1

The standard domains of classical Constraint Satisfaction(3, co) =
Problems (CSPdDechter, 200Bare of simple types, such

Constraint Programming on Infinite Data Streams

A. Lallouet

Y.C. Law, J.H.M. Lee, and C.FK. Siu

Universie de Caen, GREYC Department of Computer Science and Engineering

Campus ©te de Nacre
Boulevard du Magchal Juin

B.P. 5186, 14032 Caen Cedex, France

arnaud.lallouet@info.unicaen.fr

Abstract

Classical constraint satisfaction problems (CSPs)
are commonly defined on finite domains. In real
life, constrained variables can evolve over time. A
variable can actually take an infinite sequence of
values over discrete time points. In this paper, we
propose constraint programming on infinite data
streams, which provides a natural way to model
constrained time-varying problems. In our frame-
work, variable domains are specified byregular
languages. We introduce special stream operators
as basis to form stream expressions and constraints.
Stream CSPs have infinite search space. We pro-
pose a search procedure that can recognize and
avoid infinite search over duplicate search space.
The solution set of a stream CSP can be represented
by a Buchi automaton allowing stream values to be
non-periodic. Consistency notions are defined to
reduce the search space early. We illustrate the fea-
sibility of the framework by examples and experi-
ments.

Introduction

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong
{yclaw,jlee,fksiy @cse.cuhk.edu.hk

[Wadge and Ashcroft, 198pand constraints. The searching
approach used in classical CSP is no longer practical due to
infinite domain size. We propose a search scheme which lim-
its our attention to a window of time points. Consistency en-
forcement is integrated to the search procedure to eliminat
infeasible search space. We have implemented a prototype
solver, which is used to model and solve the simulation of
juggling and jazzy harmonization of music as proof of con-
cept.

2 Infinite Data Streams

Streams are infinite sequences of data items, called datons,
over natural number time points. #gtreamq is an ordered
sequencéa(0), (1), a(2),...), wherea(i) is adatonof «
at time pointi > 0. We usea(,J) 0 < i < j, to de-
note the finite stringa(i), a(i + 1),...,a(j)). In partic-
ular, a(i, o) is the streama(i), a(i + 1),...). We over-
load these notations to apply on a set of stream values simi-
larly. Given a set of streamS, S(i) = {a(i)|a € S} and
S(i,j) = {a(i,j)| a € S}.

Without loss of generality, we assume that datons are of
the same type. In particular, we focus on inted@r ¢treams
in this paper. For example = (1,2,3,2,4,5,...) is an in-
teger stream, in whickv(2) = 3, «(1,3) = (2,3,2), and
(2,4,5,...).
An w-regular languageyeneralizes a regular language to a

as integers, reals, and sets, which are inadequate in blescriset of infinite stringsd la streams), and can be expressed as a
ing problems with values that change over time. Discretdinite unionu]_,U;V;* whereU; andV; are regular languages
simulation of a person juggling indefinitely is an example ofand the empty strlng ¢ V;. Thew operator inV* indicates
constrained time-varying problems with discrete time gin the infinite concatenation of the regular Iangu&geln this
Changing continuously, the loci of the balls are governed bypaper, we are interested only in problems whose solutian set
the juggler’s throws, juggling rules, and laws of physics. | arew-regular languages.

addition, an experienced juggler should be able to exhibit A Bichi automatorover an alphabeX is a 4-tupled =
non-repetitive patterns so long as all the rules and laws arf?, g0, A, F) whereQ is a finite set of stateg, € Q is an
obeyed. Modeling such a problem as a CSP would require aimitial state, A C @ x ¥ x @ is a transition relation, and
infinite number of variables and constraints.

F C Q is the set of final states. The automatdraccepts an

We propose Constraint Programming on infinite datainfinite string if and only if there exists a run of the autoorat

streams, which are difficult to manipulate due to the lack ofwhich visits at least one of the final states infinitely often.
finite representation, especially for non-periodic onetie T An w-regular language is recognizable by adBi automaton.

domains of stream variables are represented compactly usVe useL(.A) to denote thev-regular language recognized by
ing w-regular languages which are recognizable gt au-

tomata[Buchi, 1962. Different from model checking, the
automata are modified during search and synthesized into difirst

ferent stream values. We define stream operatola ucid

A.
Temporal operators@re defined over streams. The unary
operator gives the stream formed Bpeatingthe

first daton of the stream. Formallfirst o = 3, where

Vi > 0,5(i) = «(0). The unarynext operator gives the form of ¥« whereX is the set of possible datons at each time

stream formed byremovingthe first daton of the stream. point.

Formally, next a = «(1,00). The binaryfby operator The following shows an example St-CSP having variables

takes two streams and gives the resulting stream by conX, Y, and Z, with domainsD(X) = D(Y) = D(Z) =

catenating the first daton in the first stream and the seconf|1|2)~, where “|” denotes choice. The two constraints are:

stream. Formallyn foy S = ~ wherev(0) = «(0) and X=next Y+1 and Y =Xfby Z

Vi >1,v() =B —1). This problem has infinitely many solutions. Three such so-
In addition to temporal operatorgpintwise operatorgre lutions are: (afX = (1)¥, Y = 1(0)¥, Z = (0)“}, (b)

extensions to functions defined over integers. Given-any {X = 121(2)*, Y = 1010(1)¥, Z = 010(1)“}, and (c)

function f : Z™ — Z, an extension off to a correspond- {X = 211(212)*,Y = 2100(101)¥, Z = 100(101)“}. For

ing pointwise operatof is defined byf (a1, o, ..., a,) = 8 example, solution (b) satisfies all constraints simoext Y

whereVi > 0,0(i) = f(a1(i), az2(i),...,an()). Inpar- gives010(1)¥ and ‘010(1)~ + 1" is 121(2)* which is equal

ticular, we highlight some useful pointwise operators,ahhi to X's value. Furthermore, X foy Z” takes the first daton

will be used in infix notation as usual. Arithmetic operators of X, i.e., 1, followed by the streard = 010(1)“, which

including+, —, x, and/ (integer division) on numbers are gives1010(1)“ and is equal td&"’s value.

the extension of the usual operators over integers. When the An St-CSP can be viewed as a classical CSP with an in-

streams are pseudo-Boolean streams, containing onlyslatofinite number of variables and constraints. A stream vari-

0 (false) and 1 (true), there are logical operatord, or ,and able X corresponds to an infinite sequencelafon variables

not . Relational operators determine the truth of relation on(X (0), X (1),...) in which D(X (7)) = D(X)(i). Simi-

the stream values pointwisely and return a pseudo-Boolealarly, a stream constraint’ corresponds to an infinite se-

stream. The operators include=, <>, <=, and>= on quence oflaton constraint€’(0), C'(1),.... Each daton con-
numbers. straintC'(¢) of C' can be obtained by applying translation op-
A stream expression can involve different operators as ireration7; with the rules listed in Table 1 such that(C)
“a+p—(yfby (next «))”. givesC(z). Thus, each stream constraifitis translated to
the set{T;(C)|i > 0}. For example, the stream constraint
3 Stream Constralnt Satlsfactlon “X=Y fby 7" at time pOint 0 is translated by Rule 3 from

) i) _ “To(X =Yihy Z)"to“Ty(X) = To(YTby Z)”, and then
A Constraint Satisfaction ProblenfCSP) P is a tuple by Rules 6 and 1 toX (0) = Y (0)". For time pointi > 0,
(X,D,C) whereX is a finite set ofvariables D is a finite «7,(x) = T;(Yfby Z)"is translated by Rule 7 toF;(X) =
set of (variable) domainsandC is a finite set oftonstraints 7, (Z)" and then by Rule 1 toX (i) = Z(i — 1)". There-
AvariableX € X can only take a value from its correspond- fore, the stream constraint is equivalent to the conjunatid
ing variable domairD(X) € D. Each constrain€ € C has daton constraints:X (0) = Y(0), X(1) = Z(0), X(2) =
scope(C') corresponding to the list of variables involved in z(1), ... An St-CSPP = (X,D,C) can be viewed as a
C. A constraintC' limits the combinations of values that can classical CSPP' = (X', D’,C’) where X’ = {X(i)|i >
be taken by the variables krope(C). A solutiontoa CSP g A X ¢ X}, VX (i) € X', D'(X(i)) = D(X)(i), and
is an assignment of values from the variable domains to alf’ — {73(C)[i >0 A C e C}.
variables such that all constraints#hare satisfied simulta-
neously. We denote the set of solutions to GSRssol(P). 3.2 Characterizing the Solution Space

3.1 Stream Constraints We ponS|der a variable assignment as a t.uple.. .The
])) ~ solution set of an St-CSP contains possibly infinite

Stream constraintare relations on stream expressions, Wthhnumber of tup|es of streams. We introduce t@eop_

are composed of stream variables, stream constants, aggator on streams such that; ® as ® ... @ a,

stream operators. Stream constants have the same daton 0‘(?&1(0), oo (0)7 c,Qp (0))7 (al(l)’ 042(1), ol an(l))’ . >
all the time points which are denoted with the daton in bO|d,The operator turns a sequence of streams into a
sucha® = (2,2,2,...). The relations can be, #, >, <, stream of tuples of corresponding datons. Then,

and— (implication), which are all enforcepointwisely An - given a set of tuples of streamsS, we define
example constraintisX + 3 =Y fby Z". Whenthe con- £(9) = {1 ®@a®...®@a,]| (a1, a,...,0,) € S}.
straints involve> or <, the set of datons, such &sin this . .
paper, is assumed to have some ordering. Lemma 1. £(s0l(P)) is isomorphic tasol (P).

A stream constraintC € C with scope(C) = Lemma 2. Given a stream constrain€’, £(C) is an w-
(X1, Xo,...,X,)isasubset ofZ¥)",i.e. C C (Z*)™. Re- regular language.
lational operators are different from stream relationse fidn-
mer are functions returning pseudo-Boolean streams, whil
the latter are constraints to be enforced.

The solution set of an St-CSP is, mathematically, the con-
ﬁmction of constraints and the Cartesian product of véeiab
domains. Since stream domains and stream constraints are
regular languages, by the closure of operationsJfoegular

EXanguage$Thomas, 1990 we have the following theorem.
pressions and constraints involving streams are thoseedefin guages ' D 9

earlier. We require stream variable domains tadeegular ~ Theorem 1. Given an St-CSFPP, L(sol(P)) is anw-regular
languages. For simplicity, initial domains are specifiethim language.

Table 1: Translation rules for stream constraints and stregpressions at time point

[Rule | Expression | Translation |
T | Ti(a) a(i)
2 | T(X) X(2)
3 | Ti(expry rel exprs) T;(expry) rel T;(exprs) Whererel is a stream relation
4 T;(first expr) To(expr)
5 | Ti(next expr) T, 41 (expr)
6 To(expry Ty expra) To(expry)
7 T;(expr, by exprs) T,_1(exprs) where: > 0
8 | Ti(f(expri, expry, ..., expry)) | f(T;i(expry), T;(exprs), ..., T;(expr,)) for n-ary functionf

Proof. We prove it by induction. When there is one stream 7= ({X,Y},{D(X)=D(Y) = (1]2)*},{C: X = first

variable in the problenP, the set of solutionsC(sol(P))

is the conjunction of the initial domain and the set of con-
straints. Since domains and constraints areegular lan-
guages, by the closure af-regular languages over con-
junction, the resulting set is also amregular language.
Given two w-regular languaged,; and Lo, we let S =
{(a1,a2) |1 € L1, a9 € Ly}. SincesS is anw-regular lan-

guage, the induction applies.

O

Thus we can solve an St-CSP by constructing et

automaton forL(sol(P)).
periodic

4 Solving Stream CSPs

An St-CSP has infinite domains. The tree search method
[Dechter, 200Bwidely applied in solving traditional finite

In addition, by the nature af-
regular languages, solution streams of an St-CSP caote

Y}

Po : t(Po) =0
Do(X) = (1]2)*
Do(Y) = (1]2)*

X(0)=1

P1:t(P1) =0
Dy(X) =1(1]2)“
Dy (Y) =

X (0) = 2
(1]2)*

Y(0) =1

Po:t(P2) =1
Do (X) =1(1]2)%
Do(Y) = 1(1|2)%

Y (0) = 2

X(1) =1

X(1) =2

Ps3:t(P3) =1
D3(X) = 11(1|2)*
D3(Y) =1(1]2)%

Pe :

Dg(X) = 12(1|2)®
De(Y) =1(1]2)¥

t(Po) = 1

Y(1) =1

Y(1) =2

Py :t(Py) =2
Dy(X) = 11(1]2)®
Dy(Y) = 11(1]2)*

Ps : t(P5) = 2
Ds5(X) = 11(1]2)¥
D5 (Y) =12(1]2)%

X

domain CSPs is not applicable in this case as stream variable
domains can never be enumerated exhaustively. We propose
a depth-first search approach which determines the datons in 2
the stream variables in the order of time points. We define a
dominance relation among the search states or nodes so that
when a search state is dominated by an ancestor node in the
search tree, the search down that branch can terminate.

4.1 Search Tree

A search statds an St-CSPP. GivenP; = (X1, D1,Cq)
andPy = (X, Do, Cs), Py is asub-problenof P,, denoted
P1 C Py, whenXx; = X, D1 € Dy, andC; = Co. Ina

P
Figure 1: A search tree for an St-CSP.

In each search stafe, a variableX with ¢(X) = ¢(P) is
selected. With eacth € D(X)(¢(P)), P is branched with the
assignmeniX (¢(P)) = d. In Figure 1, upon completion of
assignment to datons in time point 0724, the search selects
a variable with current time point a&$P-) for daton assign-
search tree, a parent search sfBtbas a finite set of child ment. The search tree here first sele€td) and branches for
statesP; such thatvi, P, C P A U;sol(P]) = sol(P). X(1) =1andX (1) = 2 respectively.

Figure 1 shows the first 7 nodes of the search tree for an Note thatt(Py) = t(P1) = 0, butt(Ps) = t(P1) + 1. We
St-CSPP, having variablest andY” with the initial domains say that there is aadvancemenotf current time point from
D(X)=D(Y)=(1]2)* and a constraink = first Y. Py to P, but not fromP, to P;. We define the set of search

The search procedure attempts to determine the daton astates with advancement of current time point from their par
signment in the order of increasing time points. We define thent search states pli&, to be® = {P; | t(parent(P;)) <
current time poinbf a variableX ast(X) which is the maxi- ¢(P;) }U{Py}, whereparent(P) gives the parent search state
mum time point before which all the daton variablesfotan of P andP, is the root node of the search tree. Each search
be fixed according t&(X). Formally,t(X) = min{i|i > 0 state in® corresponds to a complete assignment to all daton
s.t.|D(X)(4)| > 1}. Thecurrent time poinof an St-CSPP, variables at and before a time point. In the search tree in Fig
t(P) is the minimum current time point among all the vari- ure 1,® includesPy, P, P4, andPs; among the first 7 nodes.
ables inP, i.e. ¢{(P) = min{¢t(X)|X € X}. Thus, there Since the streams are defined on infinite time points, the
exists at least one variable whose daton variable at tinme poi search procedure will advance the time point forever. To
t(P) is unbound in a givefP. Whent(P) = oo, all the daton avoid infinite search, we define the notion of dominance
variables are bound. For example i of the search tree in of one search state over another. A search site=
Figure 1, the datons in both domaibs (X) andD;(Y) are (X, D;,C) is dominatedby P, = (X,D;,C), denoted as
fixed up to time point 0; thereforgPs) is 1. P; < P;, if and only if P;,P; € @, P; is an ancestor of

P, andt,» = t(Pi),tj = t(Pj),VX (S X,Di(X)(ti,OO)
Dj(X)(tj, OO)/\VO e, HXEscope(C) Di(X)(ti, OO)ﬁC =
[Txescopeccy Pi(X)(t5,00) N C. The conditions for domi-
nance ensure the solution space of WBttandP;, when only
considering the time points aft&fP;) andt(P;) respectively,

is the same, since the domains are the same and each c
straint represents the same set of tuples of streams.

The search statef8, andPs in Figure 1 are dominated by
Pa. SinceDy(X)(2,00) = Da(X)(1,00), Dy(Y)(2,00)
Dy(Y)(1,00) and ((D4(X) x D4(Y)) N C)(2,00)
(D2(X) x Dy(Y)) N C)(1,00) = ((1,1)](1,2))*. This
is similar forPs.

SupposeP; is dominated byP;, whereP;, P; € ®. There
is a path fromP; to P; in the search tree. The path cor-

responds to a sequence of daton assignments, denoted as

between time points(P;) andt¢(P;) — 1. Therefore, for all
a € L(sol(P;)),sa € L(sol(Pj)), wheresa is s appended
with o. As P; andP; share the same solution space after

certain time point, such operation can be done infinitelyynan

times ands“ is one of the solutions t®; andP;. For exam-
ple, in Figure 1, the path frorR, to P, corresponds to the as-
signment{ X (1) = 1,Y (1) = 1}. SinceP, is dominated by
Ps, the solution space @?; is the same as that @, after 1
time point. Therefore, the assignmeit (i) = 1,Y (i) = 1}
can always be satisfied afd = (1)¥,Y = (1)“} is one of
the solutions.

Part ()| (2) 3)
Time O 1 2 3
DX)= 1 1 ()2 | (1]2)
DY)= 1 |(]2) | @1]2) | 1]2)

Figure 2: The division of time line into three parts for sdarc

%étepg in Figure 1.

i > n, T;(C) is translated with the same set of rules. There-
fore, we have the following property.

Property 1. Given a stream constrair® with n nested ap-
plications off by. Vi > n, T;(C') share the same structure as
T,.(C).

Two daton constraint§'(i) andC'(j) share the same struc-
ture when C(i) becomesC(j) after replacing by j. Take
the above stream constraint“=Y fby Z” as an example,

gSince there is only oniby operator, for all time points > 1,

the daton constraint iX (i) = Z(i — 1).

WhenP; = P;, P; andP; share the same search space
after¢(P;) and¢(P;) respectively. The order of variable as-
signment in the search strategy divides the time line irmeeth
parts: (1)all daton variables are fixed, (8pmedaton vari-
ables are fixed, and (3)o daton variables can be fixed. For
example, the search stakg in Figure 1, the window of part
(1) is [0, 0], that of part (2) ig[1,1], and that of part (3) is

As the domains can be infinite, the computation of con-[2, 0] which is depicted in Figure 2.

junction of constraints and domains is infeasible. We pro-Theorem 3. The time complexity for dominance detection on
pose simple and sufficient conditions for dominance deteca pair of search states i©(w(d|X| + a|C|)), wherew is the

tion. Given an St-CSPP = (X,D,C). As all the datons
are fixed before time point(?), we limit our attention to
time point¢(P) and onwards. We define lanited viewof
P to beP = (x,D,C), which can be obtained fror®
by removing the time points fror to ¢(?) — 1 such that
VX € X,D(X) = D(X)(t(P),00) andC = {C(i)|Vi >
0,C € C } whereC(i) is C(i) with all the occurrences of
X (i), i < t(P), replaced by the assigned valuesX¢i)’s.

Theorem 2. GivenP;,P; € ®. If ; = P; andP; is an
ancestor ofP;, thenP; < P;.

Proof. SupposeP; = (X,D;,C), P; = (X,D;,C), t; =
t(P;), andt; = t(P;). SinceP;,P; € & and, P;
is an ancestor ofP;, we only have to show that when
P = Pj, Q)VX € X,Di(X)(ti,0) = Dj(X)(t;,00)
and (2) VC' € C, [Ixescopecy Di(X)(ti,00) N C =
HXGSCOPE(C) D;(X)(t;,00) NC are true.

WhenP; = P;, condition (1) is satisfied by the defini-
tion of limited view, asvX € X, D;(X) = D;(X). Since
vC e C,C; = C*j and by condition (1), condition (2) is also
satisfied. O

width of part (2),d is the maximum number of possible da-
ton at any time point, and is the maximum arity of stream
constraints.

Proof. (Sketch) The starting point of part (2) for an St-CSP
P is t(P). To check domain equivalence, we can consider
only part (2) of the time line since there is no difference for
part (3). This takes tim&(wd|X|). We then check constraint
equivalence. Every constraint can involve only a finite num-
ber offby operators. By Property 1, after a finite number of
time points, all the daton constraints share the same gteict
As the constraint may involve a finite number of daton vari-
ables before time poirt{’P;) or t(P;), we have to check the
equivalence of the values which are assigned to those daton
variables. This checking takéXwalC|). O

The sufficient condition (Theorem 2) depends on the num-
ber of datons, width of part (2), and the number of vari-
ables. As all are finite, there must be two search states in
each branch matching the condition for dominance detection

Lemma 3. Each branch in a search tree is finite and must
either (a) end in failure or (b) contain search statBs and
P; such thatP; < P; and the branch terminates &;.

Proof. The search procedure branches for each possible da-

Next, we analyze the termination and complexity of thiston for a selected variable at a time point. Since the daton
search approach. From Table 1, we observe that differerdomain is finite, there is a finite number of branches. The
translation rules are applied to tfiey operator depending branch ends in failure once there is no consistent daton to be
on the time pointi. A stream constrainC, in which the assigned; otherwise, the branch continues. At every advanc
maximum nested applications fiify is n, for all time points ment of time point, the search performs dominance detection

P=({X,Y},{D(X)=D(Y) = (1]|2)*},{C: X =first Y})

Po : t(Pg) =0
Do(X) = (1] 2)¥
Do(Y) = (1]2)*
X(0) =1 \:X(O) =2
P1:t(P1)=1
Dy (X) =11(1]2)¥
Di(Y) =1(1|2)¥
Figure 3: A Bichi automaton representing a subset of all so- Yw=1 Y=z
: _ . . Py : t(Pa) = 2 P3 : t(P3) =2
lutions of the St-CSP in Figure 1. D22(X<) :2)111<1‘2)w Dz(Xg :3)111<1\2>w
Dy(Y) = 11(1]2)* D3(Y) = 12(1]2)%
As there are finite possible datons and finite number of stream
constraints in the problems, there must be two search states P, 2
along a branch of the search tree that satisfy the dominance
relation. O

Figure 4: A search tree for an St-CSP enforced with prefix-1

Theorem 4. The search procedure terminates. consistency.

Proof. The theorem follows directly from Lemma 3. O

Among the first seven search states shown in Figure 1, theroof. Each advancemgnt of current time point in the search
search stateB, andPs are dominated b§P,. In search state corresponds to a state in the automata. The number of nodes
Pe, the assignmenk (1) = 2 cannot satisfy the constraint Pi, WhereP; € ® along the search path, d3(wa|C|), which

X — first Y and the search fails. is the number of different patterns in part (2). Each state co
_ _ tributes at most/!*! edges for every possible daton assign-

4.2 Construction of Solution Set ment. O
When solving solutions of St-CSP through the search pro-)
cedure, we are actually building the correspondifigts au- The following theorem shows that the constructed automa-
tomaton.4, which can recognize and thus also generate théon recognizesll solutions andnly solutions ofP.
solution set. We wank(A) = L(sol(P)). _ Theorem 6. (Soundness and Completeness) GiveriiehB

The automatotd = (Q, g0, A, F') is built according to the automatonA constructed from the search procedure for an
search tree. For each search sfates ®, P; is associatedto st-CcSpPp, (01,000, ...,an) € 0l(P) 4> 1 ® Az @ ... ®

a statestate(P;) in A, thusQ = {state(P;) | P; € ®}. The o ¢ L(A).
root node of the search tre®,, is associated with the starting
state of A wheregqy = state(P,). For every non-root search . .
stateP; € @\ {P,}, there is an edge pointing fromate(P;) 5 Consistency Algorithm
to state(P;) whereP; is the nearest ancestor &; in ®. Enforcing consistency helps reduce search space, byfgenti
The edge is labelled with the assignment tuple made froning and avoiding infeasible search branches. In St-CSRadue
the search stat®; to P;. For each leaf nod®; associated the infinite domain size, it is expensive to enforce geneedli
with statestate(P;), if P; < Pj, there is an edge pointing arc consistency (GAdBessere and Rgin, 1997. Accord-
from state(P;) to state(P;) labelled with an empty string ing to the search strategy introduced in the previous sectio
Since the automaton is generated from the search treegall thve define a weaker notion of consistency, nanigfix£
possible runs correspond to solutions. The set of final stateconsistency, which enforces GAC on the daton variables in a
contains all the states in the automaton, tiius=). The sizek window of time points.
final automaton can be simplified. When a path in search tree In the search tree, the current time pai(iP) of a search
leads to failure, there are some stateglinannot be included state” contains the first unbound daton variable. We limit
in any accepting runs. These states can be removed. Wheyur attention to the widtik window of time points starting
P; < P;, state(P;) can be merged withtate(P;) such that fromt(P), whichisR = [t(P),t(P)+k—1]. Among the da-
the edge labelled with can be eliminated. ton variables in this window of time points, we enforce GAC.
Figure 3 shows the subset of solutions corresponding to the By the definition of GAC[Bessére and Rgin, 1997,
first seven search states in Figure 1. The associated searghdaton variableX, (i) in an St-CSPP is GAC with re-
states are labelled on the states in the automaton. From tkgect to daton constrairt () if and only if D(X,(i)) =
automaton, the subset of solutiongis1)((1,1) | (1,2))~. (I1x (m)esco 6(C(,))D(Xu(m)) N C(j)) Ix,u Wwhere
The solution automatosl corresponds to the structure of | = * i

h h h : d ,(5) Projects the tuples ta, ().
search tree, where every search stéfec @ is a state an A stream variableX is prefix+# consistentith respect to
every complete daton assignment is an edge.

a stream constrair® if and only if Vi € R, X (i) is GAC

Theorem 5. The solution automaton tak€ywa|C| + d'¥!) with respect to all the daton constraifi{j) € C such that
space, wherev is the width of part (2)a is the maximum X (i) € scope(C(j)). An St-CSPP is prefix& consistenif

arity of constraint, and! is the maximum number of possible and only if all the stream variablesare prefix consistent
datons at any time point. with respect to al” € C.

For example, in Figure 1, the search stRfeis not prefix- condition in line 7 will never be satisfied. Thdss removed
1 consistent with respect to the constraint because there afrom the domain oD(X (¢)) and this contradicts the assump-
no datonsd € D(X(0)) such thatX(0) = Y (0) when tion. O
Y(0) = 2. Figure 4 shows the search tree of the prob- i i i
lem with prefix-1 consistency enforced. After the assignmen ' "€orem 8. The algorithm to enforce prefik-consistency
X(0) = 1 from search stat@®,, prefix-1 consistency is en- (akesO(ad"k|C|) time, where: is the maximum arity of daton
forced at time point 0 and removes 2 frdd(Y (0)). As both ~ constraints, and is the maximum possible datons at any time
X(0) andY (0) are bound, the search advances the currenfOInt.
time point and enforces prefix-1 consistency at time point 1
which gives the search staf®. We can see that the search
tree becomes smaller and some nodes leading to failure, su
as’Pg in Figure 1, are pruned earlier.

The notion of prefixk consistency is enforced on the daton
variables and daton constraints. The enforcement algorith
in Algorithm 1 is based on the classical GAC enforcement
but we are only interested in the daton variabl&g) whose
time point; falls in R. In the procedur®refixK , only daton To verify the feasibility of our framework, we have modelled
variables with time points in the widtR will be considered. the periodic still life problem, traffic light scheduling54
The Revise procedure checks if each of the values in thepuzzle, simulation of juggling, and jazzy harmony generati
daton variable domain can be extended to a tuple which ias St-CSPs. The periodic still life problem looks for iritia
consistent to the daton constraint. When there are changgatterns that lead to oscillating patterns after a finite num
made to the domain, all the constraints with variables msid ber of steps. The traffic light scheduling problem arranges
the range of time points will be enqueued. traffic light signals in a road junction such that the velsdcle
will never crash. Though optimal solutions to a valid 15-
puzzle always involves finite number of moves, the problem
looks for all possible solutions so that the number of moves
is not known in advance. Due to space limitation, we de-

Proof. The complexity ofRevise is O(d*) to check for
pport for each of the possible daton in the daton do-
ain. The procedur®refixK enforces prefixe consis-

tency. There are(ak|C|) tuples in the queu€), each of

them will be put into queue again for at ma@td®) time. O

'6 Examples and Experiments

1 ProcedureRevise(P, z;,c)
2 llz; andc are daton variable and daton constraint respectively.
3 change := false;

4 for d; € D(z;) do

5
6

7
8

9
10
11

12

=
S

15
16
17
18
19
20
21
22

support := false;

for (do,dl,...,dj,...,dn) S

D(x0) x D(z1) x ... x {d;} x ... x D(zy) do
if (do,dl,...,dj,...,dn) € cthen

L | support := true;

if support = false then

L D(i) == D(zi) \ {d;};
change := true;

return change;

ProcedurePrefixK(P, k)
R:=[t(P),t(P) 4+ k — 1];
Q = {(Xm(0), Cu (1) | X (i) € scope(Cu(f)) Ai € R Y;
while Q # 0 do
take and removéX,, (i), Cr(j)) from Q;
if Revise (P, X,,(i),Cn(7)) then
for C,./ (') € Cs.t. X (3) € scope(C,/(5')) do
for X,/ (¢') € !

C’n'L(j)) do
if X, (i) # Xm(i) Ai’ € Rthen
L | Q=QU X (i"),Cur(j));

Algorithm 1: Enforcing prefixk consistency.

Theorem 7. (Correctness) If St-CSP’ is obtained froniP
by applying Algorithm 1, the®’ is equivalent ta? andP’ is
prefix4 consistent.

Proof. Giveni € R. Supposedd € D(X(i)) such that
3C(j), X (i) € scope(C(7)),d & C(j) I x) andd remains
in D(X (7)) after executing Algorithm 1. In line 18 of the
algorithm,C'(5) will be selected. In proceduiRevise , the

scribe only the juggling problem and harmony generation in
details. These problems have non-UP-stream solutions. We
implement a prototype St-CSP solver enforcing préfoen-
sistency. Comparison among differénvalues is conducted.
The solution automata are constructed automatically en-th
fly during search and translation time is included in our re-
sults. Experiments are conducted on a Sun Blade 2500 ma-
chine with 2GB memory.

6.1 Simulation of Juggling

The task is to simulate basic jugglifigpt and Brand, 2006
involving n balls. For simplicity, the patterns ensure that
there is at most one ball in hand at any time, and every ball
is thrown for maximumm time points after which the ball is
caught. Each problem is characterized (bym). We aim

to find all possible sequences of juggling patterns which may
change over time.

Then variablesX, X, X3, ..., X,, represent the time in-
terval after which the ball is caught. For exampleXif has
daton 5 at time point 3, ball 1 will be in the air for 5 time
points and be caught at time point 7. The variablimdicates
the force to throw the ball, which reflects the time interval
for the ball in the air. A ball thrown with odd (even) units of
force will be caught by different (same) hand. The domain of
the variables arevl <14 <n, D(X;) = (1]2|3]...|m)* and
D(A) = (0[1|2]...|m)*. The variableA has datord at the
time when no ball is at hand.

A ball falls down by 1 unit at a time, unless it is being
thrown with forceA again. The constraints arél < i < n,

(X; ==1) — (next X; == A)and(X; # 1) —
(next X; = X; — 1). Also, no two balls are being caught
simultaneouslyyl < i < j <n, X; # X;.

Left

6.2 Towards Generating Jazzy Harmonization

\ This problem is to generate the harmonization of four-part
Right o~ choral music. A choral music contains soprano, alto, tenor,
t 0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 and bass. Given the soprano notes which are repeated indefi-
nitely, we have to determine the notes for alto, tenor, asg ba
Figure 5: Space-time diagram of a juggling pattern. Theehre so that the music is pleasant to listen for human beings.
balls are represented by a solid, dashed, and dotted lines re We use variablesX;, X», X3, X4 to represent the se-
spectively. guences of notes for soprano, alto, tenor, and bass respec-
tively. A music note is encoded as a number. For exam-
ple, 60 is middle C (C4). We limit the range of notes to
two octaves from 48 (C3) to 72 (C5). The domains are
D(X,) = D(X3) = D(X3) = D(Xy) = (48] ... [72)*.

Table 2: Run time and number of fails for simulating juggling
for instance(n, m). The ‘-’ marks 6000 seconds timeout.

No Consistency Prefixci Prefic2 Prefix3 Auxiliary variables help in modeling. For example, we have
(n,m) | Time Fails | Time Falls | Time Fails | Time Fails a set of pseudo-Boolean variables indicating the notesabf ea
3.3) 0.15 332 0.01 18 0.00 8 0.00 3 .
(3.4) - -| 387.65 570049 250.40 235680 74152 141277 part, such a€'InX,, CsharpInX;, andDInX; which repre-
(4,4) 13.88 1058 0.16 28 0.05 11 0.05 5 1
G | 26ty »oed 2915 28| 008 oo, 2 sent whe_theer takes the note C,zand D rgspecuvely.
(6.6) - - | 5452.18 55 1011.82 17| 1112.05 7 In this problem, we use the first four bars

of the melody from “Twinkle Twinkle Lit-
tle Star” (CCGGAAG, FFEEDDC) as a sen-
One solution of instanc€s, 5): X; = (3,2,1,4)“, X, = tence and repeat it indefinitely: melody =

(2,1,4,3)%, X3 = (1,3,2,1)%, A = (3,4,4,1)* whichisa (60,60,67,67,69,69,67,65,65,64,64,62,62,60)“. The
UP solution, is shown in Figure 5 by a space-time diagramend of the sentence is indicated by a pseudo-Boolean stream:
The automaton in Figure 6 recognizes a subset of solutions tend = (0,0,0,0,0,0,0,0,0,0,0,0,0,1).
the problem. The solution can be obtained in a run starts at We implement a number of rules for harmonizatjsang
state 0 and followed by sequence of states 1, 2, 3, 4 repeaand Aitken, 1991 For example, the parallel fifth rule is spec-

edly. Other solutions can also be obtained by transversinified asvi < j, X; — X; ==7 — next (X; — X;) <>T.
different edges, including non-UP solutions, such &s: = The rule requiring that voices should never cross each other
(3,2,1,3,2,1,4,3...), X = (2,1,3,1,4,3,2...), X5 = is expressed by2 < i <4, X; > X, 1.

(1,3,2,3,2,1,1...), A = (3,3,3,4,4,1,4...) which is the The auxiliary variables can be constrained GynX; =

run of state$),1,5,0,1,2,3,4,.... (X;/12 == 0), CsharpInX; = (X;/12 == 1), DInX; =

(X;/12 == 2), etc. The existence of a note in a chord can
be defined in terms of these auxiliary variablesistC =
CInX; or CInXy or CInXsor CInX,. Then, each of the
seven chord types can be given by constraints, eigrd; =

We conduct experiments on instances (of, m) with
prefix-k consistency wheré € {1,2,3} and the results are
listed in Table 2. Whem = m, there are only repetitive
juggling patterns as solutions. After enforcing consisyen) X)
the solutions can be easily obtained and thus the number ¢f%istC and ezistE and ezistG) for Chord 1. Now, we can
fails is small in those cases. Wheris larger, the consisten- '€duire that each chord must be one of the seven standard

cies become stronger and thus more infeasible search spad@€S:chordr + ... + chordyr = 1
is pruned. As the time complexity of prefixeonsistency in- By changing pitch, tempo, and delay of harmony, we can

creases wittk, the overall runtime cannot be compensated byntroduce jazzy feeling to the music. .
the extra pruning wheh is large. When we decide to change the pitch of the song up to five

; . intervals, we have to change it for every note in a sentence.
In the problem, all constraints relate daton variableS&ro tharefore D(offset) = (5| ...|5)~ andnot end —

only two time points, e.g.X;(¢) and X;(t + 1) in the con- next offset — offset) and thusX; — melody + offset.
straint(X; == 1) — (next X; == A). We conjecture that (The change of tem)po is also applied to a sentence for up
the optimal solving performance is obtained witda chosen . ihree times slowerD(tempo) = (1|2|3)“ which repre-

as the maximum difference of time points of all constraints i sents the multiples of tempo of the original natet end —
\{olving t_he ‘next " and “fby ” operators. The long solvi_ng (next tempo = tempo).

time for instance3, 4) and(6, 6) is due to the enumeration * ¢ |ast feature is delay of harmony. When this style is
of many solutions and large problem size respectively. applied to a chord, the harmony will be silent in the first half
of the time. However, this style cannot be applied frequentl
to maintain pleasant feeling. Among any three consecutive
chords, at most one chord can apply this style. Moreover,
by the convention of music composition, the last note of each
melody should keep long, and thus the style cannot be applied
to the last note. We use a pseudo-Boolean variabley

to indicate the application of this style with initial domai

) o) 0]1)“. The style is implied by imposing the following con-
Figure 6: A Hichi automaton representing a subset of all sOtraints: delay + next delay + next next delay < 1 and
lutions for (X1, X2, X3, A) of instance(3, 5). end — not delay.

(3,2,1,3)7(2,1,3,4) 7 (1,4,2,4) ¥ (4,3,1,1)

With the remaining constraints, we generate harmony foAcknowledgments

a given soprano which contains a repeated melody. The hagye thank the anonymous referees for constructive comments
mony can vary as the soprano repeats over time based on they jasper Lee for the advice on music harmonization. The
solution automaton, which can serve as a basis for musicgyq described in this paper was substantially supported by
improvisation. Sample MIDI files generated from our solvergrants (CUHK413808 and CUHK413710) from the Research

can be downloaded onlife Grants Council of Hong Kong SAR.

7 Concluding Remarks References

Streams are related to coinductifRutten, 2006 Fages [Aptand Brand, 2006K. R. Aptand S. Brand. Infinite qual-
and Rizk[200d specify the problem using a formulain LTL itative simulations by means of constraint programming.
which is the first approach to softness and optimization by N CP'06, pages 29-43, 2006.

quantifying the satisfaction degree of the formula. Pratet [Bessere and Rgin, 1997 C. Bessére and J. C. Bgin. Arc

Verfaillie [2009 use different techniques to solve problems consistency for general constraint networks: Preliminary
in which variables have temporal dimension. Work on clas- results. InNlJCAI'97, pages 398—404, 1997.

sical temporal constraints are too numerous to be mentionelcéu(;hi 1962 J. R. Hichi. On a decision method in restricted
[Dechter, 200B Our work also has some loose connections second order arithmetic. _Imternational Congress on

with online constraint solvingVerfaillie and Jussien, 2005 ; . .

The work by Gavanellet al. [2009 is related but different kggg Method and Philosophy of Sciengages 1-11,

from ours. It is the variable domains that are changing with '

possible values coming in incrementally, but variable sti [Dechter, 200B R. Dechter.Constraint ProcessingElsevier

take just a scalar value from the evolving but always finite Morgan Kaufmann, 2003.

variable domains. In our case, each variable takes an @finitfFages and Rizk, 2009F. Fages and A. Rizk. From model-

data stream as value from a possibly infinite variable domain checking to temporal logic constraint solving. @P'09,

of streams. Fg’ilanning problems have bpeen solved by coristrain pages 319-334, 2009.

programmindgvan Beek and Chen, 199V hile the number . .

of steps is not known prior to solving, the problem is mod-[Freuder, 1997 E. C. Freuder. In pursuit of the holy grail.

elled for a fixed number of steps. The problem is re-modelled COnStraints 2(1):57-61, 1997.

with increased number of steps until there is a solutiondoun [Gavanelliet al, 2009 M. Gavanelli, E. Lamma, P. Mello,
We consider data streams as a new domain for constrained and M. Milano. Dealing with incomplete knowledge on

variables. The constraint language allows us to use any clas CLP(FD) variable domains ACM Transactions on Pro-

sical constraint interpreted pointwisely and temporalrape ~ gramming Languages and Syste2i8(2):236-263, 2005.

tors inspired by the data-flow language Lu¢Wadge and [pralet and Verfaillie, 2008C. Pralet and G. Verfaillie. Us-
Ashcroft, 198%. The modelling examples show that the = jng constraint networks on timelines to model and solve
St-CSP framework makes it possible to give a declarative pjanning and scheduling problems. IBAPS'08 pages
statement, such as the juggling specification, of the prople 272279 2008.

which separates problem formulation and solution methOdﬁ'Rutten 2005 J. J. M. M. Rutten. A coinductive calculus of

This brings us one step towards the Holy Grail of program- . . X
; _ streams. Mathematical Structures in Computer Science
ming [Freuder, 1997 the user states the problem, the com 15(1):93-147, 2005.

puter solves it. We have implemented a prototype solver for

the framework to find all solutions. By usingiBhi automata, [Thomas, 199D W. Thomas. Automata on infinite objects.

the solver can give solutions including non-UP ones. In Handbook of Theoretical Computer Science, Volume B:
Optimization in St-CSP is an important future direction. Formal Models and Semanticpages 133-192. Elsevier

For example, in musical generation, some rules can be more and MIT Press, 1990.

preferable to others. The framework opens a new directiofTsang and Aitken, 1991C. P. Tsang and M. Aitken. Har-

of research. We have described the application to simulate monizing music as a discip"ne of constraint |Ogic pro-

the juggling and generate music harmonization in this paper gramming. INCMC'91, pages 61-64, 1991.

Other real life applications, such as controller synthessie [van Beek and Chen, 16b®. van Beek and X.G. Chen.

worth for exploration. Interaction with live data streanss i Cplan: a constraint programming approach to planning
another possible venue for future work. Studying the effect In AAAI'99, pages 585-590, 1999,

of variable and value orderings is also worthwhile. Enhance
ment on the search strategies, such as applying more agcuraverfaillie and Jussien, 2005G. Verfaillie and N. Jussien.
heuristics for dominance detection, and introducing nem¢co Constraint solving in uncertain and dynamic environ-
sistency notions to the St-CSP, can improve the search per- ments: A surveyConstraints 10(3):253—-281, 2005.

formance. Improvement to the prototype solver in terms Of[Wadge and Ashcroft, 1985W. W. Wadge and E. A.
implementation techniques and the use of data structures Is Agnpcroft. Lucid, tﬁe Dataflow Programming Language

also imminent. Academic Press Professional, Inc., 1985.

http://www.cse.cuhk.edu.hk/ ~ jlee/stcsp.mid

