
Polynomially Decomposable Global Cost Functions in
Weighted Constraint Satisfaction

J.H.M. Lee, K.L. Leung and Y. Wu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR

{jlee,klleung,ywu}@cse.cuhk.edu.hk

Abstract

In maintaining consistencies, such as GAC*, FDGAC* and
weak EDGAC*, for global cost functions, Weighted CSP
(WCSP) solvers rely on the projection and extension oper-
ations, which entail the computation of the cost functions’
minima. Tractability of this minimum computation is es-
sential for efficient execution. Since projections/extensions
modify the cost functions, an important issue istractable
projection-safety, concerning whether minimum cost compu-
tation remains tractable after projections/extensions.
In this paper, we prove that tractable projection-safety isal-
wayspossiblefor projections/extensions to/from the nullary
cost function (W∅), and always impossible for projec-
tions/extensions to/fromn-ary cost functions forn ≥ 2.
Whenn = 1, the answer is indefinite. We give a simple neg-
ative example, while Lee and Leung’s flow-based projection-
safe cost functions are also tractable projection-safe.
We proposepolynomially decomposablecost functions,
which are amenable to tractable minimum computation.
We further prove that the polynomial decomposability
property is unaffected by projections/extensions to/from
unary cost functions. Thus, polynomially decomposable
cost functions are tractable projection-safe. We show that
the SOFT AMONG, SOFT REGULAR, SOFT GRAMMAR and
MAX WEIGHT/MIN WEIGHT are polynomially decompos-
able. They are embedded in a WCSP solver for extensive
experiments to confirm the feasibility and efficiency of our
proposal.

Introduction
Weighted Constraint Satisfaction Problems (WCSPs) give a
framework for modeling and solving over-constrained and
optimization problems. Besides being equipped with an ef-
ficient branch and bound procedure augmented with power-
ful consistency techniques, a practical WCSP solver should
have a good library of global cost functions to model the
often complex scenarios in real-life applications. Enforcing
WCSP consistencies on a global cost function efficiently re-
lies on two operations: (a) computing the minima of the cost
functions and (b) projecting and/or extending costs among
functions to create pruning opportunities. Global cost func-
tions usually have high arities, but their special semantics

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

enables specialized polynomial time algorithms for comput-
ing the minima. Unfortunately, projections/extensions mod-
ify a cost function so that its structure and even semantics
might change, possibly making the original minimum com-
putation algorithm no longer applicable. Therefore, the key
notions here istractable projection-safety, which concerns
if the minimum computation of a projected/extended global
cost function remains tractable.

In this paper, we first study tractable projection-safety
in different scenarios of projections and extensions. We
prove that a tractable cost function is always tractable
projection-safe after projections/extensions to/from the
nullary cost function (W∅), and always intractable after pro-
jections/extensions to/fromn-ary cost functions forn ≥
2. When n = 1, the answer is indefinite. While flow-
based projection-safe cost functions (Lee and Leung 2009;
2012) are positive examples of tractable projection-safe
cost functions, we give a simple tractable global cost func-
tions and show how it becomes intractable after projec-
tions/extensions to/from unary cost functions.

We introducepolynomially decomposableglobal cost
functions, which can be decomposed into a polynomial num-
ber of simpler cost functions for (minimum) cost calcu-
lation. Computing minima of such cost functions, which
is usually done by a polynomial time recursive memo-
ization algorithm (or dynamic programming), is tractable
and remains tractable after projections/extensions. Thus,
polynomially decomposable cost functions are tractable
projection-safe. Adding to the existing repertoire of global
cost functions, we further prove that the global cost func-
tions SOFT AMONG, SOFT REGULAR, SOFT GRAMMAR,
andMAX WEIGHT/MIN WEIGHT, are polynomially decom-
posable. To demonstrate the feasibility of our proposal, we
implement and embed these cost functions in Toulbar2 and
conduct experiments using four benchmarks to evaluate the
performance with different consistency enforcements.

Background
A WCSP(Schiex, Fargier, and Verfaillie 1995) is a tuple
(X ,D, C,⊤). X is a set of variables{x1, x2, . . . , xn} or-
dered by their indices. Each variable has its finite domain
D(xi) ∈ D containing maximumd values that only one can
assign toxi. A tupleℓ ∈ L(S) = D(xs1)× . . .×D(xsn) is
used to represent an assignment onS = {xs1 , . . . , xsn} ⊆

X . The notationℓ[xi] denotes the value assigned toxi in ℓ,
and ℓ[S′] denotes the tuple formed from projectingℓ onto
S′ ⊆ S. C is a set of cost functions. Each cost function
WS ∈ C has its scopeS ⊆ X , and mapsℓ ∈ L(S) to a cost
in the valuation structureV (⊤) = ([0 . . .⊤],⊕,≤). V (⊤)
contains a set of integers[0 . . .⊤] with standard integer or-
dering≤. Addition⊕ is defined bya⊕ b = min(⊤, a+ b).
The subtraction⊖ is defined only fora ≥ b, asa⊖b = a−b
if a < ⊤, and⊤ otherwise. In particular, we defineW∅

as the nullary cost function returning a constant cost, and
Wi as the unary cost function overxi. We assume the ex-
istence ofW∅ and Wi for each variablexi. Otherwise,
we assumeWi(v) = 0 for v ∈ D(xi) and W∅ = 0.
The cost of a tupleℓ ∈ L(X) in a WCSP is defined as
cost(ℓ) = W∅ ⊕

⊕
WS∈C\{W∅} WS(ℓ[S]). Furthermore, a

tupleℓ is asolutionof a WCSP ifcost(ℓ) is minimum among
all tuples inL(X).

WCSPs are usually solved by basic branch-and-bound
search augmented with consistency techniques, which help
pruning infeasible values and increase the value ofW∅

while keeping the cost of all tuples inL(X) unchanged. Dif-
ferent consistency notions have been proposed such as NC*
(Larrosa and Schiex 2004), AC* (Larrosa and Schiex 2004),
FDAC* (Larrosa and Schiex 2003) and EDAC* (de Givry et
al. 2005). Consistency enforcement usually involves three
operations: (1) finding the minimum cost returned by the
cost functions among all (or part of) tuples, (2) projecting
costs to and (3) extending costs from smaller-arity cost func-
tions. For simplicity, we writemin{WS(ℓ) | ℓ ∈ L(S)}
asmin{WS}. We adopt definition of projection and exten-
sion from Cooper (2005) as follows. GivenS2 ⊂ S1 and
|S2| = r. An r-projectionof costα from WS1

to WS2
with

respect toℓ ∈ L(S2) is a transformation of(WS1
,WS2

) to
(W ′

S1
,W ′

S2
) such that:

W ′
S1
(ℓ′) =

{

WS1
(ℓ′)⊖ α, ℓ′[S2] = ℓ

WS1
(ℓ′), otherwise

W ′
S2
(ℓ′) =

{

WS2
(ℓ′)⊕ α, ℓ′ = ℓ

WS2
(ℓ′), otherwise

Extension is the reverse of projection. Anr-extensionof cost
α fromWS2

toWS1
with respect toℓ ∈ L(S2) is a transfor-

mation of(WS1
,WS2

) to (W ′
S1
,W ′

S2
) such that:

W ′
S1
(ℓ′) =

{

WS1
(ℓ′)⊕ α, ℓ′[S2] = ℓ

WS1
(ℓ′), otherwise

W ′
S2
(ℓ′) =

{

WS2
(ℓ′)⊖ α, ℓ′ = ℓ

WS2
(ℓ′), otherwise

Note that we allowS2 = ∅ in the definition, which is a
projection to or an extension fromW∅.

A global cost functionis a cost function with special
semantics, based on which efficient algorithms can be de-
signed for consistency enforcements. In particular, we de-
note a global cost function asGCµ

S if it is derived from the
corresponding hard global constraintGC with a violation
measureµ and variable scopeS. GCµ

S returns how much a
tuple onS has violated the original hard constraint, or0 if
the tuple satisfies the constraint.

Tractable Projection Safety
A global cost functionWS is tractable if computing
min{WS} is tractable under standard integer operations.

Furthermore,WS is tractabler-projection-safeif (a) WS is
tractable, and (b)∆r(WS) is tractable where∆r is a finite
sequence ofr-projection and/orr-extension from/to other
cost functionsW ′

S , where|S′| = r ≤ |S|, and∆r(WS) is
the cost function after applying∆r. Note that, in practice,
we do not enforce the costs not exceeding⊤ since it is ex-
pensive and tedious to maintain. When it comes to pruning,
we treat any cost beyond⊤ practically as⊤.

We divide the discussion of tractabler-projection-safety
into three cases: (a)r = 0, (b) r ≥ 2 and (c)r = 1.

When r = 0, projections and extensions are only
to/fromW∅, which are employed in∅IC (Zytnicki, Gaspin,
and Schiex 2009) and strong∅IC (Lee and Leung 2009;
2012) enforcement. If a cost function is tractable, it remains
tractable after applying∆0, since∆0(WS) andWS differ
only by a constant.
Observation 1 If a cost functionWS is tractable, it is
tractable0-projection-safe.

Whenr ≥ 2, projections and extensions are to/fromr-
arity cost functions, and required for enforcing consisten-
cies in ternary cost functions (Sanchez, de Givry, and Schiex
2008) and completek-consistency (Cooper 2005). In gen-
eral, even if a cost functionWS is tractable,WS may not be
tractabler-projection-safe forr ≥ 2.
Theorem 1 If a global cost functionW is tractable, it is not
tractabler-projection-safe forr ≥ 2.
Proof: We show that ifW is tractabler-projection-safe
for r ≥ 2, then solving a general CSP(X ,D, Ch) becomes
tractable, which is a contradiction. Without loss of general-
ity, we assume the scopeS of all constraints inCh

S ∈ Ch has
sizer. We define a WCSPP and construct a particular∆r

based onP such that the CSP can be solved by∆r(WX).
P is defined as(X ,D, C ∪ {WX },⊤) based on the given
CSP as follows. We define⊤ as a sufficiently large integer
such that⊤ > WX (ℓ) for everyℓ ∈ L(X). C contains|Ch|
cost functions.WS ∈ C is defined fromCh

S asWS(ℓ) = 0
if ℓ is accepted byCh

S , or ⊤ otherwise. From the WCSP,
∆r can be defined as follows: for each forbidden tupleℓ[S]
in eachCh

S ∈ Ch, we add an extension of⊤ from WS to
WX with respect toℓ[S] to ∆r. Under this construction,
∆r(WX)(ℓ) is equivalent toWX (ℓ) ⊕

⊕
WS∈C WS(ℓ[S]).

If a tuple ℓ ∈ L(X) contains a tupleℓ[S] forbidden by
Ch

S ∈ Ch, ∆r(WX)(ℓ) ≥ ⊤ because of extension. Thus,
min{∆r(WX)} ≥ ⊤ implies that the given CSP is unsatis-
fiable. Because solving CSPs is NP-Hard,∆r(WX) cannot
be tractable.

When r = 1, we have1-projections and1-extensions
which are the backbone of the consistency algorithms of
(G)AC* (Larrosa and Schiex 2004; Lee and Leung 2009;
2012), FD(G)AC* (Larrosa and Schiex 2003; Lee and Leung
2009; 2012) and (weak) ED(G)AC* (de Givry et al. 2005;
Lee and Leung 2010; 2012). Tractable cost functions are
tractable1-projection-safe only under special conditions.
For example, Lee and Leung (2009; 2012) propose suffi-
cient conditions for tractable cost function to be (flow-based)
projection-safe.

A global cost functionWS is flow-based if it can be rep-
resented by a flow networkG such that the minimum cost

flow on G corresponds tomin{WS} (van Hoeve, Pesant,
and Rousseau 2006). Lee and Leung (2009; 2012) prove
that a flow-based projection-safe cost function is flow-based,
and it is still flow-based after1-projections and1-extensions.
Flow-based projection-safety implies tractable1-projection-
safety. We state as the following theorem.

Theorem 2 (Lee and Leung 2009; 2012) If a cost function
is flow-based projection-safe, it is tractable1-projection-
safe.

We also observed that tractable cost functions are not
necessarily tractable1-projection-safe. One example is
2SAT const. Given a set of boolean variablesS, a set of
binary clausesF , and a positive integerc. The cost func-
tion 2SAT const(S, F, c) returns0 if the assignments onS
satisfiesF , or c otherwise.2SAT const is tractable, because
2SAT problem is tractable (Krom 1967). However, it is not
tractable1-projection-safe.

Theorem 3 2SAT const is not tractable1-projection-safe.

Proof: We show that if2SAT const(X , F, k) is tractable1-
projection-safe, the NP-Hard problemW2SAT(X , F, k) is
tractable. Given a set of boolean variableX , a set of bi-
nary clausesF , and a fixed integerk. W2SAT(X , F, k) de-
termines whether there exists an assignment onX such that
at mostk variables inX is set totrue and satisfies all clauses
in F (Creignou, Khanna, and Sudan 2001).

We construct a particular∆1 such thatW2SAT(X , F, k)
can be solved fromWX = 2SAT const(X , F, k) from the
boolean WCSPP = (X ,D, C ∪ {WX }, k+ 1). C only con-
tains unary cost functionsWi for eachxi ∈ X , which re-
turns1 if xi = true and0 otherwise. Based onP , we con-
struct∆1 as follows: for each variablesxi ∈ X , we add an
extension of1 fromWi toWX with respect to the valuetrue
into ∆1. As a result, the tupleℓ with ∆1(WX)(ℓ) = k′ ≤ k
ensures thatk′ variables inℓ is set totrue and satisfyingF ,
becausexi = true will incur a cost of1. Thus, theW2SAT
has a solution iffmin{∆1(WX)} ≤ k. However,W2SAT
is not tractable (Creignou, Khanna, and Sudan 2001), so is
∆1(WX).

When the context is clear, we refer tractable1-projection-
safety,1-projection and1-extension to simply as tractable
projection-safety, projection and extension respectively
hereafter.

Polynomial Decomposability
Lee and Leung (2009; 2012) give one class of tractable
projection-safe cost functions. In this section, we introduce
an additional class, as inspired by dynamic programming al-
gorithms and based on a decomposition of global cost func-
tions.

A cost functionWS can besafely decomposedto a set of
cost functionsΩ = {ωS1

, . . . , ωSm
} using cost aggregation

functionf , whereSi ⊆ S, iff

1. WS(ℓ) = f({ωSi
(ℓ[Si]) | ωSi

∈ Ω})

2. f is distributive, i.e.

(a) min{WSi
} = f({min{ωSi

} | ωSi
∈ Ω}), and;

(b) For a variablex ∈ S, a costα and a tupleℓ ∈ L(S),
WS(ℓ) ⊕ α = f({ωSi

(ℓ[Si]) ⊕ νx,Si
(α) | ωSi

∈ Ω})
andWS(ℓ) ⊖ α = f({ωSi

(ℓ[Si]) ⊖ νx,Si
(α) | ωSi

∈
Ω}), where the functionν is defined asνx,Si

(α) = α
if x ∈ Si, and0 otherwise.

In other words,WS can be represented as a combination
of Ω. A distributive f implies that (a)min(WS) can be
computed frommin{ωSi

} for i ∈ {1, ..., n} and (b) pro-
jections/extensions onWS can be distributed to its compo-
nents. We state the latter directly as the following theorem:
defineδxi,v(WS) as the cost function fromWS after ap-
plying a projection to or extension fromWi with respect to
v ∈ D(xi) if xi ∈ S, orWS if xi /∈ S.

Theorem 4 If WS can be safely decomposed toΩ using
f , thenδxi,v(WS) can also be safely decomposed toΩ′ =
{δxi,v(ωS1

), . . . , δxi,v(ωSm
)} usingf .

Safely decomposable cost functions may not be tractable.
We further give conditions for tractability. A (global) cost
functionWS can bepolynomially decomposedinto a set of
cost functionsΩ = {ωS1

, . . . , ωSm
}, whereSi ⊆ S, if

1. m is polynomial in the size ofS and and maximum do-
main sized,

2. EachωSi
∈ Ω ∪ {ωSm+1

}, whereωSm+1
= WS , is either

a tractable unary cost function, or can be safely decom-
posed intoΩi ⊆ {ωSj

| j < i} using a tractable cost
aggregation functionfi.

Polynomially decomposable cost functions are tractable
and also tractable projection-safe as stated below.

Theorem 5 A polynomially decomposable cost function
WS is tractable.

Proof: Algorithm 1 can be applied to computemin{WS}.
The algorithm uses a recursion approach with memoization.
A table Min is used to store minimum costs of each cost
function to avoid re-computation. Thus,min{ωSi

} is evalu-
ated only once in polynomial time. The time complexity of
Algorithm 1 is based on the worst-case time complexity of
computing each tractable functionfi. Result follows.

Function ComputeMin(WS)
foreach 1 ≤ i ≤ m+ 1 do Min [ωSi

] := NULL ;
return Eval (ωSm+1

);

Function Eval(ωSi
)

if Min [ωSi
] = NULL then

if Ωi = ∅ or |Si| ≤ 1 then
Min [ωSi

] :=min{ωSi
};

else
Pi := ∅;
foreach ωSj

∈ Ωi do
Pi := Pi ∪ {Eval(ωSj

)};

Min [ωSi
] := fi(Pi);

return Min [ωSi
];

Algorithm 1: Computemin{WS}

The following lemma is useful in proving our final result.

Lemma 1 SupposeW ′
S is the cost function fromWS af-

ter applying a projection to or a extension fromWi, where
xu ∈ S, with respect tov ∈ D(xi). If WS is polynomially
decomposable, so isWS .

Proof: We only prove on the part of projection, while the
proof on extension is similar.

Consider a cost functionωSi
∈ Ω ∪ {ωSm+1

}, where
ωSm+1

= WS . If ωSi
is a tractable unary cost function,

then after applying projection onωSi
, the resultant cost

function is ω′
Si
(ℓ) = ωSi

(ℓ) ⊖ νxu,Si
(α), which is still

tractable; if ωSi
can be safety decomposed intoΩi ⊆

{ωS1
, . . . , ωSi−1

} using fi, by Theorem 4, the resultant
functionω′

S after projection can also be safety decomposed
into Ω′

i ⊆ {ω′
S1
, . . . , ω′

Si−1
} usingfi. Sincem and eachfi

are unchanged,W ′
S can be polynomially decomposed into a

{ω′
S1
, . . . , ω′

Sm
}. Result follows.

Directly from Lemma 1,WS is tractable projection-safe,
as stated below.

Theorem 6 If WS is polynomially decomposable, it is
tractable projection-safe.

We present another useful class of projection-safe global
functions. Algorithm 1 also gives an efficient algorithm to
compute the minimum cost. In the following, we give exam-
ples of this class of cost functions.

Examples
Checking if a cost functionWS is polynomially decompos-
able amounts to finding a polynomially sized set of simpler
cost functions that can be combined using a distributive cost
aggregation function to computeWS . In the following, we
state without proof a distributive aggregation function for
use in the rest of this section.

Lemma 2 If a global cost functionWS can be represented
asWS(ℓ) = minri=1

{
⊕ni

j=1
ωSi,j

(ℓ[Si,j])} , where:

•
∑r

i=1
ni is polynomial in|S| andd, and;

• for eachi, Si,j ∩ Si,k = ∅ iff j 6= k and
⋃ni

j Si,j = S,

thenWS is safely decomposable.

In the following, we give five examples of polynomi-
ally decomposable cost functions. They areSOFT AMONG,
SOFT REGULAR, SOFT GRAMMAR, MAX WEIGHT and
MIN WEIGHT cost functions. For simplicity, we assume the
scope of each global cost function isS = {x1, . . . , xn}.

The SOFT AMONG Cost Function
Given a set of valuesV , the lower boundlb and the upper
boundub such that0 ≤ lb ≤ ub ≤ |S|. Define t(ℓ) =
|{i | ℓ[xi] ∈ V }|. The SOFT AMONGvar(S, lb, ub, V) re-
turnsmax(0, lb− t(ℓ), t(ℓ)− ub) (Solnon et al. 2008).

Theorem 7 The SOFT AMONGvar cost function is polyno-
mially decomposable and thus tractable projection-safe.

Proof:
Assume WS = SOFT AMONGvar(S, lb, ub, V). De-

fine ωj
Si

= SOFT AMONGvar(Si, j, j, V), where Si =

{x1, . . . , xi} ⊆ S. Eachωj
Si

can be represented recursively
as follows.

Definefω(i, j, ℓ) = ωj
Si
(ℓ). Eachfω(i, j, ℓ) can be repre-

sented as follows:

fω(0, j, ℓ) = j

fω(i, 0, ℓ) = fω(i− 1, 0, ℓ[Si−1])⊕ U
V

i (ℓ[xi])
for i > 0

fω(i, j, ℓ) = min

{

fω(i− 1, j − 1, ℓ[Si−1])⊕ UV
i (ℓ[xi])

fω(i− 1, j, ℓ[Si−1])⊕ U
V

i (ℓ[xi])
for j > 0, i > 0

The functionUV
i (v), wherev ∈ D(xi), returns0 if v ∈

V , or 1 otherwise, while the functionU
V

i (v) returns0 if
v /∈ V , or 1 otherwise. For all tuplesℓ ∈ L(S), WS(ℓ) =
minlb≤j≤ub{fω(n, j, ℓ)}. By Lemma 2,SOFT AMONGvar

S is
safely decomposable, so isω(Si, j). By Theorem 6, results
follow.

From the formulation in Theorem 7, the time complexity
of enforcing GAC* onSOFT AMONGvar can be stated as
follows:

Theorem 8 Enforcing GAC* on SOFT AMONGvar re-
quires O(nd(n2 + nd)), where n = |S| and d =
maxxi∈S{|D(xi)|}.

The SOFT REGULAR Cost Function
A regular languageL(M) can be represented by a finite state
automaton (DFA)M = (Q,Σ, δ, q0, F). Q is a set of states.
Σ is a set of characters. The transition functionδ is defined
as:δ : Q × Σ 7→ Q. q0 ∈ Q is the initial state, andF ⊆ Q
is the set of final states. A stringτ ∈ L(M) if τ can lead
the transitions fromq0 to qf ∈ F in M . The constraint
REGULARS(M) accepts a tupleℓ ∈ L(S) if τℓ ∈ L(M),
whereτℓ is the string formed fromℓ (Pesant 2004). The cor-
responding soft variantSOFT REGULARvar(S,M) returns
min{H(τℓ, τi) | τi ∈ L(M)}, whereH(τ1, τ2) returns the
Hamming distance betweenτ1 andτ2 (Beldiceanu, Carls-
son, and Petit 2004; van Hoeve, Pesant, and Rousseau 2006).

Theorem 9 SOFT REGULARvar is polynomially decompos-
able and thus tractable projection-safe.

Proof: Results follow directly from the directed DAG repre-
sentation ofSOFT REGULARvar (Beldiceanu, Carlsson, and
Petit 2004; van Hoeve, Pesant, and Rousseau 2006), Lemma
2 and Theorem 6.

Note that the result collides with Theorem18 by Lee and
Leung (2012). The time complexity of enforcing GAC* on
SOFT REGULARvar can be stated as follows:

Theorem 10 Enforcing GAC* onSOFT REGULARvar re-
quiresO(nd(nd · |Q|)), wheren andd are defined in Theo-
rem 8.

Note that the time complexity involves|Q|, which can pos-
sibly dominate overn andd in some cases. In practice,|Q|
is typically a constant, or polynomial inn andd, which does
not dominate the run-time.

Theorem 10 also gives another proof of the tractable1-
projection-safety ofSOFT AMONG cost functions. The size
of the DFA representing the AMONG constraint is polyno-
mial in n.

The SOFT GRAMMAR Cost Function
A context-free languageL(G) can be represented as a
context-free grammarG = (Σ, N, P,A0). Σ is a set of
characters called terminals.N is a set of symbols called
non-terminals.P is a set of production rules fromN to
(Σ ∪ N)∗, where∗ is the Kleene star.A0 ∈ N is a start-
ing symbol. A stringτ ∈ L(G) iff τ can be derived from
G. The constraintGRAMMAR(S,G) accepts a tupleℓ ∈
L(S) if τℓ ∈ L(G) (Kadioglu and Sellmann 2010). Its soft
variantSOFT GRAMMARvar(S,G) returnsmin{H(τℓ, τi) |
τi ∈ L(G)} respectively (Katsirelos, Narodytska, and Walsh
2011).

Theorem 11 SOFT GRAMMARvar(S,G) is polynomially
decomposable and thus tractable projection-safe.

Proof: Results follow from a direct adaptation of the mod-
ified CYK parsing algorithm (Katsirelos, Narodytska, and
Walsh 2011) which is based on dynamic programming,
Lemma 2 and Theorem 6.

The time complexity can be stated as follows.

Theorem 12 Enforcing GAC* onSOFT GRAMMARvar
S re-

quiresO(nd((n3 + nd) · |P |)). n andd are defined in The-
orem 8.

Again, in practice,|P | is a constant, or polynomial inn
andd,

Again, the time complexity involves|P |, which does not
dominate the run-time.

Note that Theorem 12 gives another proof of showing
that SOFT AMONG and SOFT REGULAR are tractable1-
projection-safe if the number of states in the DFA is con-
stant, or polynomial inn andd. A DFA with polynomial
number of states can be transformed into a grammar with
polynomial number of production rules.

The MAX WEIGHT/M IN WEIGHT Cost Functions
Given a weight functionc(xi, v) that maps a variable-value
pair to a fixed cost. TheMAX WEIGHT(S, c) function returns
max{c(xi, ℓ[xi]) | xi ∈ S}, while theMIN WEIGHT(S, c)
function returnsmin{c(xi, ℓ[xi]) | xi ∈ S} for each
tuple ℓ ∈ L(S). Note that they can be regarded the
weighted version of theMAXIMUM /MINIMUM hard con-
straints (Beldiceanu 2001).

Theorem 13 MAX WEIGHT(S, c) and MIN WEIGHT(S, c)
are polynomially decomposable, and thus tractable
projection-safe.

Proof: Note that direct decomposition from definition is
unsafe. In the following, we give a safe decomposition
of MAX WEIGHT(S, c), while that ofMIN WEIGHT(S, c) is
similar.

We define two unary functionsHu
i andGj,u

i . Hu
i (v) re-

turnsc(xi, v) if v = u and⊤ otherwise.Gj,u
i returns0 if

c(xi, v) ≤ c(xj , u) and⊤ otherwise. They give a safe de-
composition forMAX WEIGHT as follows:

MAX WEIGHTS(c)(ℓ) = min
xi∈S,v∈D(xi)

{Hv
i (ℓ[xi])⊕

⊕

xj∈S\{xi}

G
i,v
j (ℓ[xj])}

Hv
i represents the choice of the maximum weighted com-

ponent in the tuple, whileGi,v
j represents the choice of each

component other than the one with the maximum weight. By
Lemma 2 and Theorem 6, results follow.

Theorem 14 Enforcing GAC* onMAX WEIGHT(S, c) or
MIN WEIGHT(S, c) requiresO(nd(nd · log(nd))), wheren
andd are defined in Theorem 8.

Note that the time complexity results stated above assume
that we compute the minimum every time we need to find
the support for each variable. In practice, the computation
can be incremental, thus with a lower time complexity.

In the next section, we put theory into practice. We
demonstrate our framework with different benchmarks and
compare results with different consistency notions.

Experiments
In this section, we put theory into practice, by implement-
ing the cost functions described in the previous section in
Toulbar2 v0.9 to demonstrate the practicality of our algorith-
mic framework in solving over-constrained and optimiza-
tion problems. We also compare the results with strong∅IC,
GAC* and FDGAC*, which have covered all three cases:0-
projections,1-projections and1-extensions.

In the experiments, variables are assigned in lexico-
graphic order. Value assignment starts with the value with
the minimum unary cost. The tests are conducted on an Intel
Core2 Duo E7400 (2 x 2.80GHz) machine with 4GB RAM.
Each benchmark has a different timeout. We first compare
the number of solved instances. Among the solved instances,
we report and compare their average run-time and number of
backtracks. Out of 10 randomly generated test cases of each
parameter setting, the best results are marked using the ‘†’
symbol.

The Car Sequencing Problem The problem (CSPLib
prob001) (Parrello, Kabat, and Wos 1986) consists of se-
quencingn cars specified with different options on an as-
sebly line. The model consists ofn variables and count-
ing requirements. We generate over-constrained instances
and soften the model using theSOFT AMONGvar and
SOFT GCCvar cost functions.

Table 1 gives the experimental results. The results show
that enforcing FDGAC* reduces the number of backtracks
at least25 times more than strong∅IC, and10 times more
than GAC*. Besides, enforcing FDGAC* runs at least1.2
times faster than GAC*, and4 times faster than strong∅IC.

Table 1: Car sequencing problem (timeout=5min)
n strong∅IC GAC* FDGAC*

solved time backtracks solved time backtracks solved time backtracks
14 †10 42.84 234537 †10 16.80 67842 †10 †1.37 †1607
15 8 136 715754 †10 29.75 109085 †10 †4.49 †4978
16 3 178.98 834998 8 133.08 434969 †10 †6.90 †6179
17 1 163.73 830343 2 130.14 387446 †10 †48.07 †35218

The Nonogram Problem The problem (CSPLib prob012)
(Ishida 1994) is a typical board puzzle to shade blocks in an

n× n board. The requirements involve patterns. The model
consists ofn2 variables andSOFT REGULARvar cost func-
tions.

Table 2 shows the results of the experiment. In a time limit
of 5 minutes, enforcing strong∅IC could only solve rela-
tively small instances (n = 6). Enforcing GAC* could solve
relatively larger ones (n = 8). For n = 10, all instances
can only be solved when FDGAC* is enforced, and each in-
stance is solved within a minute.

Table 2 also gives the comparison on the
SOFT REGULARvar function when it is enforced
by polynomially decomposable approach and flow-
based projection-safe approach (Lee and Leung 2009;
2012). The two approaches result in the same search tree
when we enforce the same consistency, but the run-time
varies. Results show that using the polynomially decompos-
able approach speeds up searching by at least3 times than
using the flow-based projection-safe approach, due to the
large constant factor behind the flow algorithm.

Table 2: Nonogram (timeout=5min)
polynomially decomposable approach

n strong∅IC GAC* FDGAC*
solved time backtrack solved time backtrack solved time backtrack

6 †10 9.50 150167 †10 0.03 763 †10 †0.00 †109
7 1 245.17 2627322 †10 3.88 72811 †10 † 0.03 †345
8 0 * * 7 113.76 1730882 †10 †0.12 †842
9 0 * * 2 52.85 764467 †10 †0.34 †1500
10 0 * * 0 * * †10 †11.78 †22828

flow-based approach
n strong∅IC GAC* FDGAC*

solved time backtrack solved time backtrack solved time backtrack
6 9 25.23 72130 †10 0.32 763 †10 0.05 109
7 0 * * †10 60.84 72811 †10 0.48 345
8 0 * * 1 26.59 28166 †10 2.04 842
9 0 * * 1 151.38 83479 †10 5.87 1500
10 0 * * 0 * * 9 40.67 4848

Well-formed Parentheses Given a set of2n even length
intervals in [1, . . . , 2n]. The problem is to find a string
of parentheses with length2n such that substrings in
each of the intervals are well-formed parentheses. We
model this problem by a set of2n variables. We post a
SOFT GRAMMARvar cost function for each interval to rep-
resent the requirement of well-formed parentheses.

Results are shown in Table 3. Enforcing FDGAC* re-
duces the search space6 times and thus speeds up the search
20 times more than∅IC. Enforcing FDGAC* always out-
performs GAC* by up to6 times in terms of search space
reduction and3 times in term of runtime.

Table 3: Well-formed parentheses (timeout=5min)
n strong∅IC GAC* FDGAC*

solved time backtracks solved time backtracks solved time backtracks
10 †10 6.36 5552 †10 0.54 408 †10 †0.43 †172
11 †10 17.38 10253 †10 1.48 784 †10 †0.92 †245
12 †10 47.19 22668 †10 3.38 1383 †10 †2.08 †394
13 9 90.94 34435 †10 6.98 2175 †10 †2.89 †440
14 4 176.1 59756 †10 31.99 7208 †10 †7.75 †765
15 0 * * †10 56.43 9705 †10 †15.59 †1026
16 0 * * †10 85.58 14825 †10 †20.12 †1367
17 0 * * 6 158.16 25546 †10 †54.94 †3346

The Minimum Energy Broadcasting Problem The task
(CSPLib prob048) (Burke and Brown 2007) is to find a

broadcast tree that minimizes the sum of the energy con-
sumed byn wireless routers in a network. The model
consists ofn variables, and one hard global constraint
TREE (Beldiceanu, Carlssoon, and Rampon 2005) and
MAX WEIGHT(X , ci) cost functions. We also implement the
GAC enforcement algorithm of theTREE constraint from
Beldiceanuet al. (2005).

Results are shown in Table 4, which is different from
the previous experiments. FDGAC* can reduce the search
spaces up to6 times more than GAC*, but runs2 times
slower than GAC*. The hardTREE global constraint ac-
counts for the results, which can only achieve strong∅IC
and GAC* but not FDGAC*.

Table 4: Minimum energy broadcast (timeout=10min)
n m strong∅IC GAC* FDGAC*

solved time backtrack solved time backtrack solved time backtrack
20 40 †10 8.03 61806 †10 †1.64 9080 †10 2.03 †1352
20 60 †10 26.08 153237 †10 †13.54 55317 †10 37.77 †16694
20 100 †10 13.55 69453 †10 †12.50 37323 †10 41.78 †12106
25 50 †10 72.55 303422 †10 †15.34 52855 †10 15.48 †4849
25 75 5 301.68 1044058 †7 †229.10 625415 5 176.45 †34108
25 125 †5 50.27 121473 †5 †43.04 73262 3 166.85 †22005
30 60 4 216.44 557575 †9 †101.33 233610 †9 118.48 †21424
30 90 1 401.92 1050414 †2 †162.63 293660 1 305.96 †43238

Conclusion
Bessiereet al. (2011) suggest another decomposition of
global cost functions into simpler functions in table form
based on the Berge-acyclic property. Their example is based
on theREGULAR global constraint, and the decomposition
is one level directly onto ternary functions. In the case of
a polynomially decomposable cost function, the decom-
position can be recursive, which is amenable to efficient
minimum cost computation utilizing dynamic programming
techniques.

Our contributions are four-fold. First, we define the
tractabler-projection-safetyproperty, and study the prop-
erty with respect to projections/extensions with differ-
ent arities of cost functions. We show that projection-
safety is always possible for projections/extension to/from
the nullary cost function, while it is alway impossi-
ble for projections/extensions to/fromr-ary cost func-
tions for r ≥ 2. When r = 1, we show that a
tractable cost function may or may not be tractable1-
projection-safe. Second, we definepolynomially decom-
posable cost functionsand show them to be tractable1-
projection-safe. We give also a polytime dynamic program-
ming based algorithm to compute the minimum cost of
this class of cost functions. Third, we further show that
the cost functionsSOFT AMONGvar , SOFT REGULARvar,
SOFT GRAMMARvar , andMAX WEIGHT/MIN WEIGHT, are
polynomially decomposable and tractable1-projection-safe.
Fourth, we perform experiments and compare typical WCSP
consistency notions and shows that our algorithm framework
works well with GAC* and FDGAC* enforcement, in terms
of run-time and reduction in search space. We also com-
pare against the flow-based approach (Lee and Leung 2009;
2012) and show that our approach is more competitive.

The concept of polynomial decomposability is inspired
by a simple dynamic programming approach. It is unclear

if we can go beyond dynamic programming and yet main-
tain tractability. An immediate possible future work is to
characterize exactly the class of polynomial decomposable
cost functions. It will also be interesting to investigate other
forms of sufficient conditions for polynomial decomposabil-
ity. The sufficient conditions given in Lemma 2 provides
only a partial answer.

On the practical side, besides polynomial decomposabil-
ity and flow-based project-safety (Lee and Leung 2009;
2012), we would like to investigate other forms of tractable
1-projection-safety and techniques for enforcing typical
consistency notions efficiently. It is also interesting to inves-
tigate possibility to apply our framework to other stronger
consistency notions such as VAC (Cooper et al. 2010).

Acknowledgements
We are grateful to comments and suggestions by Thomas
Schiex and the anonymous referees. The work de-
scribed in this paper was generously supported by grants
CUHK413808 and CUHK413710 from the Research Grants
Council of Hong Kong SAR.

References
Beldiceanu, N.; Carlsson, M.; and Petit, T. 2004. Deriving
Filtering Algorithms from Constraint Checkers. InProceed-
ings of CP’04, 107–122.

Beldiceanu, N.; Carlssoon, M.; and Rampon, J. 2005. The
Tree Constraint. InProceedings of CPAIOR’05, 64–75.

Beldiceanu, N. 2001. Pruning for the Minimum Constraint
Family and for the Number of Distinct Values Constraint
Family. InProceedings of CP’01, 211–224.

Bessiere, C.; Boizumault, P.; de Givry, S.; Gutierrez, P.;
Loudni, S.; Metivier, J.; and Schiex, T. 2011. Decomposing
Global Cost Functions. InProceedings of Soft’11 Workshop
(at CP’11).

Burke, D., and Brown, K. 2007. Using Relaxations to Im-
prove Search in Distributed Constraint Optimization.Artifi-
cial Intelligence Review28(1):35–50.

Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; Zytnicki,
M.; and Werner, T. 2010. Soft Arc Consistency Revisited.
Artificial Intelligence174:449–478.

Cooper, M. C. 2005. High-Order Consistency in Valued
Constraint Satisfaction.Constraints10(3):283–305.

Creignou, N.; Khanna, S.; and Sudan, M. 2001. Complexity
Classifications of Boolean Constraint Satisfaction Problems.
SIAM Monographs on Discrete Mathematics and Applica-
tions7.

de Givry, S.; Heras, F.; Zytnicki, M.; and Larrosa, J. 2005.
Existential Arc Consistency: Getting Closer to Full Arc
Consistency in Weighted CSPs. InProceedings of IJCAI’05,
84–89.

Ishida, N. 1994. Game “NONOGRAM”(in Japanese).
Mathematical Seminar10:21–22.

Kadioglu, S., and Sellmann, M. 2010. Grammar Constraints.
Constraints15(1):117–144.

Katsirelos, G.; Narodytska, N.; and Walsh, T. 2011. The
Weighted GRAMMAR Constraints.Annals of Operations
Research184(1):179–207.
Krom, M. 1967. The Decision Problem for a Class of First-
Order Formulas in Which all Disjunctions are Binary.Math-
ematical Logic Quarterly13(1-2):15–20.
Larrosa, J., and Schiex, T. 2003. In the Quest of the Best
Form of Local Consistency for Weighted CSP. InProceed-
ings of IJCAI’03, 239–244.
Larrosa, J., and Schiex, T. 2004. Solving Weighted CSP by
Maintaining Arc Consistency.Artificial Intelligence159(1-
2):1–26.
Lee, J. H. M., and Leung, K. L. 2009. Towards Effi-
cient Consistency Enforcement for Global Constraints in
Weighted Constraint Satisfaction. InProceedings of IJ-
CAI’09, 559–565.
Lee, J. H. M., and Leung, K. L. 2010. A Stronger Con-
sistency for Soft Global Constraints in Weighted Constraint
Satisfaction. InProceedings of AAAI’10, 121–127.
Lee, J. H. M., and Leung, K. L. 2012. Consistency Tech-
niques for Flow-Based Projection-Safe Global Cost Func-
tions in Weighted Constraint Satisfaction.Journal of Artifi-
cial Intelligence Research43:257–292.
Parrello, B.; Kabat, W.; and Wos, L. 1986. Job-shop
Scheduling using automated reasoning: A Case Study of the
Car-Sequence problem.Journal of Automated Reasoning
2(1):1–42.
Pesant, G. 2004. A Regular Language Membership Con-
straint for Finite Sequences of Variables. InProceedings of
CP’04, 482–495.
Sanchez, M.; de Givry, S.; and Schiex, T. 2008. Mendelian
Error Detection in Complex Pedigrees using Weighted Con-
straint Satisfaction Techniques.Constraints13(1):130–154.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued Con-
straint Satisfaction Problems: Hard and Easy Problems. In
Proceedings of IJCAI’95, 631–637.
Solnon, C.; Cung, V.; Nguyen, A.; and Artigues, C. 2008.
The Car Sequencing Problem: Overview of State-of-the-Art
Methods and Industrial Case-Study of the ROADDEF’2005
Challege Problem.European Journal of Operational Re-
search191(3):912–927.
van Hoeve, W.-J.; Pesant, G.; and Rousseau, L.-M. 2006.
On Global Warming: Flow-based Soft Global Constraints.
J. Heuristics12(4-5):347–373.
Zytnicki, M.; Gaspin, C.; and Schiex, T. 2009. Bounds Arc
Consistency for Weighted CSPs.Journal of Artificial Intel-
ligence Research35:593–621.

