPs.
applying the simplest heuristic HUnary gives runtime and REFERENCES
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