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Abstract. Minimax Weighted Constraint Satisfaction Problems (formerly called
Quantified Weighted CSPs) are a framework for modeling soft constrained prob-
lems with adversarial conditions. In this paper, we describe novel definitions and
implementations of node, arc and full directional arc consistency notionsto help
reduce search space on top of the basic tree search with alpha-beta pruning for
solving ultra-weak solutions. In particular, these consistencies approximate the
lower and upper bounds of the cost of a problem by exploiting the semantics
of the quantifiers and reusing techniques from both Weighted and Quantified
CSPs. Lower bound computation employs standard estimation of costs in the
sub-problems used in alpha-beta search. In estimating upper bounds,we propose
two approaches based on the Duality Principle: duality of quantifiers and dual-
ity of constraints. The first duality amounts to changing quantifiers frommin to
max, while the second duality re-uses the lower bound approximation functions
on dual constraints to generate upper bounds. Experiments on three benchmarks
comparing basic alpha-beta pruning and the six consistencies from the twodual-
ities are performed to confirm the feasibility and efficiency of our proposal.

Keywords: constraint optimization, soft constraint satisfaction, minimax game
search, consistency algorithms

1 Introduction

The task at hand is that of a constraint optimization problemwith adversariescontrol-
ling parts of the variables. As an example, we begin with a generalized version of the
Radio Link Frequency Assignment Problem (RLFAP) [7] consisting of assigning fre-
quencies to a set of radio links located between pairs of sites, with the goal of preventing
interferences. The problem has two types of constraints. One type prevents radio links
that are close together from interfering with one another, by restricting the links not
to take frequencies with absolute differences smaller thana threshold. In practice, the
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threshold is measured depending on the physical environment, and is often overesti-
mated. The second type of constraints are technological constraints, where each con-
straint ensures the distance between frequencies of a radiolink from siteA to B and
its reverse radio link from siteB to A must be equal to a constant. If the problem is
unsatisfiable, one approach is to find assignments violatingthe first type of constraints
as little as possible. Suppose now a certain set of links are placed in unsecured areas,
andadversaries(e.g. terrorists/spies) may hijack/control these links. We are not able to
re-adjust the frequencies for the other links immediately to minimize the interferences
on the functioning ones. One interesting question for this type of scenarios is to find fre-
quency assignments such that we can minimize the degree of radio links affected for the
worst possible case (i.e. finding the best-worst case). The prime goal is to understand
how well we can defend against the worst adversaries for planning purposes.

The example is optimization in nature, and the adversaries originate from the un-
controllable frequencies being assigned on the links in unsecured areas. The question
can be translated to minimizing the interferences for all possible combinations of fre-
quency adjustments the adversaries can control. One way to solve this problem is by
tackling many COPs [2]/WCSPs [15], where each of them minimizes the interferences
conditioned on a specific combination of frequency adjustments controlled by the ad-
versaries. Another way is to model the problem as a QCSP [15] by finding whether there
exists combinations of frequency adjustments for us for allfrequency placements by the
adversaries such that the total interferences is less than acostk. To avoid solving mul-
tiple sub-problems, Minimax Weighted Constraint Satisfaction Problems (MWCSPs)
(previously called Quantified Weighted Constraint Satisfaction Problems) [16] are pro-
posed to tackle such problems, combining quantifier structures from QCSPs to model
the adversaries and soft constraints from WCSPs to model costs information. Previ-
ous work defines a solution as a complete assignment representing the best-worst case,
gives an introduction on how to adopt alpha-beta prunings totackle the problem in
branch and bound, and suggests two sufficient pruning conditions to achieve prunings
and backtrackings.

When tackling game problems, more specifically two-person zero-sum games with
perfect information [22, 23], games can be solved at different levels. Allis [1, 13] pro-
poses three solving levels for games:ultra-weakly solved, weakly solved, andstrongly
solved. Ultra-weakly solved means the game-theoretic value of theinitial position has
been determined, which means we can determine the outcome ofthe scenario when
both players are playing perfectly (i.e. best-worst case).Weakly solved means a strat-
egy, noted as winning strategy [4] in QCSPs, has been determined for the initial position
to achieve the game-theoretic value against any opposition. Strongly solved is being
used for a game for which such a strategy has been determined for all legal positions.
Once a game is solved at a stronger level, the game is automatically solved at weaker
ones. Finding solutions at stronger levels, however, implies substantially higher com-
putation requirements. In particular in terms of space, ultra-weak solutions are linear in
size, while the other two stronger ones are exponential. In bi-level programs, there are
cases in which we can assume there is a unique optimum for the follower or we are con-
cerned with only the moves for the leader [11]. Finding ultra-weak solutions for these
cases are sufficient, and the generalized RLFAP is an example. In adversarial game
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playing, many game search algorithms, e.g. minimax and alpha-beta [24], computes
strategies assuming optimal plays to reduce computation costs. In fact, even determin-
ing just the ultra-weak solution in an offline manner is also an important and interesting
line of research, e.g. a recent breakthrough on checkers [25].

The main focus of this paper is to further introduce novel consistency notions for
solving ultra-weak solutions, by approximating the lower and upper bounds of the cost
of the problem. Lower bound computation employs standard estimation of costs in the
sub-problems used in alpha-beta search. In estimating upper bounds, we adopt the Prin-
ciple of Duality in (integer) linear programming, which suggest to convert an original
(primal) problem to its dual form and tackle the problem using both forms. We con-
sider two dualities: duality of quantifiers and duality of constraints. The first approach
allows us to formulate upper bound approximation functionsby changing quantifiers
in the lower bound functions frommin to max, while the second approach re-uses the
lower bound approximation functions on dual constraints togenerate upper bounds.
Discussions on whether our proposed techniques are applicable to the computation of
the two stronger solutions will be given. Experimental evaluations on three benchmarks
are performed to compare six consistencies defined using thetwo dualities to confirm
the feasibility and efficiency of our proposal.

2 Background

In the first part, we give definitions and semantics of MWCSPs, followed by an exam-
ple. In the second part, sufficient conditions allowing us toperform backtracking/prun-
ings used in alpha-beta search are highlighted.

2.1 Definitions and Semantics

A Minimax Weighted Constraint Satisfaction Problem(MWCSP) [16]P is a tuple
(X ,D, C,Q, k), whereX = (x1, . . . , xn) is defined as an ordered sequence ofvari-
ables, D = (D1, . . . , Dn) is an ordered sequence of finitedomains, C is a set ofsoft
constraints, Q = (Q1, . . . , Qn) is a quantifiers sequencewhereQi is eithermax
or min associated withxi, and k is the global upper bound. We denotexi = vi
an assignmentassigning valuevi ∈ Di to variablexi, and the set of assignments
l = {x1 = v1, x2 = v2, . . . , xn = vn} a complete assignmenton variables inX ,
wherevi is the value assigned toxi. A partial assignmentl[S] is a projection ofl onto
variables inS ⊆ X . C is a set of(soft) constraints, eachCS of which represents a func-
tion mapping tuples corresponding to assignments on a subset of variablesS, to a cost
valuation structureV (k) = ([0...k],⊕,≤). The structureV (k) contains a set of integers
[0...k] with standard integer ordering≤. Addition⊕ is defined bya⊕b = min(k, a+b).
For any integera andb wherea ≥ b, subtraction⊖ is defined bya ⊖ b = a − b if
a 6= k, anda ⊖ b = k if a = k. Without loss of generality, we assume the existence
of C∅ denoting the lower bound of the minimum cost of the problem. If it is not de-
fined, we assumeC∅ = 0. The cost of a complete assignmentl in X is defined as:
cost(l) = C∅ ⊕

⊕
Cs∈C Cs(l[S]).

In an MWCSP, ordering of variables is important. Without lossof generality, we
assume variables are ordered by their indices. We define a variable withmin (max resp.)
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quantifier to be a minimization variable (maximization variable resp.). LetP[xi1 =
ai1 ][xi2 = ai2 ] . . . [xim = aim ] be thesub-problemobtained fromP by assigning
valueai1 to variablexii , assigning valueai2 to variablexi2 ,. . . , assigning valueaim to
variablexim . Let firstx(P) be a function returning the first unassigned variable in the
variable sequence. If there are no such variables, it returns⊥. Supposel is a complete
assignment ofP. TheA-cost(P) of an MWCSPP is defined recursively as follows:

A-cost(P) =











cost(l), if firstx(P) = ⊥

max(Mi), if firstx(P) = xi andQi = max

min(Mi), if firstx(P) = xi andQi = min

wherel is the complete assignment of the completely assigned problemP (i.e.firstx(P) =
⊥), andMi = {A-cost(P[xi = v])|v ∈ Di}. An MWCSPP issatisfiableiff A-cost(P) <
k.

Fig. 1. Constraints for Example 1
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Fig. 2.Labeling Tree for Example 1

Fig. 3.Constraints for Example 2

We now define three solution concepts for
MWCSPs based on the definition ofA-costs.
An ultra-weak solutionof an MWCSPP is a
complete assignment{x1 = v1, . . . , xn = vn}
s.t.A-cost(P) = A-cost(P[x1 = v1] . . . [xi =
vi]), ∀1 ≤ i ≤ n. Solving an ultra-weak solution
corresponds to finding the scenario when both
players are playing perfectly. To capture weak
(strong resp.) solutions, we re-use the concept
of winning strategies [4]. Without loss of gen-
erality, we assume themax player is the adver-
sary. Aweak solution(strong solutionresp.) is a
set of functionsF , where each functionfi ∈ F corresponds to amin variablexi.
Let Gi be the set of domains ofmax variables (all variables resp.) precedingxi, i.e.
Gi = {Dj ∈ D|Qj = max∧j < i} (Gi = {Dj ∈ D|j < i} resp.). We define
fi : ×Dj∈Gi

Dj 7→ Di. If Gi is an empty set, thenfi is a constant function returning
values fromDi. LetP ′ be a sub-problem of an MWCSPP, where the next unassigned
variablexi is amin variable, andl be the set of assigned values formax variables (all
variables resp.)xj wherej < i. For weak solutions, we further require the assigned
values ofmin variablesxj wherej < i in P ′ follow fj . We require allfi to satisfy:
A-cost(P ′[xi = fi(l)]) = A-cost(P ′). In other words, we requirefi(l) to return the
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best value for themin player, and the set of functionsF will then be a best strategy
for the min player.This work focuses on ultra-weak solutions. Note that computing
ultra-weak solutions essentially computes theA-costs of an MWCSP, which are de-
fined based on constraints and quantifiers, and in general, computing theA-costs of an
MWCSP is PSPACE-hard [16]. A special case is that if all the quantifiers of an MWCSP
aremin quantifiers, finding an ultra-weak solution is equivalent tofinding a complete
assignmentl with the minimum costs (i.e.argminl cost(l)). The problem reduces [16]
to a WCSP.

Example 1.We use the generalized Radio Link Frequency Assignment Problem in-
troduced in the previous section as an example. The problem consists of four links
l1, l2, l3, and l4. Two of the linksl1 and l2 connect sitesA andB, and the other two
links l3 and l4 connect sitesB andC. Link l2 (l4 resp.) is the reverse link forl1 (l3
resp.). There is a variablexi in the MWCSPP for each linkli, which is used to rep-
resent the chosen frequency for linkli. SiteC is not secure and linksl3 and l4 are
subject to control. We need to pay costs if two links interfere with each other. There-
fore, we want to find frequency assignments forl1 and l2 such that we can minimize
the total costs for interference in the worst case. We set thequantifier sequence inP
as(Q1 = min, Q2 = min, Q3 = max, Q4 = max). For simplicity, we assume links
l1 andl3 have two frequency choices, and the other two links have three. We measure
the costs for interference only for linksl1 andl3, and linksl2 andl4. These costs will
be modeled by constraints on variablesx1 andx3, and also on variablesx2 andx4.
In addition, we maintain the technological constraint between linksl1 and l2, which
will be modeled by a binary constraint on variablesx1 andx2. Figure 1 indicates there
is one unary constraintC4 and three binary constraintsC1,2, C1,3, andC2,4. For the
unary constraint, non-zero unary costs are depicted insidea circle and domain values
are placed above the circle. For binary constraints, non-zero binary costs are depicted
as labels on edges connecting the corresponding pair of values. Only non-zero costs
are shown. We set the global upper boundk to be 11. By following the partial labeling
tree in Figure 2, we can easily infer theA-cost of the subproblemP ′ = P[x1 = a] is
7, and{x1 = a, x2 = a, x3 = b, x4 = a} is one of the ultra-weak solutions for the
sub-problemP ′.

2.2 Pruning Conditions in B & B

MWCSPs can be solved by applying alpha-beta pruning in branchand bound
search [16] (Figure 4), by treatingmax andmin variables asmax andmin players re-
spectively. Alpha-beta pruning utilizes two bounds,α andβ, for storing the current best
costs formax andmin players. We renameα andβ as lowerlb and upperub bounds to
fit with the common notations for bounds in constraint and integer programming. We
initialize lb (ub resp.) to the lowest (largest resp.) possible costs, i.e. 0 (k resp.), and
maintain the two bounds during assignments by the branch andbound. When a smaller
costs (larger costs resp.) formin (max resp.) variable is found after exploring sub-trees,
ub (lb resp.) will be updated (line 6 and 8 ). Iflb ≥ ub, then one of the previous branch
must dominate over the current sub-tree, and we can perform backtrack (line 9).

Lee, Mak, and Yip [16] give pruning conditions that allow further derivation of
consistency notions, and we introduce them as follows. LetP[x1..i−1 = v1..i−1, xi =
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1 function alpha_beta(P,lb,ub):
2 if firstx(P) == ⊥: return cost(P)
3 i = firstx(P)
4 for v in Di:
5 if Qi == min:
6 ub = min(ub, alpha_beta(P[Xi=v],lb,ub))
7 else:
8 lb = max(lb, alpha_beta(P[Xi=v],lb,ub))
9 if ub <= lb: break

10 return (Qi == min)?ub:lb

Fig. 4. Alpha-beta for MWCSPs

v] denote the subproblemP[x1 = v1][x2 = v2]...[xi−1 = vi−1][xi = v]. Formally, we
consider two conditions:∃v ∈ Di s.t. ∀v1 ∈ D1, ..., vi−1 ∈ Di−1:

A-cost(P[x1..i−1 = v1..i−1, xi = v]) ≥ ub (1)

A-cost(P[x1..i−1 = v1..i−1, xi = v]) ≤ lb (2)

whereub and lb are the upper and lower bounds in alpha-beta prunings respectively.
When either of the above conditions is satisfied, we can apply prunings according to
Table 1.

Table 1.When can we prune/backtrack
A-cost ≥ ub ≤ lb

Qi = min prunev backtrack
Qi = max backtrack prunev

Checking Condition (1)/(2) by finding
the exactvalue of theA-cost for each sub-
problem is computationally expensive. Alter-
natively, we allow approximating functions
to perform bounds approximations. Function
ubaf(P, xi = v) (lbaf(P, xi = v) resp.) is
an upper bound (a lower bound resp.) approximation functionif it approximates the
A-cost for the setS of sub-problems, where:

S = {P[x1..i−1 = v1..i−1,xi = v]|∀v1 ∈ D1, . . . , vi−1 ∈ Di−1}

s.t. ∀P ′ ∈ S,A-cost(P ′) ≤ ubaf(P, xi = v)

(≥ lbaf(P, xi = v) resp.)

From the definition, we can easily obtain:

lbaf(P, xi = v) ≥ ub =⇒ Condition (1)

ubaf(P, xi = v) ≤ lb =⇒ Condition (2)

By implementinglbaf()/ubaf() with good approximations, we can identify non-
ultra-weak solution values from variable domains or perform backtracking earlier in
search according to Table 1.

3 Consistency Techniques

In WCSPs, consistency notions [15, 9] not only utilize constraint semantics, but also
take the costs of constraints into account. This section discusses how we utilize costs
information from unary constraints and binary constraintsto formulate node and (full
directional) arc consistencies. We start by giving anlbaf() for node consistency called
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nclb(), which formulates lower bounds by gathering unary costs. Wethen further de-
scribe a strongerlbaf() for (full directional) arc consistency calledaclb(). To approx-
imate upper bounds, we propose two approaches by utilizing the Duality Principle:
duality of quantifiers and duality of constraints. In the last part, we discuss how to
strengthen our consistency notions, by incorporating techniques in WCSPs. We write
Ci for the unary constraint on variablexi, Ci,j for the binary constraint on variablesxi

andxj wherei < j, Ci(u) for the cost returned by the unary constraint whenu is as-
signed toxi, andCi,j(u, v) for the cost returned by the binary constraint whenu andv
are assigned toxi andxj respectively. To simplify our notations, we write the minimum
costsminu∈Dj

Cj(u) and maximum costsmaxu∈Dj
Cj(u) of a unary constraintCj as

minCj andmaxCj respectively. We further writeQjCj to meanminCj if Qj = min,
andmaxCj if Qj = max.

3.1 Node Consistency: Lower Bound

We first give the definition fornclb(). We will then sketch the proof showingnclb() is
anlbaf() using a lemma. Without loss of generality, we now consider unary MWCSPs,
which are MWCSPs withunary constraints only. We will show that computingA-costs
for any sub-problems of unary MWCSPs are efficient (linear time), and therefore, com-
puting the lower bound for these sub-problems are efficient.We then show using the
same procedure on general MWCSPs, by viewing unary constraints only, the bound is
still correct.

Definition 1. Thenclb(P, xi = v) function approximates theA-cost for a setS of
sub-problems{P[x1..i−1 = v1..i−1, xi = v]|∀v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

nclb(P, xi = v) ≡ C∅ ⊕ (
⊕

j:j<i

minCj)⊕ (Ci(v))⊕ (
⊕

j:i<j

QjCj)

whereQj ∈ Q is the quantifier for variablexj wherej > i.

Lemma 1. The A-cost of an MWCSPP with only unary constraints is equal to⊕n

i=1 QiCi.

The proof of Lemma 1 follows directly from the definition ofA-costs for MWCSPs.

Theorem 1. The functionnclb(P, xi = v) is a lower bound approximating function
lbaf(P, xi = v).

Lemma 1 suggests the computation ofA-costs for unary MWCSPs can be done in
O(nd), wheren is the number of variables andd is the maximum domain size. There-
fore, computing theA-costs for any sub-problems is also efficient. The functionnclb()
can be seen as a function extractingA-costs for the sub-problem inS with minimal
A-costs following Lemma 1, by partitioning unary constraints intothree groups: (a)
Cj , j < i, (b) Ci, and (c)Cj , j > i. We skip the detailed reasoning on how to choose
costs for these unary constraints. IfP has only unary constraints, we can observe func-
tionnclb() computes not only a correct lower bound forS, but also the exactA-cost for
the sub-problem with minimum costs. Note that MWCSPs may havebinary constraints
and even high-arity constraints, but, these constraints must give positive costs to the
problem. Therefore, by considering only unary constraintsof general MWCSPs,nclb()
still returns a correct lower bound.
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Example 2.We re-use Example 1. Suppose we are at sub-problemP ′ = P[x1 = a] and
we have just visited the further sub-problemP ′[x2 = a] which have a new upper bound
of 7. Before visitingP ′[x2 = b], we try to prune some values according to Table 1 using
the new upper bound. Figure 3 shows the constraint graph forP ′. Suppose nownclb()
is applied and no unary costs for bounded variables, i.e.C∅ = 0. We want to check if
the valueb can be pruned fromD2. In the sub-problemP ′[x2 = b], the quantifierQ3

andQ4 are bothmax, and they will take at least the maximum unary costmaxC3 and
maxC4. We haveC∅ + C2(b) + maxC3 +maxC4 = 0 + 0 + 4 + 3 = 7 ≥ ub. The
cost of any assignment in the sub-problemP ′[x2 = b] is at least 7. The valueb can
therefore be removed from domainD2. Notice that such a node cannot be pruned by
basic alpha-beta pruning.

3.2 Arc Consistency: Lower Bound

To obtain stronger lower bound, we further define functionaclb() based onnclb(). With-
out loss of generality, we restrict our attention to MWCSPs which haveonly unary
constraints and one binary constraint. We will show that computing any sub-problems
for these MWCSPs are efficient (polynomial time), and therefore, computing the lower
bound for these sub-problems are again efficient. By similarargument, viewing unary
constraints plus one binary constraint on general MWCSPs, the bound is still correct.

Definition 2. Theaclb[Ci,j ](P, xi = v) function approximates theA-cost for the setS
of sub-problems{P[x1..i−1 = v1..i−1, xi = v]|∀v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

aclb[Ci,j ](P, xi = v) ≡ C∅ ⊕ (
⊕

k:k<i

minCk)⊕ (Ci(v))

⊕ (
⊕

k:i<k∧j 6=k

QkCk)⊕ ( Qj
u∈Dj

{Cj(u)⊕ Ci,j(v, u)})

whereQj ∈ Q is the quantifier for variablexj , andQk ∈ Q is the quantifier for variablexk

wherek > i andk 6= j.

The first three terms are the same as innclb(). The fourth term is equivalent to the
last term innclb(), except we do not consider costs for constraintCj , which will be
considered in the fifth term.

Lemma 2. TheA-cost of an MWCSPP = (X ,D, C,Q, k) with only unary constraints
andone binary constraintCi,j is equal to

⊕

k∈[1...n]\{i,j}

Qk
u∈Dk

Ck(u)⊕ Qi
u∈Di

[ Qj
v∈Dj

[Ci(u)⊕ Cj(v)⊕ Ci,j(u, v)]]

whereQi, Qj , Qk ∈ Q.

The proof of Lemma 2 follows from the definition ofA-costs. Theorem 2 follows.

Theorem 2. The functionaclb[Ci,j ](P, xi = v) for binary constraintCi,j is a lower
bound approximating functionlbaf(P, xi = v).
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Note that Definition 2 is only one possible approach to define alower bound approxi-
mation function for AC, following Lemma 2. It is designed in such a way that onlyone
binary constraint is used in bounds calculation for costs estimation, and our approach
is similar to AC in QCSPs [20, 12]. It is natural for us to further ask for stronger/tighter
functions which consider more than one binary constraint. Note that in classical local
consistency enforcement such as: AC in CSPs [2]; AC* in WCSPs [15]; and (Q)AC [20]
in QCSPs, we usually handle one (binary) constraint at a time. Consistency enforcement
will be performed many times at each node of the search tree, and considering multiple
constraints at a time may cause a huge increase in time complexity. We have to main-
tain a balance between amount of reasoning at each search node and amount of pruning
achieved. There are stronger consistency notions with efficient algorithms which con-
sider more than one binary constraint, e.g. Max Restriced Path Consistency [10] in CSPs
and OSAC [8] in WCSPs/VCSPs. Investigations on stronger notions for MWCSPs is
an interesting future work. One possibility to enhanceaclb is to consider a subset of
constraints that forms a tree, and employ a dynamic programming approach to enforce
such stronger consistencies.

3.3 NC & AC Upper Bounds by the Duality Principle

In linear programming, duality [21, 27] provides a standardway to obtain lower bounds
(for minimization problems). In fact, the Principle/Theory of Duality [21] suggests that
we can convert the original (primal) problem to its dual form, and tackle the problem
by using both forms. In QCSPs, dual consistency [5] was defined by creating the dual
QCSP problem, involving negation of the original constraints. We will now show how
to implement upper bound approximation functionsncub() andacub() by using the
duality principle in MWCSPs.

Duality of Constraints One approach to createncub()/acub() is to utilize the con-
straint duality property, which is similar to dual consistency [5] in QCSPs. We first
define the dual problem of an MWCSP.

Definition 3. Given an MWCSPP = (X ,D, C,Q, k). The dual problem ofP is an
MWCSPP† = (X ,D, C†,Q†, k) s.t. for a complete assignmentl,

C∅ ⊕
⊕

CS∈C

CS(l[S]) = −1× (C†
∅
⊕

⊕

C
†
s∈C†

C
†
S(l[S]))

where the valuation structure ofP† is ([−k...k],⊕,≤),Q†
i = min if Qi = max, andQ†

i = max

if Qi = min.

We can observe thatA-cost(P) = −1× A-cost(P†), and a straightforward method to
construct thedual constraints in the dual problem is to multiply costs for all constraints
in the original problem by−1. We then show how we utilize the dual problem to check
ubaf(P, xi = v) ≤ lb (Condition 2) for an MWCSPP.

Theorem 3. Given an MWCSPP and its dual problemP†. Suppose there is a lower
bound approximation functionlbaf().

lbaf(P†
, xi = v) ≥ −1× lb =⇒ Condition (2).
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The proof of Theorem 3 can be shown by observing the labeling tree of the dual prob-
lem, and inferringlbaf(P†, xi = v) × −1 is an upper bound approximation function
for the original problem. In fact, the upper boundub† (lower boundlb† resp.) ofP† is
equal to−1 times the lower boundlb ( upper boundub resp.) ofP. Therefore, we fur-
ther defineub† = −1× lb, andlb† = −1× ub. We then implementncub() andacub(),
via checking thenclb() andaclb() for the dual problem.

Definition 4. An MWCSPP is dual constraint node consistent (DC-NC) iff∀xi ∈
X , ∀v ∈ Di : nclb(P, xi = v) < ub ∧ nclb(P

†, xi = v) < ub†.

Definition 5. An MWCSPP is dual constraint arc consistent (DC-AC) iffP is DC-
NC, ∀Ci,j ∈ C, ∀v ∈ Di : aclb[Ci,j ](P, xi = v) < ub, and∀C†

ij ∈ C†, ∀v ∈ Di :

aclb[C
†
ij ](P

†, xi = v) < ub†.

Theorem 4. DC-AC is strictly stronger than DC-NC.

The proof follows from the definitions.

Duality of Quantifiers Another way to check condition (2) for an MWCSPP is to
scrutinize functions implementingubaf(P, xi = v), by repeating similar reasonings
for nclb() on unary MWCSPs (plus a binary constraint). The idea is to use the duality
of quantifiers, by replacingmin quantifiers tomax in the reasoning process. Recall we
have three groups of unary constraints to consider. One direct way is to consider the
maximum costs, instead of minimum costs from constraints inthe first group (group
(a)), hence changing quantifiers frommin to max. However, using the resulting up-
per bound approximation functions, by reasoning on unary MWCSPs is incorrect for
general MWCSPs. We cannot neglect costs given by high arity constraints. One way
to make the bound correct is to add the maximum costs for constraints which will not
be covered in the function, and we pre-compute these costs before search. Function
ncub(P, xi = v) andacub(P, xi = v) are given as follows, and we writemaxC⋆ to
mean the maximum costs for constraints which are not considered in the function.

Definition 6. Thencub(P, xi = v) function approximates theA-cost for a setS of
sub-problems{P [x1..i−1 = v1..i−1, xi = v]|∀v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1}.
Define:

ncub(P, xi = v) ≡ C∅ ⊕ (
⊕

j:j<i

maxCj)⊕ (Ci(v))⊕ (
⊕

j:i<j

QjCj)⊕ (maxC⋆)

whereQj ∈ Q is the quantifier forxj , j > i.

We can easily observemaxC⋆ is equal to
⊕

j,k:j 6=k maxCjk if there are only unary
and binary constraints.

Definition 7. The functionacub[Ci,j ](P, xi = v) approximates theA-cost for the set
S of sub-problems:{P [x1..i−1 = v1..i−1, xi = v]|∀v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈
Di−1}. Define:

acub[Ci,j ](P, xi = v) ≡ C∅ ⊕ (
⊕

j:j<i

maxCj)⊕ (Ci(v))⊕ (
⊕

k:i<k∧j 6=k

QkCk)

⊕Qju∈Dj
{Cj(u)⊕ Ci,j(v, u)} ⊕ (maxC⋆)
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whereQk is the quantifier for variablexk wherek > i andk 6= j, andQj is the quantifier for
variablexj .

If there are only unary and binary constraints,maxC⋆ is equal to
⊕

Ck,l∈B maxCk,l,
whereB = {Ck,l ∈ C|k 6= l} − {Ci,j}. We now define the node and arc consistencies
by utilizing the constructed functions.

Definition 8. An MWCSPP is dual quantifier node consistent (DQ-NC) iff∀xi ∈
X , ∀v ∈ Di : nclb(P, xi = v) < ub ∧ ncub(P, xi = v) > lb.

Definition 9. An MWCSPP is dual quantifier arc consistent (DQ-AC) iffP is DQ-NC,
and∀Ci,j ∈ C, ∀v ∈ Di : aclb[Ci,j ](P, xi = v) < ub ∧ acub[Ci,j ](P, xi = v) > lb.

Theorem 5. DQ-AC is strictly stronger than DQ-NC.

The proof follows from the definitions.

3.4 Consistency Enforcement

To enforce DC-NC and DC-AC, one major step is to computenclb() andaclb(), by
computing costs from unary and binary constraints in both the original and dual MWC-
SPs. For DQ-NC and DQ-AC, we computencub() andacub() instead of the dual. To
achieve these consistencies, we perform prunings/backtrackings according to Table 1.
Similar to cascade propagation [2] in CSPs, a value of a variable being pruned may
trigger prunings of other values in other variables and re-computation of thelbaf() and
ubaf() functions. In addition, prunings caused by lower bound approximations may
tighten upper bound approximations (and vice versa), and triggers extra prunings. Our
propagation routine repeats until no values can be further pruned, or backtracks occur.

3.5 Strengthening Consistencies by Projection/Extension

Consistency algorithms for WCSPs use an equivalence preserving transformation called
projection[9] to move costs from higher arity constraints to lower arity ones to extract
and store bound information. Some further utilizesextension[9], which is the inverse
of projection, to increase the consistency strength. We propose to re-use WCSP con-
sistencies, especially the parts related to projections and extensions, to strengthen the
approximating functions for MWCSPs.

WCSPs consistencies consist of two kinds of conditions: one for pruning and one
for projection/extension. Since their pruning conditionsare unsound w.r.t. MWCSPs,
we adopt only their projection/extension conditions so as to strengthen DC-NC, DC-
AC, DQ-NC, and DQ-AC. The projection/extension conditionsfor NC*, AC*, and
FDAC* [15, 14] are as follows:

proj-NC* :∀Ci, ∃v ∈ Di : Ci(v) = 0

proj-AC* : proj-NC* ∧ ∀Ci,j , ∀vi ∈ Di, ∃vj ∈ Dj : Ci,j(vi, vj) = 0 ∧

∀Ci,j , ∀vj ∈ Dj , ∃vi ∈ Di : Ci,j(vi, vj) = 0

proj-FDAC* : proj-AC* ∧ ∀Ci,j : i < j, ∀vi ∈ Di, ∃vj ∈ Dj : Ci,j(vi, vj)⊕ Cj(vj) = 0



12

Note that the enforcing algorithm for proj-FDAC* may decreases unary costs formax
variables and increases unary costs formin variables; hence weakening the approx-
imating functions. We tackle this issue by re-ordering the variables when enforcing
proj-FDAC*, with max variables first. To further enforce these projecting conditions
on the dual problem in DC-NC/DC-AC, we need to perform normalization, by trans-
ferring costs fromC∅ to constraints with negative costs until all constraints exceptC∅

return non-negative costs. We now re-define DC-NC, DC-AC, DQ-NC, and DQ-AC, to
allow users plugging in general projection/extension conditions τ .

Definition 10. An MWCSPP is DC-NC[τ ] (DC-AC[τ ] resp.) iffP is DC-NC (DC-AC
resp.), and all projection/extension conditionsτ for bothP and the dual problemP†

are satisfied. An MWCSPP is DQ-NC[τ ] (DQ-AC[τ ] resp.) iff P is DQ-NC (DQ-AC
resp.), and all the projection/extension conditionsτ for P are satisfied.

Previous work [16] shows experimental results on an implementation of DQ-NC[proj-
NC*] and DQ-AC[proj-AC*], where DQ-NC[proj-NC*] and DQ-AC[proj-AC*] are
named as node and arc consistency respectively.

3.6 Tackling Stronger Solution Definitions

This section discusses the scopes and limitations of our techniques on solving MWCSPs
for the other two stronger solved levels: weakly solved and strongly solved.

In terms of space, the solution sizes for solving MWCSPs ultra-weakly, weakly,
and strongly vary fromO(n), O((n − m)dm), to O(dn) respectively, wheren is the
total number of variables,m ≤ n is the number of variables owned by adversaries,
andd is the maximum domain size of the MWCSP. A direct consequence is that we
need exponential space to store weak/strong solutions during search, and most often,
compact representations to represent weak/strong solutions are more desirable.

In terms of prunings in branch and bound tree search, a sound pruning condition
when solving a weaker solution concept may not hold in stronger ones. This is caused
by the removal of the assumption of optimal/perfect plays when dealing with stronger
solution concepts. For example in alpha-beta prunings, when themin player obtains
anA-costs which is lower than thelb (i.e. max player’s last found best), we cannot
immediately backtrack if we want to tackle weakly solved solutions, where we assume
themax player is the adversary. The reason behind is that we cannot assume themax
player must play a perfect move. We have to consider all movesfor themax player. The
situation is similar if we assume themin player is the adversary. By similar reasonings
and inductions, we cannot perform prunings/backtrackingsfor the≤ lb column (≥ ub
column resp.) in Table 1 if we want to tackle weakly solved solutions, assuming themax
player (min player resp.) is the adversary. For solving strong solutions, the situation is
even worse. We cannot assume optimal plays for both players.Therefore, we have to
findA-costs for all sub-problems, and all prunings/backtrackings conditions in Table 1
cannot be used. In general, the fewer sound pruning/backtracking conditions available,
the larger search space we have to search. By using tree search, we can observe finding
stronger solutions is much harder than weaker ones.

When tackling real-life problems, one can ask for solutions which solve the problem
in an intermediate level. For example, if the adversaries have multiple optimal strate-
gies, we can require solutions containing responses to every different optimal choice
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the adversaries may choose. In this case, the solved level lies between ultra-weak and
weak. One way to handle is to relax the bound updating procedure for the lower bound
(upper bound resp.) in alpha-beta pruning (Line 6 and 8 in Figure 4), where we assume
themax (min resp.) player is the adversary. When a larger lower boundlb (smaller
upper boundub resp.) is found, we update the lower bound tolb − 1 (upper bound to
ub + 1 resp.). The major focus of this work is to give consistency notions to improve
the search in finding the best-worst case, i.e. ultra-weak solutions, of a game.

4 Performance Evaluation

In this section, we compare our solver in seven modes: Alpha-beta pruning,
DC-NC[proj-NC*], DQ-NC[proj-NC*], DC-AC[proj-AC*], DQ-AC[proj-AC*], DC-
AC[proj-FDAC*], and DQ-AC[proj-FDAC*]. Values are labeled in static lexicographic
order. We generate 20 instances for each benchmark’s particular parameter setting. Re-
sults for each benchmark are tabulated with average time used (in sec.) and average
number of tree nodes encountered. We take average for solvedinstancesonly. If there
are any unsolved instances, we give the number of solved instances beside the average
time (superscript in brackets). Winning entries are highlighted in bold. A symbol ‘-’
represents all instances fail to run within the time limit. The experiment is conducted
on a Core2 Duo 2.8GHz with 3.2GB memory. We have also performed experiments on
QeCode, a solver for QCOPs [3], by transforming the instances to QCOPs according to
the transformation in previous work [16].

4.1 Randomly Generated Problems and Graph Coloring Games

We re-use benchmark MWCSP instances and graph coloring game instances by Lee,
Mak, and Yip [16]. The random MWCSP instances are generated with parameters
(n, d, p), wheren is the number of variables,d is the domain size for each variable,
andp is the probability for a binary constraint to occur between two variables. There
are no unary constraints which makes the instances harder, and the costs for each bi-
nary constraint are generated uniformly in [0..30]. Quantifiers are generated randomly
with half probability for min (max resp.), and the number of quantifier levels vary from
instances to instances. For the graph coloring game instances, numbers are used instead
of colors, and the graph is numbered by two players. We partition the nodes into two

Table 2.Randomly Generated Problem
Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]

(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes
(12, 5, 0.4) 68.20 5,967,461 5.89 131,468 2.54 30,165 2.13 20,397
(12, 5, 0.6) 52.05 4,782,541 4.63 101,690 2.61 26,093 2.24 16,178
(14, 5, 0.4) 263.04(18) 19,770,953 52.72 948,783 19.33 198,476 14.82 117,155
(14, 5, 0.6) 271.72(17) 17,249,858 70.12 1,185,08729.97 246,459 23.11 143,197
(16, 5, 0.4) 517.24(2) 26,269,025332.65(19) 4,617,612121.78 1,047,900 102.82 706,913
(16, 5, 0.6) 693.31(2) 36,315,673461.68(16) 6,157,070259.51 1,816,642 208.52 1,054,326

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes

(12, 5, 0.4) - – 3.68 158,179 3.23 53,845 4.27 58,619
(12, 5, 0.6) - - 2.85 118,401 3.24 41,596 4.17 45,698
(14, 5, 0.4) - - 33.39 1,135,37826.20 369,185 41.74 482,053
(14, 5, 0.6) - - 46.81 1,510,94645.85 450,407 68.63 522,715
(16, 5, 0.4) - - 217.13 5,780,075141.07 1,654,538 173.96 1,745,527
(16, 5, 0.6) - - 364.51(19) 9,401,844341.71 3,071,036362.12(17) 2,659,294
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Table 3.Graph Coloring Game
Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]

(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes
(14, 4, 0.4) 19.88 1,572,978 6.71 122,266 3.20 37,252 1.90 16,732
(14, 4, 0.6) 24.12 1,730,473 10.38 185,111 5.88 59,359 3.48 23,515
(16, 4, 0.4) 167.75 10,050,80048.37 688,200 22.67 221,484 12.09 92,875
(16, 4, 0.6) 166.83 9,213,029 45.71 625,944 27.03 212,934 15.64 85,920
(18, 4, 0.4) 784.47(3) 33,914,968288.90 2,839,962114.63 792,220 65.58 357,457
(18, 4, 0.6) - - 350.29 3,400,265163.70 993,099 80.06 343,146

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes

(14, 4, 0.4) - - 4.52 170,843 3.36 63,298 3.74 53,722
(14, 4, 0.6) - - 7.29 269,179 6.36 99,972 6.88 74,187
(16, 4, 0.4) - - 34.43 1,002,145 23.21 363,539 24.36 281,229
(16, 4, 0.6) - - 33.82 949,861 29.19 352,694 31.99 280,426
(18, 4, 0.4) - - 204.86 4,095,993118.65 1,315,346140.95 1,207,566
(18, 4, 0.6) - - 267.23 5,295,433180.38 1,711,948182.66 1,270,797

Table 4.Generalized Radio Link Frequency Assignment Problem
Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]

(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes
(1, 24, 4, 0.2) - - 86.38 442,362 50.54 74,182 53.85 55,988
(0, 24, 4, 0.4) - - 148.87 828,286 105.95 295,743 128.01 286,122
(1, 22, 6, 0.2) - - 618.93 3,580,885307.58 352,439 309.63 299,361
(0, 24, 6, 0.2) - - 1230.33(19) 6,822,412500.18 738,245 479.50 651,762

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes

(1, 24, 4, 0.2) - - 45.62 449,164 50.75 77,286 47.08 62,734
(0, 24, 4, 0.4) - - 96.55 1,046,150101.49 451,090 208.79 692,470
(1, 22, 6, 0.2) - - 338.42 3,719,348374.34 374,385 309.96 368,643
(0, 24, 6, 0.2) - - 682.60(19) 7,224,677539.69 803,087 434.99 812,048

setsA andB. Player 1 (Player 2 resp.) will number setA (B resp.). The goal of player
1 is to maximize the total difference between numbers of adjacent nodes, while player
2 wishes to minimize. The aim is to help player 1 extracting the best-worst case. We
generate instances with parameters (v, c, d), wherev is an even number of nodes in the
graph,c is the range of numbers allowed to place, andd is the probability of an edge
between two vertices. Player 1 (Player 2 resp.) is assigned to play the odd (even resp.)
numbered turns, and the node corresponding to each turn is generated randomly. Time
limit for both benchmarks are 900 seconds. Table 2 and 3 show the results.

4.2 Generalized Radio Link Frequency Assignment Problem (GRLFAP)

We generate the GRLFAP according to two small but hard CELAR sub-instances [7],
which are extracted from CELAR6. All GRLFAP instances are generated with parame-
ters (i, n, d, r), wherei is the index of the CELAR sub-instances (CELAR6-SUBi), n is
an even number of links,d is an even number of allowed frequencies, andr is the ratio
of links placed in unsecured areas,0 ≤ r ≤ 1. For each instance, we randomly extract
a sequence ofn links fromCELAR6-SUBi and fix a domain ofd frequencies. We ran-
domly choose⌊(r×n+1)/2⌋ pairs of links to be unsecured. If two links are restricted
not to take frequenciesfi andfj with distance less thant, we measure the costs of
interference by using a binary constraint with violation measuremax(0, t− |fi − fj |).
We set the time limit to 7200 seconds. Table 4 shows the results.

4.3 Results & Discussions

For all benchmarks, all six consistencies are significantlyfaster and stronger than alpha-
beta pruning.
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Comparing the two duality approaches, we observe duality ofconstraints (DC) is
stronger than duality of quantifiers (DQ), and we conjecturefor any projection/exten-
sion conditionsτ , DC-NC[τ ] (DC-AC[τ ] resp.) is stronger than DQ-NC[τ ] (DQ-AC[τ ]
resp.). Note that enforcing projection/extension conditions on DQ-NC/DQ-AC may
strengthen one approximation function, and weaken the other at the same time. DC-
NC/DC-AC extracts costs from different copies of constraints and resolve this issue.

For all benchmarks, DQ-NC[proj-NC*] runs faster than DC-NC[proj-NC*]. In ran-
domly generated problems and the graph coloring game, DC-AC[proj-(FD)AC*] runs
faster than DQ-AC[proj-(FD)AC*], with DC-AC[proj-FDAC] the fastest. In GRLFAP,
DQ-NC[proj-NC*] runs faster than the others for smaller instances and stronger consis-
tencies are faster for larger ones. Enforcing proj-FDAC* ismore computational expen-
sive than proj-AC* and proj-NC*, and implementing duality of constraints requires im-
plementing two copies of constraints. Therefore, strongerconsistencies are worthwhile
for larger instances, but not for smaller ones due to the large computational over-head.

It is worth noting DQ[proj-FDAC*] prunes less than DQ[proj-AC*], suggested by
the fact that adding stronger projection/extension conditions from WCSPs naively may
not always strengthen our approximation functions. We haveto further consider quan-
tifier information.

All QCOP instances for even the smallest parameter settingsfor all benchmarks fail
to run within the time limit. QCOPs are, in fact, more general[16] than MWCSPs. By
viewing a more specific problem, it is natural for us to deviseconsistency techniques
outperforming QeCode.

5 Concluding Remarks

We define and implement node and (full directional) arc consistency notions to reduce
the search space of an alpha-beta search for MWCSPs, by approximating lower and
upper bounds of the cost of the problem. Lower bound computation employs standard
estimation of costs in the sub-problems and we propose two approaches: duality of
quantifiers and duality of constraints, based on the DualityPrinciple in estimating up-
per bounds. Details on strengthening the approximation functions by re-using WCSPs
consistencies are given. We also discuss capabilities and limitations of our approach on
other stronger solution concepts. Experiments on comparing basic alpha-beta pruning
and the six consistencies from the two dualities are performed.

There are two closely related frameworks, where both tackleconstraint problems
with adversaries. Brown et al. propose adversarial CSPs [6], which focuses on the case
where two opponents take turns to assign variables, each trying to direct the solution
towards their own objectives. Another related work is Stochastic CSPs [26], which can
represent adversaries by known probability distributions. We seek actions to minimize/-
maximize the expected cost for all the possible scenarios. Our work is similar in the
sense that we are minimizing the cost for the worst case scenario.

Possible future work includes: consistency algorithms forhigh arity (soft) con-
straints similar to those for WCSPs [18, 19, 17], value/variable ordering heuristics, the-
oretical comparisons on different consistency notions, tackling stronger solutions, and
online algorithms.
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