
Modeling Soft Global Constraints as Linear Programs
in Weighted Constraint Satisfaction

J.H.M. Lee and Y.W. Shum
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{jlee,ywshum}@cse.cuhk.edu.hk

Abstract—The solving of Weighted CSP (WCSP) with global
constraints relies on powerful consistency techniques, but
enforcing these consistencies on soft global constraints is not a
trivial task. Lee and Leung suggest that a soft global constraint
can be used practically if we can find its minimum cost and
perform projections/extensions on it in polynomial time, at the
same time projections and extensions should not destroy those
conditions. However, there are many useful constraints, whose
minimum costs cannot be found in polynomial time.

In this paper, we propose a special class of soft global
constraints which can be modeled as integer linear programs.
We show that they are soft linear projection-safe and their
minimum cost can be computed by integer programming. By
linear relaxation we can avoid the exponential time taken to
solve the integer programs, as the approximation of their actual
minimum costs can be obtained to serve as a good lower bound
in enforcing the approximated consistency notions. While less
pruning can be done, our approach allows much more efficient
consistency enforcement, and we demonstrate the efficiency of
such approaches experimentally.

Keywords-Constraint Optimization; Global Constraints; Soft
Constraint Satisfaction;

I. INTRODUCTION

Weighted Constraint Satisfaction Problems (WCSPs) pro-
vide a framework for modeling over-constrained problems
and problems with preferences. The basic solution technique
for WCSPs is branch-and-bound search augmented with
various forms of consistencies [1]–[3]. In addition, a good
library of global constraints is essential for us to model com-
plex real-life problems. The key concern with implementing
soft global constraints is tractability. Lee and Leung [4]
suggest three requirements for a soft global constraints
to be practical. First, computation of the minimum cost
must be efficient. Second, projections and extensions on the
constraints can be performed efficiently. Third, projections
and extensions on the constraints will not destroy the last two
efficiency requirements. This is called projection safety [4].
Lee and Leung further demonstrate that flow-based [5] soft
global constraints satisfy the first two requirements, and give
instances that are flow-based projection-safe.

Our goal is to introduce more practical soft global con-
straints into the existing catalog. Many soft global con-
straints are, however, not flow-based. An example is the

soft DISJUNCTIVE constraint, which schedules jobs without
overlapping in a non preemptive scheduling problem. Known
algorithms for computing the minimum cost of the constraint
are exponential.

We propose a special class of soft global constraints which
can be modeled as integer linear programs (ILPs), and call
them soft linear constraints. Thus, minimum costs of such
constraints can be computed using integer programming
techniques, which are unfortunately exponential in the worst
case in general. We propose to compute instead the mini-
mum costs of the linear relaxation of the integer programs,
since linear programming algorithms have excellent aver-
age case behavior. The relaxed minimum costs can serve
as a good lower bound and approximation of the actual
minimum costs. We propose constant time algorithms to
perform projections and extensions on soft linear constraints,
and give sufficient conditions guaranteeing a soft linear
constraint to be soft linear projection-safe. By propagating
using the approximated minimum costs, we can approximate
the various consistency notions for soft global constraints.
The tradeoff is less pruning but much more efficient (ap-
proximated) consistency enforcement.

We give examples of useful soft linear constraints
and show them to be soft linear projection-safe. They
include the SOFT SLIDINGSUM, SOFT EGCC, and
SOFT DISJUNCTIVE constraints, which are naturally
NP-hard to tackle. We perform detailed experimentation to
demonstrate the feasibility and efficiency of our proposal.

II. BACKGROUND

A weighted constraint satisfaction problem (WCSP) [6] is
a tuple (X , D, C, k). X is a set of variables {x1,x2,. . . ,xn}.
Each variable has its finite domain D(xi) ∈ D of values
that can be assigned to it. Each variable can only be assigned
by one value in its corresponding domain. An assignment
on a set of variables can be represented by a tuple `. We
denote `[xi] as the value assigned to xi, `[S] as the tuple
formed from the assignment on variables in the set S, and
L(S) denotes a set of tuples corresponding to all possible
assignments on variables S. C is a set of constraints. Each
CS ∈ C over a set of variables S ⊆ X represents a cost

function mapping tuples `[S] to a cost valuation structure
V (k) = ([0 . . . k],⊕,≤). The structure V (k) contains a set
of integers [0, . . . , k] with standard integer ordering ≤.
Addition ⊕ is defined by a ⊕ b = min(k, a + b). The
subtraction a	 b for a, b ∈ [0 . . . k] and a ≥ b is defined as
a	 b = a− b if a 6= k and k 	 a = k for any a.
S is the scope of CS , which is the set of variables involved

in CS . We use Cxi
to denote a unary constraint over a

variable xi, and C∅ to define the constraint over the empty
set of variables, which denotes the least cost of any solution
of a WCSP must take. If they are not defined, we assume
Cxi

(v) = 0 for all v ∈ D(xi) and C∅ = 0. The cost of a
tuple ` in a WCSP corresponding to an assignment on X is
defined as:

cost(`) = C∅ ⊕
⊕

CS∈C

CS(`[S])

A tuple ` corresponding to an assignment on X is
feasible if cost(`) < k. Our goal is to find a tuple ` which
has the minimum cost among all the feasible tuples, and
such a tuple is a solution of a WCSP.

A global constraint [7] has a particular semantic and can
be represented in a compact way instead of explicitly being
enumerated as a table. In addition, for each global constraint
there can be more than one cost measure. A separate cost
function µ is given to a constraint in case there are more
than one such function. For simplicity, we assume that when
the cost function is specified, CS(`) is used to represent the
constraint CS associated with the cost function µ, and ` is
an assignment to S. Also, we use min(CS) to denote the
minimum cost returned by a constraint CS .

WCSPs are solved with basic branch-and-bound search
augmented with consistency techniques such as NC* [8],
(strong) ∅IC [4], [9], (G)AC* [8], FD(G)AC* [2], and
(weak) ED(G)AC* [3], [10]. Efficient algorithms to enforce
them have also been proposed for unary, binary, and ternary
constraints, which involve finding the minimum costs of the
constraints, and moving those costs between constraints by
projections and extensions [11]. Projections move costs from
n-nary constraints to unary constraints, and extensions are
the inverse of projections. A projection of a cost α from
CS to Cxi(a) is a transformation of (CS , Cxi) to (C ′S , C

′
xi

)
such that if `[xi] = a, C ′S(`) = CS(`) 	 α, otherwise
C ′S(`) = CS(`); If v = a, C ′xi

(v) = Cxi
(v)⊕ α, otherwise

C ′xi
(v) = Cxi

(v).
To enforce those consistency techniques on high-arity

soft global constraints efficiently, Lee and Leung [4] define
projection-safety. A soft constraint CS is T projection-
safe if (a) CS satisfies property T , and (b) C ′S satisfies
property T , where C ′S is obtained from CS by a valid
sequence of projection or extension operations. In other
words, the property T is preserved on CS under projections
and extensions. When T is some property satisfied by CS ,
e.g. flow-based, and CS is flow-based projection-safe, then

C ′S is also flow-based projection-safe, where C ′S is obtained
from CS by a valid sequence of projection or extension
operations.

Wu [12] further define tractable projection-safety. A con-
straint CS is tractable if there exists an algorithm to compute
min(CS) and it runs in time polynomial to its representation
size. A soft constraint CS is tractable projection-safe if: (a)
CS is tractable, and (b) C ′S is tractable, where C ′S is obtained
from CS by a valid sequence of projection or extension
operations. If a constraint CS is tractable projection-safe,
some consistency techniques like GAC*, FDGAC*, and etc.,
can always be enforced on CS in polynomial time.

In this paper, we will formulate soft constraints as integer
linear programs (ILP) [13]. An ILP P consists of a set
of integer variables V , a set of problem constraints Q
and an objective function F . Let V = {c1, c2, . . . , cn}, a
problem constraint has the form of

∑n
i aici ≤ b, where

{a1, a2, . . . , an} is a set of coefficients and b is the right-
hand-side coefficient. An objective function has the form
of

∑n
i dici, where {d1, d2, . . . , dn} is a set of coeffi-

cients. Solving an ILP is to find values for the variables
{c1, c2, . . . , cn} minimizing (or maximizing) the objective
function F while satisfying all the problem constraints Q.

An assignment γ represents the values taken by the
variables V . A feasible solution is an assignment γ that
satisfies all problem constraints Q. An optimal feasible
solution is an assignment γ representing a feasible solution
and the objective function F gives the minimal value. We
use obj(P) to denote the value of the objective function from
an optimal feasible solution of P .

An integer linear program restricts that every variable in V
must take integral value, and solving integer linear programs
requires exponential time. By linear relaxation [13], every
variable in V is allowed to take any real number subject to
the problem constraints Q, and the relaxed problem can be
solved more efficiently.

III. SOFT LINEAR CONSTRAINTS

Definition 1: A soft constraint CS on the set of variables
S is a soft linear constraint if it can be represented by an
integer linear program P , such that min(CS) = obj(P).

We use the SOFT SUM constraint as an example. A
SOFT SUM(S, lb, ub) constraint restricts the sum of the
values taken by a set of variables S between a lower bound
lb and an upper bound ub.

Definition 2: Given a tuple `, SOFT SUM(S, lb, ub) holds
if lb ≤

∑
xi∈S `[xi] ≤ ub, where `[xi] is the value assigned

to xi in the tuple `.
We can define the violation measure of SOFT SUM con-

straint as that of the SOFT AMONG constraint given by
Maher et al. [14]. Given an assignment tuple ` on variables
S,

SOFT SUM(S, lb, ub)(`) = max(
∑
xi∈S

`[xi]−ub, lb−
∑
xi∈S

`[xi], 0)

We give the proof that SOFT SUM constraint is a soft linear
constraint by showing that we can construct a linear program
P to express it. For each variable xi ∈ S, we create a
variable cxi in P which has the same domain as xi. Two
new variables ` and u are used to represent the costs arising
from violating the lower and upper bounds respectively.

Theorem 1: The SOFT SUM constraint is a soft linear
constraint.

Proof: The SOFT SUM(S, lb, ub) constraint can be ex-
pressed by an integer linear program P where P is defined
as:

min l + u, s.t.

lb ≤
∑
xi∈S

cxi − l + u ≤ ub

min
v∈D(xi)

v ≤ cxi
≤ max

v∈D(xi)
v, ∀xi ∈ S

l ≥ 0, u ≥ 0

such that min(SOFT SUM(S, lb, ub)) = obj(P).
Example 1: Consider the constraint CS =

SOFT SUM(S, 7, 8) where S = {x1, x2, x3},
D(x1) = {1, 2, 3}, D(x2) = {2, 3}, and D(x3) = {3},
The corresponding integer linear program P is:

min l + u, s.t.

7 ≤ cx1 + cx2 + cx3 − l + u ≤ 8

1 ≤ cx1 ≤ 3, 2 ≤ cx2 ≤ 3, 3 ≤ cx3 ≤ 3

l ≥ 0, u ≥ 0

and obj(P) gives the minimum cost of CS . In this example,
obj(P) = 0 which equals to min(CS).

A. Projections and extensions in Soft Linear Constraints

A T projection-safe constraint preserves its property T
after projections and extensions. For example, T can be
flow-based and Lee and Leung give examples of flow-based
projection-safe constraints [4]. If the minimum cost of a
T projection-safe constraint can be computed efficiently, its
minimum cost can still be computed efficiently through the
consistency enforcement and so it is feasible to use such a
constraint in WCSPs.

In this paper, we are interested in soft-linear as the prop-
erty T and we define soft linear projection-safe constraints.
First we give the sufficient conditions to determine whether a
constraint is a soft linear projection-safe constraint, and then
we show that given a soft linear projection-safe constraint,
the minimum cost can still be computed by solving its
corresponding integer linear program after projections and
extension.

Lemma 1: Given a constraint CS which satisfies the
following three conditions:

1) CS is a soft linear constraint and has the corresponding
integer linear program P ;

2) there exists a function Λ′ mapping each optimal fea-
sible solution γ in P to each tuple ` ∈ L(S), where
L(S) denotes the set of tuples corresponding to all
possible assignments on variables S, and;

3) for each value d ∈ D(xi) in each variable xi ∈ S,
there exists a 0-1 variable cxi,d ∈ V in P such that if
` = Λ′(γ) for a feasible optimal solution γ in P and
a tuple ` ∈ L(S), whenever `[xi] = d for some tuple
`, γ[cxi,d] = 1; whenever `[xi] 6= d, γ[cxi,d] = 0

Suppose C ′S is obtained from projecting α from CS to
Cxi(v), or extending α from Cxi(v) to CS , then C ′S also
satisfies these conditions.

Proof: (sketch) We only prove the part for projection
as extension is the inverse of projection and so the proof is
similar. We first show that C ′S is also a soft linear constraint
(condition 1)). Assume P is the corresponding integer linear
program of CS such that there exists an optimal feasible
solution γ for P corresponding to an assignment ` for
CS . Given the third condition, there exists a variable in
cxi,v in P such that whenever `[xi] = v for some tuple
`, γ[cxi,v] = 1; whenever `[xi] 6= v, γ[cxi,v] = 0. After
the projection α, an additional term −αci,v can be added
to the objective function F of P . The resulting P ′ is the
corresponding integer linear program of C ′S , since obj(P ′) =
obj(P)− αci,v = min{CS} − αci,v = min{C ′S}.

Since P ′ has the same set of variables V ′ = V and linear
constraints Q′ = Q as P has, C ′S also satisfies the conditions
2) and 3).
Lemma 1 implies that if a soft linear constraint satisfies con-
ditions 2) and 3), those conditions are preserved throughout
a series of projections and extensions. From Lemma 1, we
can give the sufficient conditions of a soft linear projection-
safe constraint.

Theorem 2: If a soft global constraint CS satisfies the
conditions stated in Lemma 1, it is a soft linear projection-
safe constraint.

Proof: follows directly from Lemma 1.
Theorem 2 gives a sufficient condition for a soft global

constraint to be a soft linear projection-safe constraint. In
order to construct the corresponding integer linear program
P such that the conditions of a soft linear projection-
safe constraint can be satisfied, binary variables cxi,d are
introduced for every value d in the domain d ∈ D(xi) of
every variable xi ∈ S in P ; for each variable xi ∈ S, there
is an extra linear constraint

∑
j∈D(xi)

cxi,j added to P such
that only a value can be assigned to each variable xi in CS .
According to condition 3), we can easily define Λ′.

We use the SOFT SUM constraint as an example. Let X
= {x1, x2, x3} with D(x1) = D(x2) = D(x3) = {1, 2},
we have the following integer linear program P for CS =
SOFT SUM(X, 7, 8):

min l + u, s.t.

7 ≤ cx1,1+2cx1,2+cx2,1+2cx2,2+cx3,1+2cx3,2−l+u ≤ 8

cx1,1 + cx1,2 = 1, cx2,1 + cx2,2 = 1, cx3,1 + cx3,2 = 1

l ≥ 0, u ≥ 0

where cxi,d = {0, 1} for every xi ∈ S and d ∈ D(xi).
To find min(CS |x1 = 1), we fix cx1,1 = 1 in P . A feasi-

ble optimal solution (cx1,1, cx1,2, cx2,1, cx2,2, cx3,1, cx3,2) =
(1, 0, 0, 1, 0, 1) is obtained with obj(P) = 2, which repre-
sents (x1, x2, x3) = (1, 2, 2) with a cost of 2.

If a cost of 2 is projected from CS to Cx1(1), a new
integer linear program P ′ is constructed with the same set
of problem constraints and variables Q′ = Q, V ′ = V , and F ′

= −2cx1,1 + F where a new term is added to the objective
function, such that F ′ = l + u− 2cx1,1.

By assigning (x1, x2, x3) = (1, 2, 2) back to P ′, obj(P ′)
becomes 0 which is the cost of this tuple after projection.
We can see that projecting and extending cost to soft linear
projection-safe constraint CS requires constant time.

We cannot convert all the soft linear constraints
into soft linear projection-safe constraints directly. We
use the SOFT NVALUE constraint as an example. The
SOFT NVALUE(S, lb, ub) constraint restricts the number of
distinct values taken by a set of variables S between a
lower bound lb and an upper bound ub. We define D(S) =⋃

xi∈S D(xi). Given an assignment tuple ` on variables S,

SOFT NVALUE(S, lb, ub)(`) = max(k − ub, lb− k, 0)

where

k =
∑

d∈D(S)

min(|{i|`[xi] = d ∀xi ∈ S}|, 1)

An integer linear program P can be constructed such that
min(SOFT NVALUE(S, lb, ub)) = obj(P):

min l + u, s.t.∑
d∈D(xi)

cd ≥ 1, ∀xi ∈ S

lb ≤
∑

d∈D(S)

cd − l + u ≤ ub; cd = {0, 1} ∀d ∈ D(S)

and SOFT NVALUE is a soft linear constraint. Since all
the variables xi ∈ S share the same set of 0-1 variables cd ∈
V of P , more than one tuple in CS can be represented by
an optimal feasible solution γ of P . So the SOFT NVALUE
constraint with our formulation does not satisfy the condition
2) of Lemma 1. By naively adding variables to satisfy that
condition, it becomes a quadratic program which does not
satisfy the condition 1) of Lemma 1. We have yet to find the
linear formulation such that we can model SOFT NVALUE
as a soft linear projection-safe constraint.

B. Linear Relaxation of Integer Linear Program

A requirement for a constraint CS to be a tractable
projection-safe soft constraint is that its minimum cost
min(CS) can be computed efficiently. However, given a soft
linear projection-safe constraint CS , we compute its mini-
mum cost min(CS) by solving the corresponding integer lin-
ear program P , which is an NP-hard problem. As min(CS)
is used in enforcing different consistency techniques, we pro-
pose that by solving P with linear relaxation, we can obtain
a good lower bound for min(CS) such that an approximation
of the consistency techniques can be enforced. In this way
we relax an NP-hard optimization problem into a related
problem which is solvable in polynomial time.

Here we assume that for every integer linear program P
used in soft linear projection-safe constraints in WCSP is a
minimization problem.

Theorem 3: Suppose P is an integer linear program cor-
responding to a soft linear projection-safe constraint CS

and P is a minimization problem, and relaxed obj(P) is
the value of the objective function from a feasible op-
timal solution of P under linear relaxation, then: a) re-
laxed obj(P) ≤ obj(P), and b) Cost can be projected equals
to max(drelaxed obj(P)e, 0).

Proof: Given a feasible solution γ′ of P corresponding
to `′, γ′ must be a feasible solution of P under linear re-
laxation. So obj(P) cannot be smaller than relaxed obj(P).
As it is possible to take real values in the relaxed problem,
we can have relaxed obj(P) smaller than obj(P).

To project α from CS to Cxi
(v) on a soft linear

projection-safe constraint, there must exist an integer lin-
ear program P where obj(P (cxi,v = 1)) = α. Since
obj(P (cxi,v = 1)) is an integral value, solving P by linear
relaxation obtains a minimum cost relaxed obj(P (cxi,v =
1)) to be projected; given drelaxed obj(P (cxi,v = 1))e ≤
obj(P (cxi,v = 1)), it must be feasible to project
drelaxed obj(P (cxi,v = 1))e to Cxi

(v). At the same time
as obj(P (cxi,v = 1)) ≥ 0 given that all the projections
and extensions performed previously are feasible. Even
relaxed obj(P) < 0, we can still take the cost can be
projected as 0.

We use GAC* as an example. GAC* is a consistency
notion used in WCSPs, which requires that in each value of
each variable, there must exists a supporting tuple with its
cost = 0 in each constraint related to that variable.

Definition 3: Given a WCSP P (X,D,C, k), a value
xi(a) where a ∈ D(xi) and xi ∈ X is GAC* with respect to
constraint CS ∈ C if it is NC* and there is a tuple ` ∈ L(S)
with `[xi] = a such that CS(`) = 0. A value xi(a) is NC*
if C∅ ⊕ Cxi

(a) < k.
So if min(CS(xi = a)) = 0, there exists a supporting tuple
which is the tuple gives that cost.

By linear relaxation, we have an approximation of
min(CS) from relaxed obj(P), where P is the correspond-

ing linear program of CS . We can define an approximation
of GAC* by relaxing the requirements of GAC*.

Definition 4: xi(a) is approximated GAC* with respect
to a soft linear projection-safe constraint CS ∈ C if it is
NC* and relaxed obj(P |cxi,a = 1) ≤ 0, where P is the
corresponding linear program of CS .
This approach also allows us to define the approximation
of some stronger consistency techniques like FDGAC* and
weak EDGAC*.

IV. MODELING SOFT-GLOBAL CONSTRAINTS AS
LINEAR CONSTRAINTS

In this section we introduce three soft global con-
straints, include the SOFT SLIDINGSUM, SOFT EGCC, and
SOFT DISJUNCTIVE/CUMULATIVE constraints. We show
that computing their minimum cost is NP-hard by showing
that enforcing GAC [15], a consistency notion in classical
CSPs, on the related hard constraint is NP-hard. Since GAC*
collapses to GAC when WCSPs collapse to CSPs [16]. We
can enforce GAC on the related hard constraint of CS in
polynomial time if there exists a polynomial time algorithm
to find the minimum cost of CS . On the other hand, if the
enforcement of GAC on a related hard constraint of CS is
NP-hard, finding the minimum cost of CS must be NP-hard.
By linear relaxation, we can obtain the approximated lower
bounds and use them in enforcing the approximation of the
consistency techniques.

A. SOFT SLIDINGSUM Constraint

The SLIDINGSUM(S, [p1, . . . , pm]) constraint [14] takes a
sequence of n variables S = {x1, . . . , xn} and m windows.
For every window pi = {lbi, ubi, ki, si}, the sum of the
variables is restricted between a lower bound lbi and an
upper bound ubi from its starting position si for a length
ki. Enforcing GAC on SUM constraint is NP-hard [17]. As
the SLIDINGSUM constraint can can be represented by a
conjunction of multiple SUM constraints, enforcing GAC on
SLIDINGSUM is NP-hard.

Definition 5: The SLIDINGSUM(S, [p1, . . . , pm])
constraint holds iff lbi ≤

∑si+ki−1
j=si

xj ≤ ubi for
every i from 1 to m.

We can define the violation measure of the
SOFT SLIDINGSUM constraint as that of the SOFT AMONG
constraint [14]. Given an assignment tuple ` on variables
S,

SOFT SLIDINGSUM(S, [p1, . . . , pm])(`)

=
m∑

j=1

max(
sj+kj−1∑

h=sj

`[xh]− ubj , lbj −
sj+kj−1∑

h=sj

`[xh], 0)

Computing the minimum cost of SOFT SLIDINGSUM ac-
cording to the violation measure defined here is NP-hard
as we can reduce a SOFT SLIDINGSUM constraint to a
SLIDINGSUM constraint. We can model this constraint as

a soft linear projection-safe constraint such that we can
compute the approximated minimum cost efficiently by
linear relaxation.

Theorem 4: The SOFT SLIDINGSUM constraint is a soft
linear projection-safe constraint.

Proof: The SOFT SLIDINGSUM(S, [p1, . . . , pm]) con-
straint can be expressed by an integer linear program P
where P is defined as:

min

m∑
j=1

lj + uj , s.t.

lbj ≤
sj+kj−1∑

h=sj

∑
d∈D(h)

d ∗ cxh,d − lj + uj ≤ ubj , ∀j = 1 . . . m

lj ≥ 0, uj ≥ 0, ∀j = 1 . . . m∑
d∈D(xi)

cxi,d = 1, ∀i = 1 . . . n; cxi,d = {0, 1}, ∀xi ∈ S, d ∈ D(xi)

If xi = d, cxi,d = 1; otherwise cxi,d = 0. By Theorem 2,
SOFT SLIDINGSUM constraint is a soft linear projection-
safe constraint.

B. SOFT EGCC constraint

The EGCC(SX , SY) constraint [18] is defined for two
sets of n + m variables SX and SY where SX =
{x1, . . . , xn} is a set of assignment variables and SY =
{yd1 , . . . , ydm

} is a set of counting variables. The idea is
that each value dj where ydj

∈ SY is used exactly ydj
times

by the variables SX . Enforcing GAC on every variable of
EGCC is NP-hard [18].

Definition 6: The EGCC(SX , SY) constraint holds iff
ydi
∈ D(di)∧occ(di, (x1, . . . , xn)) = ydi

for every di where
ydj
∈ SY .

where occ(v, t) is the number of occurrences of v in t.
We can define the SOFT EGCC constraint with the same

violation measure as variable-based violation measure used
in SOFT GCC [5]. The constraint is softened by allowing
counting variables ydi ∈ SY to take values other than
occ(di(x1, . . . , xn)). Given an assignment tuple ` in vari-
ables S = SX ∩ SY ,

SOFT EGCC(SX , SY)(`)

=
m∑

j=1

|ydj
− occ(dj , (x1, . . . , xn))|

Computing the minimum cost of SOFT EGCC according
to the violation measure defined here is NP-hard as we can
reduce a SOFT EGCC constraint to a EGCC constraint.
We can model this constraint in the form of a soft linear
projection-safe constraint such that we can compute the
approximated minimum cost efficiently by linear relaxation.

Theorem 5: The SOFT EGCC constraint is a soft linear
projection-safe constraint.
The proof is similar to that of theorem 5.

C. SOFT DISJUNCTIVE/ CUMULATIVE Constraint

The DISJUNCTIVE(S, p1, . . . , pn) constraint [19] is used
in non-preemptive scheduling. A set of n variables S =
x1, . . . , xn is used to represent the beginning time of n
jobs. Each job xi ∈ S has its process time pi and its
possible start time defined by its domain d ∈ D(xi).
After one job has started, it cannot be interrupted to start
processing another job. DISJUNCTIVE constraint restricts
any two jobs from processing at the same time. Enforcing
GAC on DISJUNCTIVE is NP-hard [20].

Definition 7: The DISJUNCTIVE(S, p1, . . . , pn) constraint
holds if (xi + pi ≤ xj) ∨ (xj + pj ≤ xi) for every pair of
xi, xj ∈ S [19]

The penalties for earliness and tardiness can be modeled
by unary costs of the values representing the start time. Here
we only define the violation measure to include the penalties
of jobs being processed at the same time.

This constraint is softened by allowing more than one job
to be processed at the same time with a cost as the penalty.
Such a violation measure allows SOFT CUMULATIVE to be
modeled with the same formulation, where the CUMULA-
TIVE constraint allows k jobs to be processed at the same
time instead of 1 in the DISJUNCTIVE constraint.

First we define T which consists of every possible start
time d ∈ D(xi)∀xi ∈ S and all possible finish time pi +d ∈
D(xi)∀xi ∈ S. Given an assignment tuple ` in variables S,

SOFT DISJUNCTIVE(xi, . . . , xn, p1, . . . , pn)(`)

=
T∑

t=0

n∑
i=1

max(|{i|`[xi] ≤ t ≤ `[xi] + pi}| − 1, 0)

Computing the minimum cost of SOFT DISJUNCTIVE ac-
cording to the violation measure defined here is NP-hard
as we can reduce a SOFT DISJUNCTIVE constraint to a
DISJUNCTIVE constraint. We can model this constraint in
the form of a soft linear projection-safe constraint such that
we can compute the approximated minimum cost efficiently
by linear relaxation.

Theorem 6: The SOFT DISJUNCTIVE constraint is a soft
linear projection-safe constraint.
The proof is similar to that of theorem 5.

V. EXPERIMENTAL RESULTS

To demonstrate the practicality of our framework, we
implement the constraints described in section IV in Toul-
bar2 v0.9, and use IBM ILOG CPLEX Optimizer 12.2 to
solve the related linear problems. We compare the results
of models with linear constraint and different modeling
methods with different levels of consistency including strong
∅IC [4], (G)AC* [8], and FD(G)AC* [2]. Approximated
version of those consistency levels are used for soft linear
projection-safe constraints.

In this experiment, variables with smaller domains and
values with lower unary costs are assigned first. The tests

are conducted on an Intel Core2 Duo E7400 (2 x 2.80GHz)
machine with 4GB RAM. In each benchmark we use dif-
ferent parameter settings to construct different instances,
and 10 random cases are generated with each parameter
setting. In each benchmark we use different timeout and
report the number of solved instances #s, the average number
of backtracks #bt, and the average runtime in seconds #time
for solved cases. The runtime includes the CPU time used
by both the WCSP solver Toulbar2 and the linear program
solver ILOG. We truncate the floating point variables in
ILOG at the 10-th decimal place. We first compare the
number of solved cases. The best result among those with
the most cases solved is highlighted in bold.

A. The generalized car sequencing problem (generalizing
prob001 in CSPLib)

We evaluate performance of the SOFT SLIDINGSUM con-
straint by comparing the performance of our linear constraint
approach with the modeling by flow-based soft constraints.
Given n cars of u ∈ U different types, and a set of options
I which each type may or may not be equipped with, each
assembly line of an option i ∈ I allows a maximum of mi

cars for every si cars with that option equipped to be built.
A car-sequencing problem is to find a sequence for the cars
to be built such that all the constraints above are satisfied.
We generalize the problem such that a random cost cu,i is
required for each type of car u ∈ U to equip each option
i ∈ I , and each assembly line of an option i ∈ I allows a
maximum of mi costs to be spent on that option for every
si cars in total.

We use n variables with domain from 1 to u to represent
the type of the n-th car to be built in the sequence. A
SOFT EGCC constraint is used to ensure that the number
of cars of each type is built according to the plan. A
SOFT SLIDINGSUM constraint is used to ensure that at
most mi resources are used out of si cars for every option
i ∈ I . We soften the problem as SOFT SLIDINGSUM allows
violation. We generate 10 problems for each parameters.
For each set of parameter, there are n cars, 5 options, and
u types, and there are 1/2 chance for each option to be
equipped by each type, and a random amount of resource
requirement is generated for each option of each type.

We compare the performance of our implementation
against the model with SOFT REGULAR constraints, which
are flow-based projection-safe soft constraints and they can
be used to model the SOFT SUM constraints and form the
SOFT SLIDINGSUM constraints.

Results are shown in Table I. In this benchmark, models
using linear constraints run faster and prune more than
models with SOFT REGULAR constraints in most cases.
FDGAC* is also faster than than GAC* and strong ∅IC
in models with a linear constraint.

B. The magic series problem (prob019 in CSPLib)

We evaluate performance of the SOFT EGCC constraint
on magic series problems. A non-empty finite series S =
(s0, s1, . . . , sn) is magic if and only if there are si occur-
rences of i ∈ S for each integer i ranging from 0 to n.
For example, S = (3, 2, 1, 1, 0, 0, 0) is an example of a
magic series for n = 6 as there are three 0’s, two 1’s,
a 2, a 3, and no 4, 5, and 6 in the series S. The hard
version of this problem with the size of n can be modeled
by n EGCC constraints. We soften the problem by using the
SOFT EGCC constraints which allow that the occurrences
of i are not equal to the value of si, and unary costs are
assigned randomly to each value of si for all variables
si ∈ S.

We compare our model with the model constructed by de-
composing the SOFT EGCC constraints into SOFT AMONG
constraints with counting variables modeled by SOFT GCC
constraints. GAC* can be enforced in polynomial time in
each SOFT AMONG constraint [16].

Results are shown in Table II. In this benchmark, models
using linear constraints always prune more than models
with SOFT AMONG constraints. Those models also run
faster when stronger consistency techniques like GAC* and
FDGAC* are used, but FDGAC* does not benefit enough
over GAC* so although the number of backtrack is fewer,
the run-time of FDGAC* is worse than GAC* by about 2
times.

C. The weighted tardiness scheduling problem (in OR-
Library)

We evaluate performance of the SOFT DISJUNCTIVE
constraint the weighted tardiness scheduling problem. We
generate random scheduling problems with different number
of jobs n, the average duration of each job d, and the total
available time slots t. A SOFT DISJUNCTIVE constraint is
used to ensure no two jobs are processed at the same time.
A time slot with the length of t/2 is given to each job,
and a random earliness/tardiness penalty is given to each
job if it cannot be processed within the given time slot. We
soften the problem by allowing the jobs to be processed at
the same time with a penalty. We compare the result of the
linear constraint approach of SOFT DISJUNCTIVE with the
integer programming approach of the same implementation,
which allows the exact minimum costs to be found and so
the consistency algorithms like GAC*, etc., to be enforced.

Results are shown in Table III. In this benchmark, the
integer linear program approach prunes more than linear
relaxation approach as the exact minimum costs of each
constraint are found in propagation steps. However it also
takes much more time to solve and the extra pruning power
offered in using integer linear programs does not pay off.

Table I
THE GENERALIZED CAR SEQUENCING PROBLEM USING

SOFT SLIDINGSUM

Modeling with soft linear constraints

n strong ∅IC GAC* FDGAC*
s bt time s bt time s bt time

10 10 101 1.18 10 41 0.55 10 21 0.52
11 10 106 1.61 10 56 0.97 10 24 0.81
12 10 138 2.51 10 119 1.44 10 48 1.15
13 10 278 6.88 10 223 4.29 10 107 4.04
14 10 1743 30.16 10 585 17.63 10 264 13.12
15 9 1441 17.24 9 458 15.20 10 503 33.16
16 9 2347 35.77 9 782 25.76 9 434 18.77
17 9 2802 43.24 9 1029 31.80 9 674 23.85
18 9 3959 81.95 9 1509 51.43 9 1390 34.52

Modeling with flow-based soft constraints (SOFT REGULAR)

n strong ∅IC GAC* FDGAC*
s bt time s bt time s bt time

10 10 10966 2.86 10 4023 1.57 10 865 0.72
11 10 34146 9.70 10 14775 5.90 10 4501 3.86
12 10 149251 46.10 10 55866 24.73 10 24497 22.15
13 10 514602 171.45 10 212406 97.06 10 53913 54.57
14 7 378079 148.01 9 279748 152.24 10 104588 108.94
15 4 191455 80.04 4 77584 45.11 10 110117 152.39
16 0 * * 0 * * 2 138938 227.10
17 0 * * 0 * * 2 188422 309.32
18 0 * * 0 * * 0 * *

Table II
THE MAGIC SEQUENCE USING SOFT EGCC CONSTRAINTS

Modeling with soft linear constraints

n strong ∅IC GAC* FDGAC*
s bt time s bt time s bt time

6 10 73 0.31 10 14 0.09 10 13 0.10
9 10 367 2.54 10 23 0.24 10 19 0.27

12 10 5010 67.44 10 54 0.71 10 44 0.99
15 3 12136 274.88 10 89 1.70 10 53 2.32
18 2 29409 508.86 10 93 3.03 10 64 4.80

Modeling with flow-based soft constraints (SOFT AMONG)

n strong ∅IC GAC* FDGAC*
s bt time s bt time s bt time

6 10 229 0.23 10 48 0.06 10 25 0.05
9 10 8878 16.13 10 680 5.00 10 83.4 1.26

12 4 295761 139.88 4 6142 220.22 10 252 19.15
15 0 * * 0 * * 10 810 228.03
18 0 * * 0 * * 0 * *

VI. CONCLUSION

We define the class of soft global constraints called
soft linear constraints which can be modeled as integer
linear programs. Our work gives the sufficient conditions
guaranteeing a constraint to be soft linear projection-safe
and shows the projections and extensions can be done
in constant time. We further propose to relax the integer
program by linear relaxation. With the excellent average case
behavior of linear programming algorithms, we show that
while we have the tradeoff of less pruning brought by the
approximation, we have a much more efficient consistency
enforcement. Our proposal proves practical ways to enforce
consistencies on soft versions of SLIDINGSUM(), EGCC(),
and DISJUNCTIVE() constraints, which are naturally NP-

Table III
THE WEIGHTED TARDINESS SCHEDULING PROBLEM USING

SOFT DISJUNCTIVE

With linear relaxation

n,d,t strong ∅IC GAC* FDGAC*
s bt time s bt time s bt time

3,3,12 10 18 0.08 10 7 0.05 10 6 0.06
4,4,20 10 56 0.36 10 13 0.14 10 8 0.18
5,5,30 10 134 1.62 10 35 0.60 10 19 0.68
6,5,35 10 797 14.90 10 382 7.01 10 32 1.90
7,5,40 10 3303 101.86 10 2253 61.89 10 27 2.78
8,5,45 4 5768 221.06 4 3894 135.51 10 214 22.09

Without linear relaxation

n,d,t strong ∅IC GAC* FDGAC*
s bt time s bt time s bt time

3,3,12 10 18 1.79 10 7 1.02 10 6 1.37
4,4,20 10 56 13.35 10 13 6.62 10 8 7.56
5,5,30 10 134 74.45 10 35 38.28 10 15 40.77
6,5,35 10 238 230.80 8 61 100.99 10 19 121.82
7,5,40 3 250 429.97 4 81 219.85 10 23 302.98
8,5,45 0 * * 0 * * 0 * *

hard to tackle. Through experiments, we show that our
approach is competitive in term of run-time and reduction
in search space. A. M. Koster [21] propose a generic way
of formulating WCSPs into linear programs. While their
framework can model every constraint used in WCSPs, our
work focuses on the global constraints which has particular
semantics. By identifying the specific structure of each con-
straint, we can model them more efficiently. An immediate
future work is to find a generic way to identify whether a
constraint is a soft linear (projection-safe) constraint. We
will also investigate whether our approach also performs
efficiently on other soft linear projection-safe constraints.

ACKNOWLEDGEMENT

We thank the anonymous referees for their construc-
tive comments. The work described in this paper was
substantially supported by grants (CUHK413710 and
CUHK413808) from the Research Grants Council of Hong
Kong SAR.

REFERENCES

[1] M. C. Cooper and T. Schiex, “Arc consistency for soft
constraints,” Artificial Intelligence, vol. 154, pp. 199–227,
2004.

[2] J. Larrosa, “In the quest of the best form of local consistency
for weighted CSP,” in IJCAI’03, 2003, pp. 239–244.

[3] S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa, “Existential
arc consistency: Getting closer to full arc consistency in
weighted CSPs,” in IJCAI’05, 2005, pp. 84–89.

[4] J. H. M. Lee and K. L. Leung, “Towards efficient consistency
enforcement for global constraints in weighted constraint
satisfaction,” in IJCAI’09, 2009, pp. 559–565.

[5] W. van Hoeve, G. Pesant, and L. Rousseau, “On global
warming: flow-based soft global constraints,” J. Heuristics,
vol. 12, no. 4-5, pp. 347–373, 2006.

[6] T. Schiex, H. Fargier, and G. Verfaillie, “Valued constraint
satisfaction problems: hard and easy problems,” in IJCAI’95,
C. Mellish, Ed., Montreal, 1995.

[7] N. Beldiceanu, M. Carlsson, and J. Rampon, “Global con-
straint catalog,” SICS Research Report, 2005.

[8] J. Larrosa, “Node and arc consistency in weighted CSP,” in
AAAI’02, 2002, pp. 48–53.

[9] M. Zytnicki, C. Gaspin, and T. Schiex, “A new local con-
sistency for weighted CSP dedicated to long domains,” in
SAC’06, 2007, pp. 394–398.

[10] J. H. M. Lee and K. L. Leung, “A stronger consistency for
soft global constraints in weighted constraint satisfaction,” in
AAAI’10, 2010, pp. 121–127.

[11] M. C. Cooper, “High-order consistency in valued constraint
satisfaction,” Constraints, vol. 10, pp. 283–305, 2005.

[12] Y. Wu, “Tractable projection-safe soft global constraints in
weighted constraint satisfaction,” Master’s thesis, The Chi-
nese University of Hong Kong, 2011.

[13] L. Wolsey, Integer Programming. Wiley, 1998.

[14] M. Maher, N. Narodytska, C.-G. Quimper, and T. Walsh,
“Flow-based propagators for the sequence and related global
constraints,” in CP’2008, 2008, pp. 159–174.

[15] C. Bessière and J.-C. Régin, “Arc consistency for general
constraint networks: preliminary results,” in IJCAI’97, 1997,
pp. 398–404.

[16] K. Leung, “Soft global constraints in weighted constraint
satisfaction,” Master’s thesis, The Chinese University of Hong
Kong, 2009.

[17] C. Bessière and P. V. Hentenryck, “To be or not to be . . . a
global constraint,” in CP’2003, 2003, pp. 789–794.

[18] I. Katriel and S. Thiel, “Complete bound consistency for the
global cardinality constraint,” Constraints, vol. 10, pp. 115–
135, 2005.

[19] J. N. Hooker, Integrated Methods for Optimization. Springer
Science + Business Media, 2007.

[20] A. Aggoun and N. Beldiceanu, “Extending chip in order to
solve complex scheduling and placement problems,” Mathe-
matical and Computer Modelling, vol. 17, no. 7, pp. 57–73,
1993.

[21] A. M. Koster, “Frequency assignment: models and algo-
rithms,” Ph.D. dissertation, University of Maastricht, 1999.

