Polynomially Decomposable Global Cost Functionsin
Weighted Constraint Satisfaction

JH.M.Lee K.L.Leungand Y. Wu
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR
{jlee,klleung,ywy @cse.cuhk.edu.hk

Abstract

In maintaining consistencies, such as GAC*, FDGAC* and
weak EDGAC?*, for global cost functions, Weighted CSP
(WCSP) solvers rely on the projection and extension oper-
ations, which entail the computation of the cost functions’
minima. Tractability of this minimum computation is es-
sential for efficient execution. Since projections/exiens
modify the cost functions, an important issuetiactable
projection-safetyconcerning whether minimum cost compu-
tation remains tractable after projections/extensions.

In this paper, we prove that tractable projection-safetsl-is
ways possiblefor projections/extensions to/from the nullary
cost function Wy), and alwaysimpossible for projec-
tions/extensions to/fromm-ary cost functions fom > 2.
Whenn = 1, the answer is indefinite. We give a simple neg-
ative example, while Lee and Leung’s flow-based projection-
safe cost functions are also tractable projection-safe.

We propose polynomially decomposableost functions,
which are amenable to tractable minimum computation.
We further prove that the polynomial decomposability
property is unaffected by projections/extensions to/from
unary cost functions. Thus, polynomially decomposable
cost functions are tractable projection-safe. We show that
the SOFT.AMONG, SOFT_.REGULAR, SOFT.GRAMMAR and
MAX _WEIGHT/MIN _WEIGHT are polynomially decompos-
able. They are embedded in a WCSP solver for extensive
experiments to confirm the feasibility and efficiency of our
proposal.

I ntroduction

Weighted Constraint Satisfaction Problems (WCSPs) give a
framework for modeling and solving over-constrained and
optimization problems. Besides being equipped with an ef-
ficient branch and bound procedure augmented with power-
ful consistency techniques, a practical WCSP solver should
have a good library of global cost functions to model the
often complex scenarios in real-life applications. Enifogc
WCSP consistencies on a global cost function efficiently re-
lies on two operations: (a) computing the minima of the cost
functions and (b) projecting and/or extending costs among
functions to create pruning opportunities. Global costfun
tions usually have high arities, but their special semantic

Copyright(©) 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

enables specialized polynomial time algorithms for comput
ing the minima. Unfortunately, projections/extensionsimo
ify a cost function so that its structure and even semantics
might change, possibly making the original minimum com-
putation algorithm no longer applicable. Therefore, thg ke
notions here igractable projection-safetywhich concerns

if the minimum computation of a projected/extended global
cost function remains tractable.

In this paper, we first study tractable projection-safety
in different scenarios of projections and extensions. We
prove that a tractable cost function is always tractable
projection-safe after projections/extensions to/frome th
nullary cost function{V’z), and always intractable after pro-
jections/extensions to/from-ary cost functions fom >
2. Whenn = 1, the answer is indefinite. While flow-
based projection-safe cost functions (Lee and Leung 2009;
2012) are positive examples of tractable projection-safe
cost functions, we give a simple tractable global cost func-
tions and show how it becomes intractable after projec-
tions/extensions to/from unary cost functions.

We introducepolynomially decomposablglobal cost
functions, which can be decomposed into a polynomial num-
ber of simpler cost functions for (minimum) cost calcu-
lation. Computing minima of such cost functions, which
is usually done by a polynomial time recursive memo-
ization algorithm (or dynamic programming), is tractable
and remains tractable after projections/extensions. ;Thus
polynomially decomposable cost functions are tractable
projection-safe. Adding to the existing repertoire of gbb
cost functions, we further prove that the global cost func-
tions SOFT_.AMONG, SOFT_REGULAR, SOFT_.GRAMMAR,
andMAX _WEIGHT/MIN _WEIGHT, are polynomially decom-
posable. To demonstrate the feasibility of our proposal, we
implement and embed these cost functions in Toulbar2 and
conduct experiments using four benchmarks to evaluate the
performance with different consistency enforcements.

Background

A WCSP(Schiex, Fargier, and Verfaillie 1995) is a tuple
(X,D,C,T). X is a set of variablegz1,22,...,2,} or-
dered by their indices. Each variable has its finite domain
D(x;) € D containing maximund values that only one can
assign taz;. Atuplel € L(S) = D(zs,) X ... x D(zs,) is
used to represent an assignmentoe- {z,,...,zs, } C

X. The notatior/[z;] denotes the value assignedatpin /,
and/[S’] denotes the tuple formed from projectidgnto
S’ C S.C is a set of cost functions. Each cost function
Ws € C has its scop& C X, and mapg € L£(S) to a cost
in the valuation structur® (T) = ([0...T],®,<). V(T)
contains a set of integef8. .. T| with standard integer or-
dering<. Addition & is defined byu © b = min(T,a + b).
The subtractiors is defined only fow > b, asa©b =a—b
if a < T, andT otherwise. In particular, we definé’,
as the nullary cost function returning a constant cost, and
W, as the unary cost function over. We assume the ex-
istence of Wy and W; for each variabler;. Otherwise,
we assuméV;(v) = 0 for v € D(z;) and Wy = 0.
The costof a tuple? € L(X) in a WCSP is defined as
cost(l) = Wa & @y, ce () Ws([S]). Furthermore, a
tuple/ is asolutionof a WCSP ifcost(£) is minimum among
all tuplesinl(X).

WCSPs are usually solved by basic branch-and-bound

search augmented with consistency techniques, which help

pruning infeasible values and increase the valudiof
while keeping the cost of all tuples i X') unchanged. Dif-

ferent consistency notions have been proposed such as NC*

(Larrosa and Schiex 2004), AC* (Larrosa and Schiex 2004),
FDAC* (Larrosa and Schiex 2003) and EDAC* (de Givry et
al. 2005). Consistency enforcement usually involves three
operations: (1) finding the minimum cost returned by the
cost functions among all (or part of) tuples, (2) projecting
costs to and (3) extending costs from smaller-arity costfun
tions. For simplicity, we writemin{Wg(¢) | £ € L(S)}
asmin{Ws}. We adopt definition of projection and exten-
sion from Cooper (2005) as follows. Give#y C S; and
|S2| = r. An r-projectionof costa from Wg, to W, with
respect tod € L(S3) is a transformation ofWs, , Wg,) to
(Ws,, W,) such that:

b | Ws,(0)ea, S)]=¢
Ws, (£) = Wsi @), otherwise

/ N Ws (6/)@057 V=1
Ws, (¢) = Wsz), otherwise

Extension is the reverse of projection. Arextensiorof cost
a from Wy, to Wg, with respecttd € L(S) is a transfor-
mation of(Ws, , Ws,) to (W5, , Wg,) such that:

r oo | Wi ()@, [S:]=¢
Ws, (£) = Wsi (0", otherwise

/ AN Wi, (2/)@(1, V=1t
Ws, (£) = Wsz @), otherwise

Note that we allowsSs @ in the definition, which is a
projection to or an extension froiy.

A global cost functionis a cost function with special
semantics, based on which efficient algorithms can be de-
signed for consistency enforcements. In particular, we de-
note a global cost function &CY% if it is derived from the
corresponding hard global constrai@C' with a violation
measurg. and variable scop8. GC% returns how much a
tuple onS has violated the original hard constraint, if
the tuple satisfies the constraint.

Tractable Projection Safety

A global cost functionWg is tractable if computing
min{Wg} is tractable under standard integer operations.

FurthermorelVs is tractabler-projection-safef (a) Wy is
tractable, and (b}\, (W) is tractable wheré\,. is a finite
sequence of-projection and/or-extension from/to other
cost functions¥’g, where|S’| = r < |S|, andA,(Ws) is
the cost function after applying.,.. Note that, in practice,
we do not enforce the costs not exceedingince it is ex-
pensive and tedious to maintain. When it comes to pruning,
we treat any cost beyond practically asT .

We divide the discussion of tractabteprojection-safety
into three cases: (&)= 0, (b)r > 2 and (¢c)r = 1.

When r 0, projections and extensions are only
to/from Wy, which are employed i@ IC (Zytnicki, Gaspin,
and Schiex 2009) and stronglC (Lee and Leung 2009;
2012) enforcement. If a cost function is tractable, it remai
tractable after applyind\o, sinceAy(Ws) and Wy differ
only by a constant.

Observation 1 If a cost functionWys is tractable, it is
tractable(-projection-safe.

Whenr > 2, projections and extensions are to/fram
arity cost functions, and required for enforcing consisten
cies in ternary cost functions (Sanchez, de Givry, and Schie
2008) and completé-consistency (Cooper 2005). In gen-
eral, even if a cost functioly is tractable s may not be
tractabler-projection-safe for > 2.

Theorem 1 If a global cost functioiV is tractable, it is not
tractabler-projection-safe for > 2.

Proof: We show that ifi¥/ is tractabler-projection-safe
for » > 2, then solving a general CS®', D,C") becomes
tractable, which is a contradiction. Without loss of gefiera
ity, we assume the scopeof all constraints irC%2 € C" has
sizer. We define a WCSH’ and construct a particulak,
based onP such that the CSP can be solved Ay(Wy).
P is defined ag X, D,C U {Wx}, T) based on the given
CSP as follows. We definé as a sufficiently large integer
such thafT > Wx (¢) for everyl € L(X). C contains|/C"|
cost functionsWg € C is defined fromC% asWg(¢) = 0
if ¢ is accepted byC%, or T otherwise. From the WCSP,
A, can be defined as follows: for each forbidden tufji]
in eachC! € C", we add an extension of from W to
Wa with respect to/[S] to A,.. Under this construction,
A (Wx)(0) is equivalent toWx (£) & @y, cc Ws(€[S)).
If a tuple ¢ € L(X) contains a tuple/[S] forbidden by
Ch e Ch, A.(Wx)(¢) > T because of extension. Thus,
min{A,(Wx)} > T implies that the given CSP is unsatis-
fiable. Because solving CSPs is NP-Hafd,(Wx) cannot
be tractable. |
Whenr = 1, we havel-projections andl-extensions
which are the backbone of the consistency algorithms of
(G)AC* (Larrosa and Schiex 2004; Lee and Leung 2009;
2012), FD(G)AC* (Larrosa and Schiex 2003; Lee and Leung
2009; 2012) and (weak) ED(G)AC* (de Givry et al. 2005;
Lee and Leung 2010; 2012). Tractable cost functions are
tractable 1-projection-safe only under special conditions.
For example, Lee and Leung (2009; 2012) propose suffi-
cient conditions for tractable cost function to be (flow-&d)s
projection-safe.
A global cost functioriVg is flow-based if it can be rep-
resented by a flow networl such that the minimum cost

flow on G corresponds tanin{Ws} (van Hoeve, Pesant,

and Rousseau 2006). Lee and Leung (2009; 2012) prove

that a flow-based projection-safe cost function is flow-dase
and it is still flow-based aftelr-projections and-extensions.
Flow-based projection-safety implies tractablprojection-
safety. We state as the following theorem.

Theorem 2 (Lee and Leung 2009; 2012) If a cost function
is flow-based projection-safe, it is tractableprojection-
safe.

We also observed that tractable cost functions are not
necessarily tractabld-projection-safe. One example is
28 AT ™' Given a set of boolean variables a set of
binary clauses”, and a positive integet. The cost func-
tion 2S5 AT°"'(S, F, ¢) returns if the assignments o
satisfiesF, or ¢ otherwise 25 AT“°™" s tractable, because
2SAT problem is tractable (Krom 1967). However, it is not
tractablel -projection-safe.

Theorem 3 25 AT°™" is not tractablel -projection-safe.

Proof: We show that iRSAT"" (X, F, k) is tractablel -
projection-safe, the NP-Hard proble®@SAT (X, F, k) is
tractable. Given a set of boolean variabte a set of bi-
nary claused”, and a fixed integek. VRSAT(X, F, k) de-
termines whether there exists an assignment@uch that
at mostk variables inX is set tatrue and satisfies all clauses
in F' (Creignou, Khanna, and Sudan 2001).

We construct a particula; such thaM2SAT(X, F, k)
can be solved fronWy = 2SAT™"(X, F, k) from the
boolean WCSHP = (X, D,CU{Wx},k+ 1).C only con-
tains unary cost functiond’; for eachz; € X, which re-
turns1 if z; = true and0 otherwise. Based oR, we con-
structA; as follows: for each variables, € X', we add an
extension ofl from W, to W with respect to the valug-ue
into A;. As a result, the tuplé with Ay (Wx)(¢) = K < k
ensures thatt’ variables in/ is set totrue and satisfying?,
becauser; = true will incur a cost ofl. Thus, theA2SAT
has a solution iffmin{A;(Wx)} < k. However,WV2SAT

(b) For a variabler € S, a costa and a tuple € £(.5),
Ws(0) @ o = f({ws, (E[S:]) ® vas,(0) | ws, € Q)
andWs(6) © a = [({ws, (1[Si]) © vs.5,(a) | ws, €
Q}), where the functiow is defined as/, s, () = «
if z € S;, and0 otherwise.

In other words,Wg can be represented as a combination
of Q. A distributive f implies that (a)min(Ws) can be
computed frommin{wg,} fori € {1,...,n} and (b) pro-
jections/extensions oi/s can be distributed to its compo-
nents. We state the latter directly as the following theorem
defined,, ,(Ws) as the cost function fromis after ap-
plying a projection to or extension from¥; with respect to

v € D(x;)ifx; € S,orWgif z; ¢ S.

Theorem 4 If Wg can be safely decomposed @ using
f. thend,, ,(Ws) can also be safely decomposedio=
Op; w(Wsy)s -+, 0g; w(ws,,)} USINGf.

Safely decomposable cost functions may not be tractable.
We further give conditions for tractability. A (global) dos
function Wg can bepolynomially decomposeédto a set of
cost functions? = {wg,, ..., ws,, }, whereS; C S, if

1. m is polynomial in the size of and and maximum do-
main sized,

Eachws, € QU {ws,,., }, wherews,, ., = W, is either

a tractable unary cost function, or can be safely decom-
posed intof); C {ws, | j < i} using a tractable cost
aggregation functiorf;.

Polynomially decomposable cost functions are tractable
and also tractable projection-safe as stated below.

Theorem 5 A polynomially decomposable cost function
Wy is tractable.

Proof: Algorithm 1 can be applied to computein{Ws}.

The algorithm uses a recursion approach with memoization.
A table M n is used to store minimum costs of each cost
function to avoid re-computation. Thusjn{ws, } is evalu-
ated only once in polynomial time. The time complexity of

2.

is not tractable (Creignou, Khanna, and Sudan 2001), so is Algorithm 1 is based on the worst-case time complexity of

Al(Wx). |
When the context is clear, we refer tractablprojection-
safety, 1-projection andl-extension to simply as tractable
projection-safety, projection and extension respedtivel

hereafter.

Polynomial Decomposability

Lee and Leung (2009; 2012) give one class of tractable
projection-safe cost functions. In this section, we introgl
an additional class, as inspired by dynamic programming al-
gorithms and based on a decomposition of global cost func-
tions.

A cost functioni¥s can besafely decomposed a set of
cost functions) = {ws,, ...,ws,, } using cost aggregation
function f, whereS; C S, iff

1. Ws(l) = f({ws, (£[Si]) | ws, € Q})
2. fisdistributive i.e.
(@) min{Ws,} = f({min{ws,} | ws, € Q}), and;

computing each tractable functign Result follows. m

Function ComputeMiiiVs)
foreach1 <i<m+1doM n [ws,] := NULL ;
return Eval (ws,,.,);

Function Eval(ws,)
if M n [ws,] = NULL then
if Q; =@ or|S;| <1then
| Mn[ws,]:=min{ws,};
else
P, =,
foreach ws; € Q; do
|_ P, =P U {EVB.' (ij)};

M n [ws,] = fi(P%);

return M n [ws,];

Algorithm 1: Computemin{Ws}

The following lemma is useful in proving our final result.

Lemmal Supposély is the cost function froniVy af-
ter applying a projection to or a extension froii;, where
Zy € S, with respect ta € D(x;). If Wy is polynomially
decomposable, so 1§s.

Proof: We only prove on the part of projection, while the
proof on extension is similar.

Consider a cost functiows, € Q U {ws,,.,}, where
ws,. .. = Ws. If wg, is a tractable unary cost function,
then after applying projection owg,, the resultant cost
function iswy (¢) = ws,(¢) © va, s, (), which is still
tractable; ifwg, can be safety decomposed infa C
{ws,,...,ws,_, } using f;, by Theorem 4, the resultant
functionwy after projection can also be safety decomposed
into Q; C {wyg,,... ,w’SH} using f;. Sincem and eachy;
are unchangedy’¢ can be polynomially decomposed into a
{ws,, - w }. Result follows. |

Directly from Lemma 1 Wy is tractable projection-safe,
as stated below.

Theorem 6 If Ws is polynomially decomposable, it is
tractable projection-safe.

We present another useful class of projection-safe global quires O(nd(n? + nd)), where n

functions. Algorithm 1 also gives an efficient algorithm to
compute the minimum cost. In the following, we give exam-
ples of this class of cost functions.

Examples

Checking if a cost functioms is polynomially decompos-
able amounts to finding a polynomially sized set of simpler
cost functions that can be combined using a distributivé cos
aggregation function to compui&’s. In the following, we
state without proof a distributive aggregation functiom fo
use in the rest of this section.

Lemma 2 If a global cost functiori¥’s can be represented
asWs(¢) = min;_ {@, ws, ,(£[Si,])} , where:

e > ', n;is polynomial in|S| andd, and;
o foreachi, S;; N i, = @iff j # kandUj" S ; = S,
thenWy is safely decomposable.

In the following, we give five examples of polynomi-
ally decomposable cost functions. They a@ T_AMONG,
SOFT.REGULAR, SOFT.GRAMMAR, MAX_WEIGHT and
MIN _WEIGHT cost functions. For simplicity, we assume the
scope of each global cost function§s= {z1,...,z,}.

The SOFT_AMONG Cost Function

Given a set of value¥, the lower boundb and the upper
boundub such thatd < Ib < ub < |S|. Definet(¢) =
{i | ¢[x;] € V}|. The SOFT.AMONG"*" (S, b, ub,V) re-
turnsmaz(0,1b — t(£),t(¢) — ub) (Solnon et al. 2008).

Theorem 7 The SOFT.AMONGY*" cost function is polyno-
mially decomposable and thus tractable projection-safe.

Pr oof:
Assume W SOFT_AMONG"*" (S, b, ub, V). De-
fine wy, SOFT.AMONG"*"(S;,7,7,V), where S; =

{z1,...,2;} C S. Eachwfgi can be represented recursively
as follows.)

Definef,(i,7,¢) = sti (¢). Eachf, (i, j,¢) can be repre-
sented as follows:

fw(07j7 6) = J v
fu(3,0,6) = fu(i—1, 076[52'*1]) eU,; (K[ml])
fori >0
= Feli= 10— LS @ UY ()
fut3,8) = { fuli — 13,008 1) 0 TY (tla])

forj >0,i>0

The functionU} (v), wherev € D(x;), returns0 if v €

V, or 1 otherwise, while the functioﬁy(v) returnso if

v ¢ V, or1 otherwise. For all tupleg € £(S), Ws(¢) =
ming<j<up{ fw(n, j, £)}. By Lemma 2 SOFT_.AMONG %" is
safely decomposable, sodg.S;, j). By Theorem 6, results
follow. |

From the formulation in Theorem 7, the time complexity

of enforcing GAC* onSOFT.AMONG"?" can be stated as
follows:

Theorem 8 Enforcing GAC* on SOFT.AMONG"“" re-
|S| and d =

maxy,es{|D(zi)]}.

The SOFT_.REGULAR Cost Function

Aregular languagé (M) can be represented by a finite state
automaton (DFAW = (Q, X, 0, qo, F'). Q is a set of states.
Y is a set of characters. The transition functiois defined
as:d: Q x X — Q.q € Q is the initial state, and” C @

is the set of final states. A string € L(M) if 7 can lead
the transitions fromy, to ¢ € F in M. The constraint
REGULARg (M) accepts a tuplé € L£(S) if 7, € L(M),
wherer, is the string formed frond (Pesant 2004). The cor-
responding soft variansOFT_REGULAR"®" (S, M) returns
min{H (¢, 7;) | 7» € L(M)}, whereH (y, 72) returns the
Hamming distance between andr, (Beldiceanu, Carls-
son, and Petit 2004; van Hoeve, Pesant, and Rousseau 2006).

Theorem 9 SOFT.REGULAR"®" is polynomially decompos-
able and thus tractable projection-safe.

Proof: Results follow directly from the directed DAG repre-
sentation 06OFT.REGULAR"?" (Beldiceanu, Carlsson, and
Petit 2004; van Hoeve, Pesant, and Rousseau 2006), Lemma
2 and Theorem 6. [|

Note that the result collides with Theorel® by Lee and
Leung (2012). The time complexity of enforcing GAC* on
SOFT_REGULAR"®" can be stated as follows:

Theorem 10 Enforcing GAC* ONnSOFT_.REGULARY" re-
quiresO(nd(nd - |Q])), wheren andd are defined in Theo-
rem 8.

Note that the time complexity involveé®)|, which can pos-
sibly dominate over. andd in some cases. In practici)|
is typically a constant, or polynomial imandd, which does
not dominate the run-time.

Theorem 10 also gives another proof of the tractdble
projection-safety o6OFT_.AMONG cost functions. The size
of the DFA representing the MONG constraint is polyno-
mial in n.

The SOFT_.GRAMMAR Cost Function

A context-free languagd.(G) can be represented as a
context-free grammaé& = (X, N, P, Ap). ¥ is a set of
characters called terminal& is a set of symbols called
non-terminals.P is a set of production rules fromV to
(X U N)*, wherex is the Kleene stard, € N is a start-
ing symbol. A stringr € L(G) iff 7 can be derived from
G. The constrainGRAMMAR (S, G) accepts a tuplé <
L(S)if 7, € L(G) (Kadioglu and Sellmann 2010). Its soft
variantSOFT.GRAMMAR"" (S, G) returnsmin{ H (¢, 7;) |

7; € L(G)} respectively (Katsirelos, Narodytska, and Walsh
2011).

Theorem 11 SOFT_.GRAMMAR"*" (S,) is polynomially
decomposable and thus tractable projection-safe.

Proof: Results follow from a direct adaptation of the mod-
ified CYK parsing algorithm (Katsirelos, Narodytska, and
Walsh 2011) which is based on dynamic programming,
Lemma 2 and Theorem 6. [|

The time complexity can be stated as follows.

Theorem 12 Enforcing GAC* onSOFT_.GRAMMAR " re-
quiresO(nd((n® + nd) - | P|)). n andd are defined in The-
orem 8.

Again, in practice|P| is a constant, or polynomial in
andd,

Again, the time complexity involvegd’|, which does not
dominate the run-time.

Note that Theorem 12 gives another proof of showing
that SOFT_AMONG and FT_REGULAR are tractablel-
projection-safe if the number of states in the DFA is con-
stant, or polynomial im andd. A DFA with polynomial
number of states can be transformed into a grammar with
polynomial number of production rules.

The MAX _WEIGHT/MIN_WEIGHT Cost Functions

Given a weight functior(z;, v) that maps a variable-value
pair to a fixed cost. ThRAX _WEIGHT(.S, ¢) function returns
max{c(x;, lx;]) | ; € S}, while theMIN_WEIGHT(S, ¢)
function returnsmin{c(x;, ¢[x;]) | =, € S} for each
tuple ¢ € L(S). Note that they can be regarded the
weighted version of themaxiMuM /MINIMUM hard con-
straints (Beldiceanu 2001).

Theorem 13 MAX _WEIGHT(S, ¢) and MIN_WEIGHT(S, ¢)
are polynomially decomposable, and thus tractable
projection-safe.

Proof: Note that direct decomposition from definition is
unsafe. In the following, we give a safe decomposition
of MAX _WEIGHT(S, ¢), while that of MIN_WEIGHT(S, ¢) is
similar. ,

We define two unary function&? andG?™". H¥(v) re-
turnsc(z;, v) if v = w and T otherwise.G?"™" returnso if
c(zi,v) < c(z;,u) andT otherwise. They give a safe de-
composition foMAX _WEIGHT as follows:
min

wiES,/ueD(wi).{H;U (qu])@
D)

z;€S\{z;}

MAX _WEIGHTg(c)(¢)

H? represents the choice of the maximum weighted com-

ponent in the tuple, whilé?j.’” represents the choice of each
componentother than the one with the maximum weight. By
Lemma 2 and Theorem 6, results follow. [|

Theorem 14 Enforcing GAC* onMAX _WEIGHT(S, ¢) or
MIN_WEIGHT(S, ¢) requiresO(nd(nd - log(nd))), wheren
andd are defined in Theorem 8.

Note that the time complexity results stated above assume
that we compute the minimum every time we need to find
the support for each variable. In practice, the computation
can be incremental, thus with a lower time complexity.

In the next section, we put theory into practice. We
demonstrate our framework with different benchmarks and
compare results with different consistency notions.

Experiments

In this section, we put theory into practice, by implement-
ing the cost functions described in the previous section in
Toulbar2 v0.9 to demonstrate the practicality of our algperi
mic framework in solving over-constrained and optimiza-
tion problems. We also compare the results with strah@,
GAC* and FDGAC*, which have covered all three cades:
projections,-projections and -extensions.

In the experiments, variables are assigned in lexico-
graphic order. Value assignment starts with the value with
the minimum unary cost. The tests are conducted on an Intel
Core2 Duo E7400 (2 x 2.80GHz) machine with 4GB RAM.
Each benchmark has a different timeout. We first compare
the number of solved instances. Among the solved instances,
we report and compare their average run-time and number of
backtracks. Out of 10 randomly generated test cases of each
parameter setting, the best results are marked usingfthe *
symbol.

The Car Sequencing Problem The problem (CSPLib
prob001) (Parrello, Kabat, and Wos 1986) consists of se-
quencingn cars specified with different options on an as-
sebly line. The model consists of variables and count-
ing requirements. We generate over-constrained instances
and soften the model using theoFT.AMONGY%" and
SOFT.GCCY" cost functions.

Table 1 gives the experimental results. The results show
that enforcing FDGAC* reduces the number of backtracks
at least25 times more than stronglC, and10 times more
than GAC*. Besides, enforcing FDGAC* runs at leds?
times faster than GAC*, antitimes faster than strongIC.

Table 1: Car sequencing problem (timeout=5min)
n strongaIC GAC* FDGAC*
solved| time [backtracks|
10 42.84 234537

backiracks
71607

solved
10

backiracks|
67842

solved
710

time
16.80

time
71.37

14

15 8 136 715754 10 29.75 109085 10 74.49 74978
16 3 178.98| 834998 8 133.08| 434969 10 76.90 76179
17 1 163.73| 830343 2 130.14| 387446 710 |T748.07] 735218

TheNonogram Problem The problem (CSPLib prob012)
(Ishida 1994) is a typical board puzzle to shade blocks in an

n x n board. The requirements involve patterns. The model
consists of2? variables andsOFT_REGULARY®" cost func-
tions.

Table 2 shows the results of the experiment. In a time limit
of 5 minutes, enforcing strongs/IC could only solve rela-
tively small instances{ = 6). Enforcing GAC* could solve
relatively larger onesn(= 8). Forn = 10, all instances
can only be solved when FDGAC* is enforced, and each in-
stance is solved within a minute.

Table 2 also gives the comparison on the
SOFT.REGULARY*" function when it is enforced
by polynomially decomposable approach and flow-
based projection-safe approach (Lee and Leung 2009;

2012). The two approaches result in the same search tree

when we enforce the same consistency, but the run-time
varies. Results show that using the polynomially decompos-
able approach speeds up searching by at [e¢istes than
using the flow-based projection-safe approach, due to the
large constant factor behind the flow algorithm.

Table 2: Nonogram (timeout=5min)

polynomially decomposable approach

n strong@IC GAC* FDGAC*

solved] time [backirack| solved] time [backirack| solved] time [backirack
6 710 9.50 | 150167 | f10 0.03 763 710 | 70.00 7109
7 1 245.17| 2627322| T10 3.88 72811 710 | 70.03 7345
8 0 * * 7 113.76| 1730882 | 710 10.12 7842
9 0 * * 2 52.85 | 764467 | 10 | '0.34 71500
10 0 * * 0 * * 710 | "11.78| 722828

flow-based approach

n strongaIC GAC* FDGAC*

solved] time [backirack| solved| time [backirack| solved| time [backirack
6 9 25.23 72130 710 0.32 763 10 0.05 109
7 0 * * 710 | 60.84 | 72811 10 0.48 345
8 0 * * 1 26.59 | 28166 10 2.04 842
9 0 * * 1 151.38] 83479 10 5.87 1500
10 0 * * 0 * * 9 40.67 4848

Well-formed Parentheses Given a set oRn even length
intervals in[1,...,2n]. The problem is to find a string
of parentheses with lengtBn such that substrings in
each of the intervals are well-formed parentheses. We
model this problem by a set d&fn variables. We post a
SOFT_GRAMMAR V" cost function for each interval to rep-
resent the requirement of well-formed parentheses.

Results are shown in Table 3. Enforcing FDGAC* re-
duces the search spagémes and thus speeds up the search
20 times more thawIC. Enforcing FDGAC* always out-
performs GAC* by up to6 times in terms of search space
reduction and times in term of runtime.

Table 3: Well-formed parentheses (timeout=5min)

n strongaIC GAC* FDGAC*
solved] time | backiracks| solved| time | backiracks| solved| time [backiracks

10| 710 6.36 5552 710 0.54 408 710 70.43 172
11] 710 [17.38 10253 710 1.48 784 710 70.92 1245
12 10 | 47.19 22668 710 3.38 1383 710 72.08 7394
13 9 90.94 34435 710 6.98 2175 710 12.89 1440
14] 4 176.1] 59756 10 [31.99 7208 10 | 77.75 7765
15 0 * * 710 56.43 9705 710 | 715,59 71026
16 0 * * 10 85.58 14825 f10 |T20.12 71367
17 0 * * 6 158.16 25546 710 | 754,94 73346

The Minimum Energy Broadcasting Problem The task
(CSPLib prob048) (Burke and Brown 2007) is to find a

broadcast tree that minimizes the sum of the energy con-
sumed byn wireless routers in a network. The model
consists ofn variables, and one hard global constraint
TREE (Beldiceanu, Carlssoon, and Rampon 2005) and
MAX _WEIGHT(X, ¢;) cost functions. We also implement the
GAC enforcement algorithm of theree constraint from
Beldiceantet al. (2005).

Results are shown in Table 4, which is different from
the previous experiments. FDGAC* can reduce the search
spaces up t@ times more than GAC*, but rung times
slower than GAC*. The hardREE global constraint ac-
counts for the results, which can only achieve strari@
and GAC* but not FDGAC*.

Table 4: Minimum energy broadcast (timeout=10min
stronggIC GAC* FDGAC*
time [backirack time fime
8.03 | 61806 T1.64 2.03
26.08 | 153237 713.54 37.77
13.55 | 69453 712.50 41.78
7255 [303422 715.34 15.48

n m

solved
710
10
10
10

backtrack
71352
716694
712106
14849

solved
10
10
10
10

backtrack
9080
55317
37323
52855

solved
10
10
10
10

20
20
20
25

40
60
100
50

25| 75 5 301.68| 1044058 7 7229.10| 625415 5 176.45| 734108

25| 125 5 50.27 121473 5 T43.04 73262 3 166.85| 122005

30| 60 4 216.44| 557575 9 7101.33| 233610 i) 118.48| 721424

30| 90 1 401.92| 1050414 2 7162.63| 293660 1 305.96| 143238
Conclusion

Bessiereet al. (2011) suggest another decomposition of
global cost functions into simpler functions in table form
based on the Berge-acyclic property. Their example is based
on theREGULAR global constraint, and the decomposition
is one level directly onto ternary functions. In the case of
a polynomially decomposable cost function, the decom-
position can be recursive, which is amenable to efficient
minimum cost computation utilizing dynamic programming
techniques.

Our contributions are four-fold. First, we define the
tractable r-projection-safetyproperty, and study the prop-
erty with respect to projections/extensions with differ-
ent arities of cost functions. We show that projection-
safety is always possible for projections/extension owffr
the nullary cost function, while it is alway impossi-
ble for projections/extensions to/from-ary cost func-
tions for r > 2. When r 1, we show that a
tractable cost function may or may not be tractable
projection-safe. Second, we defipolynomially decom-
posable cost functionand show them to be tractable
projection-safe. We give also a polytime dynamic program-
ming based algorithm to compute the minimum cost of
this class of cost functions. Third, we further show that
the cost functionsSOFT_AMONG"", SOFT_REGULAR"?",
SOFT_GRAMMAR %", andMAX _WEIGHT/MIN _WEIGHT, are
polynomially decomposable and tractalbiprojection-safe.
Fourth, we perform experiments and compare typical WCSP
consistency notions and shows that our algorithm framework
works well with GAC* and FDGAC* enforcement, in terms
of run-time and reduction in search space. We also com-
pare against the flow-based approach (Lee and Leung 2009;
2012) and show that our approach is more competitive.

The concept of polynomial decomposability is inspired
by a simple dynamic programming approach. It is unclear

if we can go beyond dynamic programming and yet main-
tain tractability. An immediate possible future work is to
characterize exactly the class of polynomial decomposable
cost functions. It will also be interesting to investigateear
forms of sufficient conditions for polynomial decomposabil
ity. The sufficient conditions given in Lemma 2 provides
only a partial answer.

On the practical side, besides polynomial decomposabil-
ity and flow-based project-safety (Lee and Leung 2009;
2012), we would like to investigate other forms of tractable
1-projection-safety and techniques for enforcing typical
consistency notions efficiently. It is also interestingreds-
tigate possibility to apply our framework to other stronger
consistency notions such as VAC (Cooper et al. 2010).

Acknowledgements

We are grateful to comments and suggestions by Thomas
Schiex and the anonymous referees. The work de-
scribed in this paper was generously supported by grants
CUHK413808 and CUHK413710 from the Research Grants
Council of Hong Kong SAR.

References

Beldiceanu, N.; Carlsson, M.; and Petit, T. 2004. Deriving
Filtering Algorithms from Constraint Checkers. Rioceed-
ings of CP’'04 107-122.

Beldiceanu, N.; Carlssoon, M.; and Rampon, J. 2005. The
Tree Constraint. IProceedings of CPAIOR'Q%4-75.

Beldiceanu, N. 2001. Pruning for the Minimum Constraint
Family and for the Number of Distinct Values Constraint
Family. InProceedings of CP’01211-224.

Bessiere, C.; Boizumault, P.; de Givry, S.; Gutierrez, P,
Loudni, S.; Metivier, J.; and Schiex, T. 2011. Decomposing
Global Cost Functions. IRroceedings of Soft'11 Workshop
(at CP'11).

Burke, D., and Brown, K. 2007. Using Relaxations to Im-
prove Search in Distributed Constraint Optimizatiémtifi-
cial Intelligence Review#8(1):35-50.

Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; Zytnicki,
M.; and Werner, T. 2010. Soft Arc Consistency Revisited.
Artificial Intelligencel74:449-478.

Cooper, M. C. 2005. High-Order Consistency in Valued
Constraint SatisfactionConstraints10(3):283—-305.

Creignou, N.; Khanna, S.; and Sudan, M. 2001. Complexity
Classifications of Boolean Constraint Satisfaction Pnuisle
SIAM Monographs on Discrete Mathematics and Applica-
tions7.

de Givry, S.; Heras, F.; Zytnicki, M.; and Larrosa, J. 2005.
Existential Arc Consistency: Getting Closer to Full Arc
Consistency in Weighted CSPs.Rnoceedings of IJCAI'05
84-89.

Ishida, N. 1994. Game “NONOGRAM”(in Japanese).
Mathematical Seminat0:21-22.

Kadioglu, S., and Sellmann, M. 2010. Grammar Constraints.
Constraints15(1):117-144.

Katsirelos, G.; Narodytska, N.; and Walsh, T. 2011. The
Weighted GRAMMAR Constraints Annals of Operations
Researcl184(1):179-207.

Krom, M. 1967. The Decision Problem for a Class of First-
Order Formulas in Which all Disjunctions are Binakath-
ematical Logic Quarteriy1 3(1-2):15-20.

Larrosa, J., and Schiex, T. 2003. In the Quest of the Best
Form of Local Consistency for Weighted CSP.Rroceed-
ings of IJCAI'03 239-244.

Larrosa, J., and Schiex, T. 2004. Solving Weighted CSP by
Maintaining Arc ConsistencyArtificial Intelligencel59(1-
2):1-26.

Lee, J. H. M., and Leung, K. L. 2009. Towards Effi-
cient Consistency Enforcement for Global Constraints in
Weighted Constraint Satisfaction. Froceedings of 13-
CAI'09, 559-565.

Lee, J. H. M., and Leung, K. L. 2010. A Stronger Con-
sistency for Soft Global Constraints in Weighted Constrain
Satisfaction. IrProceedings of AAAI'1,QL21-127.

Lee, J. H. M., and Leung, K. L. 2012. Consistency Tech-
niques for Flow-Based Projection-Safe Global Cost Func-
tions in Weighted Constraint Satisfactiofournal of Artifi-

cial Intelligence Research3:257-292.

Parrello, B.; Kabat, W.; and Wos, L. 1986. Job-shop
Scheduling using automated reasoning: A Case Study of the
Car-Sequence problemJournal of Automated Reasoning
2(1):1-42.

Pesant, G. 2004. A Regular Language Membership Con-
straint for Finite Sequences of Variables.Rroceedings of
CP’04, 482-495.

Sanchez, M.; de Givry, S.; and Schiex, T. 2008. Mendelian
Error Detection in Complex Pedigrees using Weighted Con-
straint Satisfaction TechniqueSonstraints13(1):130-154.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued €on
straint Satisfaction Problems: Hard and Easy Problems. In
Proceedings of IJCAI'95%631-637.

Solnon, C.; Cung, V.; Nguyen, A.; and Artigues, C. 2008.
The Car Sequencing Problem: Overview of State-of-the-Art
Methods and Industrial Case-Study of the ROADDEF'2005
Challege Problem.European Journal of Operational Re-
search191(3):912-927.

van Hoeve, W.-J.; Pesant, G.; and Rousseau, L.-M. 2006.
On Global Warming: Flow-based Soft Global Constraints.
J. Heuristics12(4-5):347-373.

Zytnicki, M.; Gaspin, C.; and Schiex, T. 2009. Bounds Arc
Consistency for Weighted CSP3ournal of Artificial Intel-
ligence ResearcB5:593-621.

